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A Hybrid Approach Based on PSO and Hadamard Difference

Sets for the Synthesis of Square Thinned Arrays

Massimo Donelli, Anna Martini, and Andrea Massa

Abstract

A hybrid approach for the synthesis of planar thinned antenna arrays is presented. The

proposed solution exploits and combines the most attractive features of a particle swarm

algorithm and those of a combinatorial method based on the noncyclic difference sets of

Hadamard type. Numerical experiments validate the proposed solution, showing improve-

ments with respect to previous results.
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1 Introduction

This paper deals with arrays composed by elements placed on auniform lattice with half-

wavelength spacing between adjacent points. Active elements are fed with equal amplitude

currents while the remaining ones are turned off (i.e., connected to a matched or dummy load).

For a given lattice size, since the resolution mainly depends on the aperture dimension in wave-

length, the thinning operation allows one to obtain an approximately unaltered main lobe width

with reduced cost, weight, power consumption, and heat dissipation. On the other hand, for

a given number of active elements, narrower beamwidth can beachieved since larger antenna

sizes are possible. However, the thinning operation usually implies a reduced antenna gain and

a non-negligible loss of the sidelobe level control.

In principle, an exhaustive search is possible to synthesize the thinned configuration with the

minimum peak sidelobe level (PSL). As a matter of fact, unlike non-uniformly spaced arrays,

which are determined by means of both algorithmic and randomplacement techniques [1]-[4],

only a finite number of thinned configurations is allowed [i.e.,







V

K






, V andK being the

number of array elements and of turned on elements, respectively]. Nevertheless, it is evident

that an exhaustive sampling of the solution space is feasible only dealing with small arrays

[2], while more sophisticated thinning techniques are needed when large arrays are at hand. In

such a framework, the use of optimization approaches has ledto significant advancements [5]-

[7]. As a matter of fact, Simulated Annealing [8], Genetic Algorithms (GAs) [9], and Particle

Swarm Optimizers (PSOs) [10] allow to manage very large configurations and unlike dynamic

programming [11] they are not vulnerable to local minima thanks to their hill-climbing search.

However, such algorithms are quite slow when compared with deterministic techniques due to

their global nature. In particular, the convergence rate considerably reduces in the neighborhood

of the optimal solution.

In order to speed up the optimization process, all the available a-priori information or initial

solutions from available combinatorial tools must be takeninto account. The hybrid approach

proposed in [12] is based on such a philosophy. The efficiencyof the GA-based search process

has been improved by means of a suitable integration with thedeterministic approach proposed

by Leeper [13][14]. When an array ofV elements is thinned according to a cyclic difference set
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(CDS) [15], the array power pattern is forced to pass throughV uniformly spaced, equal, and

constant values that are less than1/K times the main lobe peak. Unfortunately, the synthesized

power pattern presents undesired ripples, the greatest oneusually located near the main lobe.

Combining combinatorial and stochastic methods has allowed to limit the ripple amplitudes,

leading to improved results in terms of PSL with respect to both CDS- and GAs-optimized

arrays [12]. CDSs can be applied to thin both linear and planar arrays [14]. As regards to planar

arrays, the synthesis has been carried out starting from two-dimensional sequences of ones and

zeros generated from linear CDSs by means of ad-hoc placement algorithms [16]. Nevertheless,

in order to keep the CDSs’ positive features, the two-dimensional sequences can be located only

on rectangular grids with coprime side-lengths(1). Consequently, the CDS-based approaches

cannot be applied to square arrays.

Leaning upon the same philosophy of [12] (i.e., combining combinatorial and optimization-

based methods to exploit their positive features and to compensate their drawbacks at the same

time), this contribution is aimed at proposing a hybrid approach for the synthesis of square

thinned arrays. The approach is based on the use of noncyclictwo-dimensional difference sets

of Hadamard type (HSs) [17] to initialize an optimization procedure. In principle, HSs allow to

deal also with rectangular arrays [18]. Nevertheless, we focus on square configurations since in

this case for eachK value such that some HS exists and forK ≤ 300 the totality of possible

HS-based square thinned arrays has been analyzed and the HS allowing the lowest PSL has

been provided [18].

As far as the optimizer is concerned, taking into account theadvantages of PSOs when com-

pared to GAs (i.e., easier implementation and calibration,and ability to control the convergence

of the optimization as well as its stagnation), a customizedand suitably integrated PSO is used

as optimization algorithm.

The paper is organized as follows. Section 2 briefly resumes some useful array notations. In

Section 3, the hybrid strategy is detailed pointing out the key features of the HSs and of the

standard PSOs (SPSOs) methods. The numerical validation isreported in Section 4, where the

hybrid approach is assessed through a comparative analysis. Finally, some concluding remarks

are given in Section 5.

(1) Two integers are said to be coprime or relatively prime if they have no common factor other than 1 or,
equivalently, if their greatest common divisor is 1. The integer side-lengths are coprime if the diagonal does not
intersect any other lattice point.
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2 Antenna Arrays Notation

Let us consider a planar array on thex − y plane whose half-wavelength spaced elements are

located on a uniform lattice ofV = Vx × Vy locations numbered from (0,0) to(Vx − 1, Vy − 1).

The corresponding array factor is defined as(2)

f(u, v) ,

Vx−1
∑

m=0

Vy−1
∑

n=0

am,nejπ(mu+nv) (1)

wheream,n = 1 if there is an element at the(m, n)-th location andam,n = 0, otherwise,

u = sin θ cos φ andv = sin θ sin φ. Moreover, the PSL [4] turns out to be

PSL ,
1

K
max

(u,v)∈L
|f(u, v)|2 , (2)

whereL denotes the sidelobe region. Finally, the thinning percentageΓ is given by

Γ ,
K

V
. (3)

3 Hybrid Optimization Strategy

The objective of the synthesis is to find in a computationally-efficient way the array configura-

tion that represents the best compromise in terms of PSL and thinning percentage. Towards this

end, we propose a hybrid optimization method. In order to point out the arguments that justify

an integrated strategy, the key features of the HS-based method and of the PSO-based synthesis

technique are firstly discussed. Then, the integrated procedure is carefully described.

3.1 HS-based Synthesis Method

By definition, a(V, K, Λ)-HS [17] is a set ofK points defined on a integerVx × Vy grid of V

elements

HS = {(b0, c0), (b1, c1), . . . , (bK−1, cK−1)} (4)

(2)To simplify the array factor expression and without loss of generality, the steering angles have been set to
zero.
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with 0 ≤ bj ≤ Vx − 1 and 0 ≤ cj ≤ Vy − 1, such that: (a) for any grid point(m, n),

0 ≤ m ≤ Vx − 1 and0 ≤ n ≤ Vy − 1, there exist exactlyΛ pairs{(bi, ci), (bj , cj)} that satisfy

the equationsm ≡ (bi − bj)mod Vx andn ