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Abstract
In this paper, we propose a vehicle routing problem with time windows (TWVRP). In this problem, we consider a hard time
constraint that the fleet can only serve customers within a specific time window. To solve this problem, a hybrid ant colony
(HACO) algorithm is proposed based on ant colony algorithm and mutation operation. The HACO algorithm proposed has
three innovations: the first is to update pheromones with a new method; the second is the introduction of adaptive parameters;
and the third is to add the mutation operation. A famous Solomon instance is used to evaluate the performance of the proposed
algorithm. Experimental results show that HACO algorithm is effective against solving the problem of vehicle routing with
time windows. Besides, the proposed algorithm also has practical implications for vehicle routing problem and the results
show that it is applicable and effective in practical problems.

Keywords Vehicle routing problem · Ant colony algorithm · Mutation operation · Adaptive parameter · Practical application

Introduction

The twenty-first century is an information age, information
technology and scientific research promote the development
of theworld, the process of globalization continues to deepen,

This research is supported by the National Natural Science Foundation
of China under Grant (11961001, 61561001), the Construction Project
of First-class Subjects in Ningxia Higher Education
(NXYLXK2017B09), and the Major Proprietary Funded Project of
North Minzu University (ZDZX201901).

B Yuelin Gao
gaoyuelin@263.net

Hongguang Wu
2440576496@qq.com

Wanting Wang
874812086@qq.com

Ziyu Zhang
2541604895@qq.com

1 School of Mathematics and Information Science, North
Minzu University, Yinchuan 750021, China

2 Ningxia Province Key Laboratory of Intelligent Information
and Data Processing, North Minzu University, Yinchuan
750021, China

3 Ningxia Province Cooperative Innovation Center of Scientific
Computing and Intelligent in Formation Processing, North
Minzu University, Yinchuan 750021, China

the rapid development of the economy cannot be separated
from the public consumption, which makes the development
of the service industry is faster and faster, and the problem
of vehicle routing is also proposed. Vehicle routing prob-
lem (VRP) refers to the need for a group of vehicles to
find an economical and effective route to meet the needs
of different customers. It is a famous NP-hard combination
problem in logistics management, vehicle scheduling, and
traffic transportation [1]. The problem of vehicle routing
was first mentioned in 1959 by Dantzig and Ramser. With
the question raised, many variations on VRP have emerged.
Such as VRP with capacity (CVRP) [2], VRP with time win-
dows (TWVRP) [3,4], VRP with fleet size (FSVRP) [5], and
VRP with uncertain requirements [6], these extended VRP
also belongs to NP-hard combination problems.

The simplest routing problem is the traveling salesman
problem (TSP); if we put limits to the carrying capacity, then
this problem turns into the capacitated vehicle routing prob-
lem (CVRP) [2]. If we limit the distance between vehicles
for CVRP, then it becomes VRP with distance constraint,
namely DVRP [2]. In DVRP, if we consider the time of serv-
ing the demand of customer, the problem becomes TWVRP
that we want to discuss [3].

Ombuki et al. [7] based on the Pareo sorting technique
for the genetic algorithm to solve the TWVRP problem,
they presented the TWVRP as a multi-objective problem.
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The effectiveness of the proposed algorithm is verified by
comparing with baseline data. Ghoseiri et al. [8] combined
genetic algorithm with evolutionary search and Pareo tech-
nology to get an adaptive genetic algorithm for solving
the TWVRP. They converted the TWVRP into a goal pro-
gramming and got good results. Similar algorithms can also
be used to solve such problems, such as the differential
evolutionary integration algorithm based on mixed penalty
function [9] and the differential evolutionary algorithmbased
on topology [10] proposed by Wang.

Ho et al. [11] used tabu search algorithm when solving
the TWVRP, and the experimental results showed that this
problem could be solved by tabu search algorithm and satis-
factory results were obtained. Belhaiza et al. [12] proposed
a tabu search algorithm combined with variable neighbor-
hood method to solve the TWVRP. The advantage of this
algorithm is that the minimum waiting time and the mini-
mum delay of customers can be recorded in the process of
path generation, and then adjust the arrival times and depar-
ture times accordingly. Wang et al. [13] proposed a threshold
tabu search algorithm to solve the TWVRP, which can make
vehicle dispatchers respond to practical problems effectively
and quickly.

Chiang et al. [14] proposed a hybrid simulated anneal-
ing algorithm to solve the TWVRP, and combined with tabu
table to increase the annealing process of short-termmemory
function. Numerical experiments showed that this method
is better than the previous research results. Deng et al. [15]
improved the simulated annealing algorithm by addingmem-
ory function, and adopted the double termination principle to
solve the TWVRP. The experimental results also confirmed
that the new algorithm could obtain better solutions. Wang
et al. [16] used the improved parallel simulated annealing
algorithm based on residual capacity and radial additional
insertion to solve the pick up and deliver at the same time
within a specific time window (VRPSPDTW), and mini-
mized the target with a mixed integer programming model.

Yu et al. [17] accumulated heuristic information using
pheromone matrix method to obtain the IACO when solv-
ing the period vehicle routing problem with time windows
(PTWVRP), and introduced double crossover operation in
the algorithm to improve the performance of the algorithm.
Ding et al. [18] proposed a hybrid ant colony optimiza-
tion algorithm by introducing disaster operator and adjusting
pheromone. Wang et al. [19] treated the TWVRP as a
multi-objective problem and proposed a hybrid ant colony
optimization algorithm, which is obtained by combining ant
colony algorithm and simulated annealing. The performance
of the improved algorithm was significantly improved. In
addition, these algorithms can also be used to solve vehi-
cle routing problems, such as particle swarm optimization
algorithm [20–23], bee colony algorithm [24–26], whale

optimization algorithm [27], Dijkstra algorithm [28], and so
on.

Ant colony optimization (ACO) is an effective heuristic
algorithm to solve the combination optimization problems,
which provides a new idea about solving the VRP. Clolrni et
al. [29] proposed ant colony algorithm, which was proposed
on the basis of real ants and successfully applied to traveling
salesman problem. Bulleneimer et al. [30] first proposed the
ant system, they improved the algorithm and applied it to
the VRP. Due to the complexity and extensiveness of real-
ity, the basic ant colony algorithm has limitations on solving
practical problems. Therefore, many researchers proposed
new methods and new ideas to improve the ant colony algo-
rithm and expand the application scope of the ant colony
algorithm. Yu et al. [31] changed the pheromone update
mode, introduced themutation operation to obtain the IACO.
Although the improved algorithm avoids the local optimiza-
tion, it greatly increases the complexity of the algorithm.
Mavrovouniotis et al. [32] combined ant colony algorithm
with local search algorithm to solve the dynamic traveling
salesman problem. This algorithm improves the quality of
the solution, but its application effect on dynamic instances
is poor. Ding et al. [18] proposed a hybrid ant colony algo-
rithm and introduced the disaster operator. They studied the
convergence speed of the proposed algorithm, but does not
consider the complexity of the algorithm. Wang et al. [33]
applied the hybrid ant colony algorithm to the model of
emergency transportation after a disaster. Jabir et al. [34]
combined ant colony algorithm with variable neighborhood
search algorithm and applied it to multi-stage green vehi-
cle routing problem (MDGVRP). Li et al. [35] applied the
improved ant colony algorithm to multi-target vehicle rout-
ing problem (MVRP). He proposes a relatively simple model
and only compares the proposed algorithm with the basic
algorithm when evaluating its performance.

Therefore, this paper proposes aHACOalgorithm (HACO)
based on multiple strategies to solve the TWVRP. The main
work are to improve the updating method of pheromone ,
adjust the pheromone volatile factor adaptively, and intro-
duce into swap operator and insert operator to avoid the
algorithm falling into local optimal and improve the con-
vergence rate of the algorithm. The framework of this paper
is divided into six parts: the first part is the introduction;
the second part is the problem modeling; the third part is
the solution of the problem; the fourth part is the numerical
experiment and the result analysis; the fifth part is an example
application; the sixth part is the conclusion.

Problem description and formulation

The TWVRP requires a group of vehicles to start from the
depot and complete customer service requirementswithin the
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time interval. And on this basis to find a shortest distance and
effective route. The TWVRP is widely used in logistics man-
agement and the most common problem with transportation
system.

We can use the graph theory to model TWVRP as a
directed complete graph G = (V , E) [37], with a vertex set
V = {0, 1, 2, ..., n} and an edge set E = {(i, j)|i, j ∈ V }. In
TWVRP, each vertex represents the node (or customer), and
each edge represents the distance between two nodes. In this
problem, M = {1, 2, ...,m} represents a group of vehicles.
We assume that the depot is vertex 0 and customers are intro-
duces as nodes. The vehicle k {k ∈ M} needs to start from the
depot and return to the depot after serving a certain number
of node. For nodes that is requirements, only one vehicle can
serve them and cannot exceed the maximum capacity of the
vehicle. In addition, the vehicle needs to service within the
time interval[a, b]; it is not earlier than the left time window
a or later than the right time window b.

In this paper, we consider the constraints on vehicle capac-
ity and timewindow to reduce vehicle use and travel distance
and minimize the costs associated with it.

For the convenience of the following description, we
define it as follows:

ai : The left time window of the node i
bi : The right time window of the node i
ci j : Distance between node i and node j
Capk : The capacity of vehicle k
di : The demand of node i
gk : The fixed cost incurred for using vehicle k
hk : The transportation cost per unit distance of vehicle k
ti j : The time required for traveling from node i to node j
si : The service time of node i
ri : The time when vehicle arrives at node i
Decision variables

xi jk =
{
1, i f vehicle k travels f rom node i to node j
0, otherwise

(1)

yik =
{
1, i f node i is served by vehicle k
0, otherwise.

(2)

Objectives: minimum cost
Constraints
The total demand cannot exceed the capacity of the vehi-

cle.
Each node has a vehicle to serve and can only be served

by one vehicle.
The vehicle must serve the node within the time interval.
The vehicle leaves the depot and finally returns to the

depot.
According to the above-defined objectives, parameters,

and decision variables, the problem can be represented as

min
m∑

k=1

hk

n∑
i=0

n∑
j=0

ci j xi jk +
m∑
k=l

gk

n∑
j=1

x0 jk (3)

s.t .
m∑

k=1

di yik ≤ Capk, ∀k ∈ {1, 2, . . . ,m} (4)

m∑
k=1

yik ≤ 1, ∀i ∈ {1, 2, . . . , n} (5)

n∑
j=1

x0 jk −
n∑

i=1

xi0k = 0, ∀k ∈ {1, 2, . . . ,m} (6)

n∑
i=0

xi jk = yik,∀ j ∈ {1, 2, . . . , n} ∀k ∈ {1, 2, . . . ,m}

(7)
n∑
j=0

xi jk = yik,∀i ∈ {1, 2, . . . , n} ∀k ∈ {1, 2, . . . ,m}

(8)

ai ≤ ri ≤ bi , ∀i ∈ {1, 2, . . . , n} (9)
n∑

i=0

n∑
i=0

xi jk(ti j + si + ri ) = r j , ∀k ∈ {1, 2, · · · ,m}.

(10)

In the above model, objective (3) is to minimize the cost
of the vehicle. Constraint (4) ensures that the total demand of
nodes cannot exceed the capacity of the vehicle. Constraint
(5) ensures that each node can only use one vehicle. Con-
straint (6) ensures that the vehicle starts and ends in the depot
when serving the node. Constraints (7) and (8) ensure that
each node always has one vehicle to serve them. Constraint
(9) ensures that the service vehicle should arrive within the
time period. Constraint (10) ensures that the vehicle finally
arrives at the node j from the node i by passing service time
and travel time.

Solution approach

The ant colony algorithm is evolved based on the foraging
behavior of ants in nature. During the process of searching
for food, ants leave secretions along the path they passed.
An ant colony can always find a shortest path from its nest
to food source through these secretions. Dorigo [38–40]
proposed the concept of ACO after being inspired by the
foraging behavior of ant colonies. The idea of ACO is to
use the secretions left by the ants to exchange information,
and then find the optimal path required by the problem. The
secretions are called pheromones. In the foraging process,
the ant determines the next step based on the distribution
of pheromones. If more pheromones are found in a cer-
tain path, the probability of the ant choosing this path will
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be higher. If the ant leaves fewer pheromones, the proba-
bility of the ant choosing this path will be lower. So as
more and more pheromones are accumulated in the path,
it means that more and more ants will choose, and the ant
can find the shortest way to find food. As a heuristic algo-
rithm, the ACO is often used to solve various optimization
problems, and has been successfully applied to practical
cases, especially in VRP, TSP, and related extension prob-
lems.

The core of the ACO is to determine the node that the
ant chooses to go next and design the pheromone update
formula for how to guide the ant to find the shortest path
more quickly. The improvement on ant colony algorithm in
this paper is based on Dorigo (1992) [36] and Ding et al.
(2012) [18], and mainly improves the updating formula of
pheromone and adds adaptive parameters. The parameter ρ

in pheromone updating formula is changed from constant to
dynamic number to reduce the value of the bad path dur-
ing the cycle, and increase the role of the good path in the
optimization process.

The improvement of ACO

When using HACO to solve the TWVRP, each ant needs to
build a path from the depot that satisfies the constraints. If it is
found that the next node selected in the current path does not
satisfy the condition, then the ant needs to return the depot
and rebuild the new path with the remaining nodes, and this
process stops until all nodes are selected. Each ant through
a certain probability to select the next node. Therefore, the
formula for the node i to select the next node j is

j =

⎧⎪⎪⎨
⎪⎪⎩
max j∈Nk

i

{
τα
i j · η

β
i j ·

(
1

widthi

)γ }
, q ≤ q0

Pk
i j = τα

i j ·ηβ
i j ·

(
1

widthi

)γ

max
j∈Nk

i

{
τα
i j ·ηβ

i j ·
(

1
widthi

)γ } , q > q0
(11)

In the formula (11), Nk
i represents the set of node that the

vehicle can access after it leaves the node i; τi j represents the
number of pheromone on the path between the current node i
and possible node j;ηi j represents the intensity, its expression
isηi j = 1

ci j
, and it is the reciprocal of the distance between the

node i and possible node j;widthi represents thewidth of the
time window or the urgency of the node’s requirements, and
is expressed as follows: widthi = bi −ai ; α is a pheromone
factor that determines the ant’s trajectory;β is the expectation
factor, which reflects the importance of external information
to the trajectory; γ represents the importance of the urgency
of the service node to trajectory selection. The node j selected
is the more urgent, the greater the pheromone concentration
and the smaller the distance when q ≤ q0; and it is according
to the probability formula Pk

i j and roulette method to choose
node j when q > q0; q ∈ rand(0, 1) is the random number;

q0 is a parameter that controls the exploitation against the
exploration of ant during the search progress.

When determining which node the ant wants to go next,
and the equivalent of determining the direction. They leave
pheromone on the path to communicate information about
their companions. The pheromone left by the former will
influence the path chosen by the ants later, and in otherwords,
the pheromone concentration decides the choice of the path.
According to the principle of ACO, the shorter the path, the
higher the pheromone concentration; the longer the path,
the smaller the pheromone concentration. To speed up the
search process of ants, the updating formula for pheromone
is improved, which is as follows:

τi j (t + 1) = (1 − ρ)τi j (t) + ρ � τi j (t) (12)

�τi j (t) =
v∑

u=1

�τ ui j (t) (13)

�τ ui j =
{

Q
Lu

, i f the ant u goes through the path (i, j)
0, otherwise

(14)

In the above formula, ρ is the pheromone volatility coeffi-
cient;�τ ui j represents the number of pheromones on the path
of the ant u in the current cycle; Q is a constant related to the
amount of pheromone deposited by the ants; Lu represents
the length of the ant u path in the current cycle.

The pheromone volatility coefficient ρ is a dynamic value.
If the valueofρ is small, the pheromones in thepath evaporate
more slowly, and the pheromone concentration remaining
on the path will be large, which will have a great influ-
ence on the subsequent ant’s path selection, thus reducing
the ant’s random search ability; when the value of ρ is large,
the pheromone on the path will evaporate quickly, while the
concentration of pheromone remaining on the path will be
small, which increases the ant’s global searching ability in
the search process and makes it easier to explore other paths.
In the ant search process, to reduce the interference with poor
path to the ant’s search for new path, the parameters ρ in this
paper is adjusted adaptively, when the optimal solution is
not significantly improved in the sub-cycle, the values are
adjusted according to the following formula:

ρn =
{
0.90ρn−1, 0.90ρn−1 ≥ ρmin

ρmin, otherwise
(15)

In formula (15), to ensure that the opportunity for selecting
nodes can be found under smaller circumstances, ρmin is the
minimum defined in the ant search process.

123



Complex & Intelligent Systems

Fig. 1 Swap operator

Fig. 2 Insert operator

Introducemutation operation

In this paper, we introduce two kinds ofmutation operators in
ACO: swap operator and insert operator. The introduction to
mutation operators not only increases the diversity of optimal
solutions, but also avoids the convergence of the algorithm to
local optima. We first briefly describe the mutation operator
used in this paper.

Swap operator: The random exchange of gene positions
within a gene sequence. In Fig. 1, the positions of genes 2
and 6, 8 and 11 are swapped.

Insert operator: The position in a gene sequence where a
gene is randomly inserted into another gene. In Fig. 2, gene
7 was removed and inserted into the position of gene 4.

An example solution of TWVRP is given in Fig. 3, which
is transformed into gene sequence, as shown in Fig. 4a. The
gene sequence 4(a) was swapped to obtain Fig. 4b. The gene
sequence represented in Fig.4bwas inserted to obtain Fig. 4c.
Where 0 is inserted into the gene sequence to represent the
path of solution formation that meets the constraints.

Steps of the solution

The steps of solving TWVRP model with HACO are as fol-
lows:

Step 1: Initialization of parameters, including the max-
imum number of iterative NC, the number of ants V, the
limited capacity Capk ; the demand of node di for all i ∈
{1, 2, . . . , n}.

Fig. 3 A sample solution for TWVRP

Fig. 4 Sequence codes

Step 2: Put ant l = 1, 2, . . . , v into the depot, and create
an optional table Candl = {1, 2, . . . , n} to record all not
visited nodes. After the ants pass through the nodes, they
should record the nodes in the corresponding path record
table tabul = ∅.

Step 3: Find the not visited node in the table Candl =
{1, 2, . . . , n}, and select the next node j to be accessed accord-
ing to formula (11).

Step 4: Whether the ant l meets the constraints of vehicle
capacity, time and node demand at the node j, if it meets the
constraints, go to Step 5; otherwise, go to step 3.

Step 5: Put the selected node j into the table tabul ,save
the current result, and update the table tabul .

Step 6: Whether the ant l has traversed all the nodes, if so,
go to Step 7; otherwise, go to step 2.

Step 7: Calculate the length of the path traveled by the ant,
and conduct mutation operation on the path found this time.
If the path after mutation operation meets the constraint con-
ditions, record the optimal path and update the path records
table.

Step 8: Update the pheromone according to Formula (12);
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Step 9: To search the solution space comprehensively,
parameter ρ needs to be adjusted adaptively according to
formula (15);

Step 10: Is the current cycle number greater than the max-
imum iteration number. If so, the cycle will stop and output
the result; if not, go to step 2.

Numerical analysis

To verify the performance of the proposed HACO, we apply
it to Solomon’s TWVRP standard instances, which has 56
data sets, each data set contains 100 data, and the data can
be obtained from Solomon website.1

Solomon standard instances can be divided into six cat-
egories: C1, C2, R1, R2, RC1, and RC2. It can be divided
into three types based on the geographic distribution of the
customers, and the first type is the set C1 and C2, because the
instance customers in these two sets are geographically con-
centrated; the second type is the set R1 and R2, because the
instance customers in these two sets are randomly distributed
in geographical locations, which are relatively discrete; the
third type is the set RC1 and RC2, which are between two
classes, both concentration and dispersal. Solomon standard
instances can be further divided into two categories accord-
ing to vehicle capacity fleet size and time window. The first
category is C1, R1, and RC1, and these three sets have a
smaller vehicle capacity, a smaller fleet size, and a narrower
timewindow, so there are fewer customers served by vehicle;
the second category is C2, R2, and RC2, and these three sets
are opposite to the three sets in the first category, so there are
more customers served by vehicle. In the numerical experi-
ment, the standard instances are classified according to the
second method above and divided into two categories to test
and evaluate the algorithm.

Parameter setting

When the ACO is looking for the solution of the TWVRP,
the parameters in the algorithm can affect the quality of the
solution. There are usually two methods to select parameter
values [41]. The first method is to set the parameters before
the algorithm running, so that the parameters will not change
into the running process. The second method is to set param-
eters during the running of the algorithm, but an initial value
needs to be set before the running, and such parameters are
constantly changing during the running process. Three sets of
instances C101, R101, and RC01 are selected to analyze the
parameters. When analyzing one of the parameters, the other
parameters remained unchanged. The following numerical
analysis using HACO and studying the parameters based on

1 http://w.cba.neu.edu/solomon/problems.htm.

gk = 500, hk = 1000. By analyzing the optimal solution, the
influence of parameters on the solution quality is explained,
then the influence of parameters on the overall performance
of the algorithm is explained.

1. Parameter α

It can be seen from Fig. 5 that the approximate optimal
objective values obtained using different parameters α.
When the value of parameter α is around 1, we get a good
value. Therefore, in the experiment, the best value we can
get for the parameter α is equal to 1.

2. Parameter β

As can be seen from Fig. 6, when the value of parameter
β is between the interval [3,5], we get relatively good
values. Therefore, the range of values for parameter β is
[3,5].

3. Parameter γ

As can be seen from Fig. 7, when the value of parameter
γ is between the interval [2,4], the approximate optimal
objective value obtained is relatively good. Therefore, the
range of values for parameter γ is [2,4].

4. Parameter q0
As can be seen from Fig. 8, when the value of parameter
q0 is between the interval [0.3, 0.6], we get a bet-
ter approximate optimal objective value. Therefore, the
range of values for parameter q0 is [0.3, 0.6].

5. Parameter ρ

As can be seen from Fig. 9, when the value of parameter
ρ is between the interval [0.3, 0.7], we get a relatively
good approximate optimal objective value. The smaller
are the value of ρ, the more pheromones are left on the
path, so it is not easy to distinguish the better path, and
the optimal solution is difficult to get. However, when ρ

is large, because there are fewer pheromones on the poor
path, the algorithm may converge on the local optimal.
Therefore, the range of values for parameter ρ is [0.3,
0.7].

Experimental results

To illustrate the advantages and disadvantages of the pro-
posed HACO, we analyze the experimental results from two
aspects: first, the results obtained by HACO are compared
with ACO; second, the results obtained by HACO are com-
pared with other intelligent algorithms.

Comparison with the ACO

The Solomon standard instances are used as a test function
to test the performance of HACO and evaluate the optimal
solution quality. Tables 1 and 2 show the results for ACO and
HACO.
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Fig. 5 Approximate optimal
values under different α
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Fig. 6 Approximate optimal
values under different β
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Fig. 7 Approximate optimal
values under different γ
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Fig. 8 Approximate optimal
values under different q0
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Fig. 9 Approximate optimal
values under different ρ
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Table 1 Comparison with the
ACO for the category of type 1
(C1, R1, and RC1)

Instance ACO HACO

Best result in 10 runs Best result in 10 runs

Veh Dis Cost V eh Dis GapDis(%) Cost GapCost (%)

C101 13 1299.02 19,798 13 1262.53 −2.89 14320 −38.25

C102 13 1538.73 19,673 13 1693.11 9.12 14627 −34.50

C103 11 1669.38 15093 11 1530.39 −9.08 12549 −20.27

C104 10 1278.60 12280 10 1307.09 2.18 11382 −7.89

C105 12 1271.48 16651 11 1244.97 −2.13 12287 −35.52

C106 13 1522.94 17800 13 1460.96 −4.24 14496 −22.79

C107 13 1367.31 17781 13 1377.25 0.72 13521 −31.51

C108 12 1399.51 14568 12 1309.69 −6.86 13447 −8.34

C109 11 1275.45 15593 11 1199.90 −6.30 13671 −14.06

R101 26 2588.94 34802 26 2550.81 −1.49 34008 −2.33

R102 23 2370.23 29570 23 2343.94 −1.12 28536 −3.62

R103 17 1973.61 21220 16 1848.63 −6.76 21064 −0.74

R104 13 1404.67 15610 13 1398.59 −0.43 16560 5.74

R105 19 1966.78 24318 19 1870.37 −5.15 25316 3.94

R106 16 1859.20 22026 16 1843.72 −0.84 21038 −4.70

R107 13 1647.18 16676 13 1630.95 −1.00 15791 −5.60

R108 12 1317.30 14459 12 1285.82 −2.45 14447 −0.08

R109 15 1760.21 18879 15 1696.26 −3.77 18705 −0.93

R110 14 1575.43 16707 14 1566.01 −0.60 15615 −6.99

R111 14 1512.73 16716 14 1510.99 −0.12 16656 −0.36

R112 12 1324.90 14433 12 1272.96 −4.08 13390 −7.79

RC101 21 2444.21 25654 21 2350.94 −3.97 23750 −8.02

RC102 16 2142.05 21450 16 2132.71 −0.44 21379 −0.33

RC103 13 1802.48 18049 13 1791.28 −0.63 17074 −5.71

RC104 12 1655.40 15794 12 1643.07 −0.75 14833 −6.48

RC105 19 2571.79 24691 19 2362.44 −8.86 23636 −4.46

RC106 15 1917.75 20196 15 1935.82 0.93 20221 0.12

RC107 14 1752.82 17028 14 1733.07 −1.14 16913 −0.68

RC108 13 1589.41 15766 13 1567.73 −1.38 15677 −0.57

In Tables 1 and 2, ACO and HACO run ten times and
choose the best result. Where Veh represents the number
of vehicles; Dis is the distance traveled by vehicle; Cost

represents the cost of the vehicle; GapDis(%)represents the
difference between the distance obtained by HACO and the
distance obtained by ACO, and the expression is
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Table 2 Comparison with the
ACO for the category of type 2
(C2, R2, and RC2)

Instance ACO HACO

Best result in 10 runs Best result in 10 runs

Veh Dis Cost V eh Dis GapDis(%) Cost GapCost (%)

C201 3 591.56 3603.92 3 591.56 0 3603.92 0

C202 4 982.80 5270.53 4 905.92 −8.49 5202.31 −1.31

C203 3 978.60 5152.84 4 876.94 −11.59 5302.75 2.83

C204 3 994.06 5171.55 3 979.53 −1.48 5155.46 −0.31

C205 4 674.47 4800.37 4 669.25 −0.78 4688.43 −2.39

C206 4 776.75 4851.46 4 753.34 −3.11 3996.40 −21.40

C207 4 756.17 5065.52 4 715.13 −5.74 4985.96 −1.60

C208 4 773.63 4896.77 4 720.31 −7.40 4785.73 −2.32

R201 4 2063.83 8151.80 4 2018.20 −2.26 8100.00 −0.64

R202 4 2097.53 8376.00 4 1977.10 −6.09 7862.00 −6.54

R203 3 1665.79 5827.70 3 1761.75 5.45 5846.80 0.33

R204 3 1238.69 4444.20 3 1195.32 −3.63 4371.20 −1.67

R205 4 1495.27 5746.40 4 1470.54 −1.68 5717.00 −0.51

R206 3 1470.71 5487.50 3 1455.13 −1.07 4693.30 −16.92

R207 3 1339.77 4491.90 3 1333.29 −0.49 4489.50 −0.05

R208 3 1088.24 4226.10 3 1044.05 −4.23 4222.50 −0.09

R209 3 1501.85 5607.40 3 1440.30 −4.27 5602.70 −0.08

R210 3 1508.14 5627.80 3 1561.41 3.41 5670.90 0.76

R211 3 1084.07 4346.30 3 1189.92 8.90 4195.10 −3.60

RC201 5 2364.20 8444.56 5 2298.07 −2.88 8360.24 −1.01

RC202 4 2029.48 7220.93 4 2046.15 0.81 7467.31 3.30

RC203 4 1691.10 5987.02 4 1684.92 −0.37 5764.29 −3.86

RC204 3 1267.54 4396.78 3 1245.31 −1.79 4378.33 −0.42

RC205 5 2138.76 7304.04 5 2096.55 −2.01 7233.18 −0.98

RC206 4 1729.86 5729.86 4 1748.73 1.08 5814.34 1.45

RC207 4 1656.32 5694.47 4 1618.84 −2.32 5740.28 0.80

RC208 3 1357.87 4597.86 3 1306.25 −3.95 4431.72 −3.75

GapDis(%) = H ACODis − ACODis

H ACODis
× 100(%). (16)

GapCost (%) represents the difference between the cost of
HACO and the cost of ACO, and the expression is

GapCost (%) = H ACOCost − ACOCost

H ACOCost
× 100(%). (17)

As shown in Table 1, when the number of vehicles is the
same, the HACO results is better than ACO results, which
shorten the distance and reduce the cost. However, there are
six instances in Table 1 with poor effect, in which instance
C102, C104, and C107 increase the driving distance while
reducing the cost; instance R104 and R105 increase costs
while reducing distances; RC106 not only increases the driv-
ing distance but also increases the cost. Except for the six
instances that did not work well, the other instances did sig-
nificantly better.

It can also be seen from Table 2 that compared with ACO,
HACO has a better effect in most instances, which not only
reduces the driving distance but also reduces the cost. Sim-
ilarly, there are seven instances with poor effect in Table 7,
among which the driving distance of instances R203, R210,
RC202, andRC206 is increased and the cost is also increased;
instance C203 and RC207 increase the cost while shortening
the distance;instance R211 reduces cost but increases dis-
tance.

Comparisons between the other intelligent algorithms
(node numbers are the same)

Each instance of Solomon’s standard instance has 100
customers that are geographically distributed differently.
Tables 3 and 4 compare HACO with other intelligent algo-
rithms for the same number of customers. The boldface
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Table 3 Comparison results of
type 1 (C1, R1, and RC1)

Instance SA GA HACO

Veh Dis Cost Veh Dis Cost Veh Dis Cost

C101 15 2135.20 25210.00 14 1901.83 21140.00 13 1262.53 14320.00

C102 13 1812.56 21369.00 13 1789.27 19953.00 13 1693.11 14627.00

C103 11 1901.99 19219.00 11 1666.86 16628.00 11 1530.39 12549.00

C104 10 1639.66 16596.00 10 1335.73 12578.00 10 1307.09 11382.00

C105 11 2161.45 23301.00 11 1311.57 13187.00 11 1244.97 12287.00

C106 13 1997.92 19630.00 13 1481.56 15022.00 13 1460.96 14496.00

C107 11 1182.75 12384.00 11 1052.57 12216.00 13 1377.25 13521.00

C108 12 1742.48 17873.00 12 1312.65 13597.00 12 1309.69 13447.00

C109 11 1718.28 17199.00 11 1214.12 14391.00 11 1199.90 13671.00

R101 20 2082.06 32544.00 22 1921.79 30201.00 26 2550.81 34008.00

R102 21 1989.32 26675.00 20 1711.83 26046.00 23 2343.94 28536.00

R103 15 1680.94 17273.00 18 1518.13 16734.00 16 1848.63 21064.00

R104 13 1537.25 18006.00 13 1410.95 17425.00 13 1398.59 16560.00

R105 17 1779.36 20360.00 16 1510.71 21858.00 19 1870.37 25316.00

R106 15 1764.23 18175.00 15 1468.54 17951.00 16 1843.72 21038.00

R107 13 1712.83 18390.00 13 1766.38 19241.00 13 1630.95 15791.00

R108 12 1447.08 14514.00 12 1309.60 14966.00 12 1285.82 14447.00

R109 13 1666.98 17247.00 14 1294.83 21040.00 15 1696.26 18705.00

R110 14 1645.49 16490.00 14 1573.89 16710.00 14 1566.01 15615.00

R111 13 1504.64 15646.00 13 1394.25 16043.00 14 1510.99 16656.00

R112 12 1375.96 13759.00 12 1317.88 14156.00 12 1272.96 13390.00

RC101 17 2322.98 22840.00 16 1738.53 18180.00 21 2350.94 23750.00

RC102 16 2173.43 26259.00 16 2389.70 25786.00 16 2132.71 21379.00

RC103 13 1854.61 20733.00 13 1856.08 20253.00 13 1791.28 17074.00

RC104 14 1672.42 17354.00 12 1702.10 16569.00 12 1643.07 14833.00

RC105 18 2134.18 21365.00 17 1783.33 22928.00 19 2362.44 23636.00

RC106 14 1846.32 25178.00 15 1635.40 21140.00 15 1935.82 20221.00

RC107 14 1788.89 17953.00 14 1762.27 18133.00 14 1733.07 16913.00

RC108 13 1678.36 17042.00 13 1574.27 16503.00 13 1567.73 15677.00

indicates that HACO gets better results than the comparison
algorithm.

Tabu search algorithm and genetic algorithm are used as
comparison algorithms in Tables 3 and 4. The Veh, Dis, and
Cost are consistent with above meanings. Table 3 shows
that when the number of customers is the same, the HACO
has 62.07% better results than the comparison algorithm.
Among them, when customers are concentrated on geogra-
phy (set C1), the HACO has 88.89% better results than the
comparison algorithm; when the customer distribution in the
geographical location is dispersed (set R1), the HACO only
has 41.67% better results, and the HACO is not very good.
The HACO is also feasible when customers are geographi-
cally dispersed and concentrated, with 62.50% better results.

Similarly, Table 4 shows that when the number of cus-
tomers is the same, the HACO has 60.71% better results
than the comparison algorithm. Among them, the HACO has

75% better results than the comparison algorithm when cus-
tomers are relatively concentrated (set C2); when customers
are scattered (set R2), the HACO has only 54.55% better
results, and the result obtained by the comparison algorithm
is better. When customers are concentrated and dispersed,
the HACO has 62.50% better results than the comparison
algorithm.

Comparisons between the other intelligent algorithms (cus-
tomer needs are the same)

In standard instances of Solomon, each instance has 100 cus-
tomers with different needs, some with more and some with
less. We classify the same or similar customer requirements
in each instance, and the performance and convergence of
the proposed algorithm are evaluated from the perspective
of customer demand. To fully analyze the performance of
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Table 4 Comparison results of
type 2 (C2, R2, and RC2)

Instance SA GA HACO

Veh Dis Cost Veh Dis Cost Veh Dis Cost

C201 3 1395.73 4212.00 3 888.34 4382.00 3 591.56 3603.92

C202 3 1580.84 6150.00 4 958.11 5483.00 4 905.92 5202.31

C203 4 1294.96 4967.00 4 965.19 3684.00 4 876.94 5302.75

C204 3 1282.14 5947.00 3 1028.03 5851.00 3 979.53 5155.46

C205 4 1127.15 6029.00 3 705.49 4994.00 4 669.25 4688.43

C206 3 1341.12 4702.00 3 760.77 4087.00 3 753.34 3996.40

C207 3 1462.22 5175.00 4 1028.50 5092.00 4 715.31 4985.96

C208 4 1372.35 4576.00 4 741.75 2053.00 4 720.31 4785.73

R201 4 2045.47 8873.00 4 1218.40 8819.00 4 2018.20 8100.00

R202 4 1238.68 2940.00 4 1151.54 3429.00 4 1977.10 7862.00

R203 3 1578.86 5788.00 6 881.41 5158.00 3 1761.75 5846.80

R204 3 1267.85 4714.00 5 1218.74 4484.00 3 1195.32 4371.00

R205 4 1542.28 7088.00 7 1475.60 6495.00 4 1470.54 5717.00

R206 3 1455.18 5417.00 4 1509.65 5150.00 3 1455.13 4693.30

R207 3 1344.84 5156.00 5 1348.00 5630.00 3 1333.29 4489.50

R208 3 1292.03 3278.00 4 1186.22 4043.00 3 1044.05 4222.50

R209 3 1513.12 6739.00 6 1475.50 6403.00 3 1440.30 5602.70

R210 3 1451.76 5863.00 6 941.74 5272.00 3 1561.41 5670.90

R211 4 1249.35 4356.00 6 1200.82 4709.00 3 1189.92 4195.10

RC201 6 2415.57 9047.00 7 2374.40 8769.00 5 2298.07 8360.24

RC202 4 21740.97 6145.00 7 1136.82 5284.00 4 2046.15 7467.31

RC203 4 1705.41 6812.00 5 1715.39 6095.00 4 1684.92 5764.29

RC204 3 1336.28 4417.00 5 1248.27 4645.00 3 1245.31 4378.33

RC205 4 1625.37 5250.00 8 1374.65 5224.00 5 2096.55 7233.18

RC206 4 1689.13 5523.00 6 1245.04 5442.00 4 1748.73 5814.34

RC207 4 1735.33 6902.00 7 1803.47 6918.00 4 1618.64 5740.28

RC208 4 1373.24 4784.00 5 1407.83 5031.00 3 1306.25 4431.72

Table 5 Comparison between the HACO and other intelligent algorithms for small instance C101 when customer requirements are the same

Demand N HACO Reference [35] Reference [42]

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

10 52 8 1307.76 11526.00 142.48 8 1322.22 11566.00 165.01 8 1373.71 11540.00 156.70

20 26 5 939.16 6942.64 48.89 5 939.16 6942.64 52.82 5 967.71 7025.98 52.75

30 13 4 537.29 4575.96 18.78 4 537.29 4575.96 20.04 4 537.29 4575.96 20.35

40 7 2 289.93 2308.37 9.53 2 308.27 2349.06 10.70 2 308.27 2349.06 10.92

50 2 1 39.82 1039.87 2.24 1 39.82 1039.87 2.74 1 39.82 1039.87 2.59

Demand N Reference. [18] GA SA

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

10 52 8 1328.31 11561.00 154.97 9 2212.29 11931.00 87.60 8 1352.08 11902.00 143.89

20 26 5 939.16 6942.64 54.33 6 967.71 7025.89 91.81 5 943.91 6993.66 49.83

30 13 4 537.29 4575.96 20.90 4 621.66 4634.73 76.63 5 462.38 4155.65 60.02

40 7 2 308.27 2349.06 10.76 2 329.37 3353.68 49.58 2 291.393 2518.37 28.53

50 2 1 39.82 1039.87 2.62 1 39.82 1039.87 17.25 1 39.82 1039.87 21.70
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Table 6 Comparison between the HACO and other intelligent algorithms for small instance R101 with the same customer requirements

Demand N HACO Reference [35] Reference [42]

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 36 10 1108.06 13196.00 84.97 10 1045.79 13155.00 86.41 10 989.62 12112.00 87.14

10 ≤ D < 20 39 11 1066.24 14120.00 94.53 11 1084.99 15136.00 96.60 12 1103.99 15145.00 95.61

20 ≤ D < 30 19 7 612.13 7616.43 35.04 7 616.11 7630.85 36.82 7 666.87 8678.45 36.50

30 ≤ D < 40 5 3 242.55 3242.68 6.43 3 242.55 3242.68 6.87 3 242.55 3242.68 6.87

D ≥ 40 1 1 46.04 1046.07 0.92 1 46.04 1046.07 1.02 1 46.04 1046.07 1.00

Demand N Reference [18] GA SA

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 36 10 1052.42 13183.00 88.63 13 1262.42 15177.00 110.39 5 682.18 12291.00 32.17

10 ≤ D < 20 39 11 1072.22 14188.00 98.46 11 1144.93 14175.00 95.70 11 1086.08 14740.00 95.32

20 ≤ D < 30 19 7 616.11 7630.85 35.28 7 619.16 7646.65 73.19 7 615.91 7622.27 37.30

30 ≤ D < 40 5 3 242.55 3242.68 6.82 3 303.65 4324.81 58.36 3 242.55 3242.68 27.35

D ≥ 40 1 1 46.04 1046.07 0.96 1 46.04 1046.07 18.72 1 46.04 1046.07 16.27

Table 7 Comparison between the HACO and other intelligent algorithms for small instance RC101 when customer requirements are the same

Demand N HACO Reference [35] Reference [42]

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 17 4 548.83 5566.32 30.12 4 548.83 5566.32 29.51 4 546.73 5564.83 32.92

10 ≤ D < 20 41 9 1115.08 12460.00 101.43 9 1143.91 12475.00 104.27 9 1303.95 13410.00 103.68

20 ≤ D < 30 26 7 926.77 8930.23 51.84 7 936.50 9115.98 53.00 8 938.41 9124.66 56.38

30 ≤ D < 40 11 5 533.96 6591.03 17.03 5 533.96 6591.03 18.01 5 566.58 6611.62 18.12

D ≥ 40 5 3 271.83 3271.85 6.21 3 271.83 3271.85 7.15 3 271.83 3271.85 6.72

Demand N Reference [18] GA SA

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 17 4 539.15 5562.93 30.53 4 434.49 5514.32 101.07 5 420.66 4344.89 30.26

10 ≤ D < 20 41 9 1143.91 12475.00 102.20 9 1301.15 13427.00 105.86 9 1149.86 12619.00 121.38

20 ≤ D < 30 26 7 936.50 9115.98 55.26 7 945.63 9376.23 72.29 7 937.18 9110.57 53.05

30 ≤ D < 40 11 5 533.96 6591.03 17.86 5 612.50 7691.09 59.73 5 533.96 6591.03 29.73

D ≥ 40 5 3 271.83 3271.85 6.75 3 271.83 3271.85 18.36 3 271.83 3271.85 27.56

the proposed algorithm, we randomly selected six Solomon
standard instances as test functions, and these six test func-
tions are C101, R101, RC101, C201, R201, and RC101. To
prove the effectiveness of mutation operation and adaptive
strategy added to ant colony algorithm in this paper, we com-
pared it with the improved ant colony algorithm in reference
[18,35,42] as well as other algorithmsGA, SA.Among them,
reference [18] added local search method on the basis of ant
colony algorithm, reference [35] proposed a new pheromone
update formula, and reference [42] introduced adaptive strat-
egy and exchange mechanism.

Tables 5, 6, 7, 8, 9, and 10 compare the HACO with the
comparison algorithms in different sized instances with the
same customer requirements.Where, Demand represents the

demand of customers; N is the number of customers; Veh is
the number of vehicles; Dis is the total distance traveled; Cost
represents the total Cost of the vehicle; Time represents the
running time of the algorithm. In addition, boldface indicates
that HACOgets better results than the comparison algorithm.

Tables 5, 6, and 7 calculate the optimal results of dif-
ferent small instances (C101, R101, and RC101) with the
proposedHACOand the comparison algorithm, respectively,
and analyze the calculation results and the performance of
the algorithm. Tables 5, 6, and 7 show that the HACO obtains
at least 8 better results out of 15 comparisons when the num-
ber of vehicles used is the same or similar, which not only
shorten the driving distance but also reduce the total cost
of vehicles. When the number of vehicles and the total cost
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Table 8 Comparison between the HACO and other intelligent algorithms for medium instance C201 when customer requirements are the same

Demand N HACO Reference [35] Reference [42]

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

10 52 2 1219.30 5284.26 1484.69 3 1288.72 5304.53 150.56 2 1219.44 5286.27 152.97

20 26 2 977.33 3039.87 51.85 3 1014.29 4135.72 53.67 2 1039.82 4296.27 54.91

30 13 1 658.58 2574.51 21.30 3 578.35 1614.26 22.49 1 658.58 2574.51 23.10

40 7 1 213.97 1214.06 10.04 2 206.63 1182.07 11.67 1 213.97 1214.06 10.88

50 2 1 39.82 1039.82 2.01 1 39.82 1039.82 2.38 1 39.82 1039.82 2.63

Demand N Reference [18] GA SA

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

10 52 3 1234.61 5299.47 152.91 3 470.35 4133.76 186.64 3 652.46 2552.16 133.60

20 26 2 1010.32 4038.54 53.45 3 1091.43 4365.19 96.65 4 998.92 3416.61 54.18

30 13 1 658.58 2574.51 22.30 1 594.08 1658.22 69.71 2 361.04 1549.73 29.49

40 7 1 213.97 1214.06 10.85 1 206.63 1182.07 42.34 2 206.63 1182.07 27.98

50 2 1 39.82 1039.82 2.33 1 39.82 1039.82 18.66 1 39.82 1039.82 24.30

Table 9 Comparison between the HACO and other intelligent algorithms for large instance R201 when customer requirements are the same

Demand N HACO Reference [35] Reference [42]

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 36 2 948.10 3027.11 91.55 2 987.21 3047.96 94.88 2 1001.76 3068.24 94.04

10 ≤ D < 20 39 2 904.87 3903.03 100.43 2 943.22 3927.11 101.24 2 937.75 3921.33 101.15

20 ≤ D < 30 19 2 499.01 2562.93 36.12 2 502.17 2640.05 36.41 2 546.25 2816.44 36.48

30 ≤ D < 40 5 1 270.86 1270.92 6.61 1 270.86 1270.92 6.78 1 270.86 1270.92 36.48

D ≥ 40 1 1 46.04 1046.03 1.00 1 46.04 1046.03 1.10 1 46.04 1046.03 1.03

Demand N Reference [18] GA SA

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 36 2 987.21 3047.96 92.25 6 966.24 3172.28 94.85 4 965.44 3121.19 92.71

10 ≤ D < 20 39 2 918.13 3911.52 101.12 4 1150.74 3949.41 797.88 4 987.91 3939.11 132.32

20 ≤ D < 30 19 2 544.34 2803.26 36.57 3 505.15 2685.01 79.07 3 543.92 2647.26 36.89

30 ≤ D < 40 5 1 270.86 1270.92 6.66 1 270.86 1270.92 52.38 1 270.86 1270.92 36.36

D ≥ 40 1 1 46.04 1046.03 0.99 1 46.04 1046.03 19.53 1 46.04 1046.03 15.49

are the same, HACO takes less time to compute the optimal
result than the comparison algorithm. In addition, these three
tables also show that when solving small instances, nomatter
how customers are distributed among geography, the HACO
results are better than the comparison algorithm.

Tables 8, 9, and 10 calculate the optimal results ofmedium
instance (C201) and large instance (R201 and RC201),
respectively, using the proposed HACO and the comparison
algorithm, and further illustrate the performance of the pro-
posed HACO by analyzing the results. As shown in Table 8,
the proposed HACO does not get good results when solving
medium instance, and only gets better results when customer
demands are 20. However, HACOgets at least 8 better results
out of 15 comparison results when solving the large-instance

model. For the same number of vehicles, HACO gets better
or similar results for total distance and total cost than the
comparison algorithm, and the running time is also less than
the other intelligent algorithms.

From Tables 5, 6, 7, 8, 9, and 10, it can be seen that
when the customer demand is 10–30, except for medium
instance C201, HACO gets better results for small and large
instances than other intelligent algorithms. The hybrid algo-
rithm proposed in reference [43] is also suitable for solving
large instances problems, and it combines greedy algorithm
with variable neighborhood search. Although the accuracy of
the initial solution is improved, the convergence of the algo-
rithm is not compared with other intelligent algorithms. The
algorithm proposed in reference [44,45] can solve practical
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Table 10 Comparison between the HACO and other intelligent algorithms for large instance RC201 when customer requirements are the same

Demand N HACO Reference [35] Reference [42]

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 17 2 512.27 2517.23 28.31 2 517.21 2535.17 28.92 2 517.21 2535.17 28.76

10 ≤ D < 20 41 3 1183.36 4303.26 106.42 3 1188.90 4323.45 107.49 3 1214.90 4374.58 107.93

20 ≤ D < 30 26 2 867.32 2997.92 55.34 2 871.54 3091.32 55.42 2 891.93 3063.48 56.43

30 ≤ D < 40 11 2 501.22 2530.98 17.28 2 501.22 2530.98 18.15 2 531.46 2616.03 18.11

D ≥ 40 5 1 270.43 1270.48 6.49 1 270.43 1270.48 6.64 1 270.43 1270.48 6.77

Demand N Reference [18] GA SA

Veh Dis Cost Time Veh Dis Cost Time Veh Dis Cost Time

0 ≤ D < 10 17 2 517.21 2535.17 29.14 3 408.32 2311.93 98.98 4 375.48 1445.28 30.33

10 ≤ D < 20 41 3 1214.90 4374.58 109.53 6 1238.52 4390.58 107.33 5 1218.88 4385.01 113.28

20 ≤ D < 30 26 2 872.77 3024.85 57.10 3 896.95 3126.22 79.08 4 891.10 3123.62 59.31

30 ≤ D < 40 11 2 501.22 2530.98 18.70 1 642.08 2633.74 18.75 3 507.79 2533.47 28.99

D ≥ 40 5 1 270.43 1270.48 6.56 1 270.43 1270.48 23.16 1 270.43 1270.48 26.83
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Fig. 10 The convergence curve of the optimal path

problems. However, on the basis of improving the solution
quality, the convergence of the proposed hybrid algorithm in
this paper is also analyzed, as shown in Fig. 10.

Figure 10 shows the convergence of the optimal path; sub-
graphs (a), (b), respectively, represent the convergence curves
of different comparison algorithms when solving TWVRP.

(a) Comparison of HACO, Ref. [35], Ref. [42], and Ref. [18]
in TWVRP.

(b) Comparison of HACO, SA, GA, and ACO in TWVRP.

Practical application

To test the effectiveness and practicability of the proposed
HACO, we apply it to an actual example. Take the logistics
of fresh fruits and vegetables in Xingqing District, Yinchuan,
Ningxia as an example. We need to send fruits and veg-
etables from the warehouse (Xianfeng fruit and vegetable
distribution center) to 13 distribution points (13 supermar-
kets in Xingqing District). Figure 11 shows the location of
the warehouse (0) and 13 supermarkets on the map.2 And the
distance between each two point is shown in Table 11.

Whendelivering goods from the distribution center to each
distribution point, the transport vehicle is composed of sev-

2 https://map.baidu.com/@11815234,4627365,13z.
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0 Table 12 Time window and demand for each distribution point

point ai bi Demands(ton) Service time(min)

0 9:40 11:40 0 0

1 10:10 10:25 15 20

2 10:00 10:15 16 15

3 9:50 10:05 15 15

4 10:20 10:45 10 13

5 11:00 11:25 5 8

6 10:50 11:15 7 9

7 10:35 10:55 5 8

8 10:00 10:30 25 17

9 10:10 10:35 22 19

10 10:45 11:10 26 21

11 10:05 10:40 18 11

12 10:25 10:50 13 14

13 10:20 10:45 16 12

Fig. 11 Geographical location of distribution center and distribution
point

eral trucks of the same type. Themaximum carrying capacity
of the truck is 40 tons, and the average speed is 60 km per
hour. The fixed cost of transportation for each truck is 600
yuan per kilometer, and the transportation cost is 5 yuan per
kilometer. Table 12 gives the specific situation of distribution
centers and supermarkets according to the marking sequence
in Fig. 11. It can be seen from Table 12 that supermarkets
try to avoid the rush hours of traffic sections when purchas-
ing goods, and the time window of supermarkets is almost
between 9:40 and 11:40. Therefore, the study of this paper
does not consider the traffic congestion, and the vehicle can
deliver the goods within the time window specified by the
supermarket.

The specific conditions of the actual problem can be
known through Tables 11 and 12. The goal is to reduce the
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Table 14 HACO results of
solving TWVRP instance

Veh Route Distance (m) Sum of demands (ton)

1 0–8–1–0 10415.41 40

2 0–11–9–0 6037.71 40

3 0–13–12–7–5–0 21808.75 39

4 0–3–2–6–0 13435.75 38

5 0–4–10–0 3677.46 36

Total 55375.08 193

Table 13 ACO results of solving TWVRP instance

Veh Route Distance (m) Sum of demands (ton)

1 0–1–11–0 10301.00 33

2 0–13–12–7–0 19966.17 34

3 0–3–2–0 12287.54 31

4 0–9–4–0 3435.48 32

5 0–8–6–0 9083.86 32

6 0–10–5–0 2929.77 31

Total 58003.82 193

total cost of the distribution center byminimizing the number
of vehicles and reducing the total driving distance of vehicles.
Therefore, we apply ACO and HACO to solve the TWVRP
instance. The practicability and effectiveness of the proposed
HACO is analyzed and verified by comparing the results of
the two algorithms, and the results are shown in Tables 13
and 14.

It can be seen from Table 13 that six vehicles are needed
to solve the TWVRP instance using ACO, but these six vehi-
cles are not fully utilized. According to the last line, the total
distance is 58003.82 m and the fleet needs to spend 3890.02
yuan to complete all the deliveries. However, five vehicles are
needed when HACO is used to solve the TWVRP example
in Table 14, and these five vehicles are almost fully utilized
compared with the six vehicles for Table 13. The total dis-
tance are 55375.08 m, which is 2628.74 m less than the total
distance in Table 13. The cost of the fleet to complete all
deliveries is 3276.88 yuan and decreases from 613.14 yuan.
Therefore, through the application and analysis of examples,
it can be shown that the proposed HACO is effective and has
practical significance.

Conclusion

This paper mainly discusses the problem of vehicle routing
with time window, to reduce the transportation distance and
the transportation cost of vehicles, so a hybrid ant colony
algorithm is proposed in this paper. Compared with the basic
ant colony algorithm, the HACO changes the pheromone

volatile factor from a fixed constant to a dynamic value, and
this means that the optimal solution to the problem can be
found by constantly adjusting the numerical values during the
operation of the algorithm to improve the convergence of the
algorithm. The pheromone updating formula for the ACO is
improved, and with the participation of adaptive volatile fac-
tors, the pheromone concentration can increase or decrease
according to the advantages and disadvantages of the path.
To test the performance of HACO, we apply it to Solomon
instances and the results showed that the proposed algorithm
has good performance. The future research direction will
consider the multi-objective green vehicle routing problem,
not only to optimize the vehicle distance and cost, but also to
take customer satisfaction on the service as the optimization
goal. In addition, reducing vehicle exhausted emissions has
been a new idea in the research of vehicle routing problems
in recent years, so carbon dioxide emissions should also be
taken as an optimization goal.
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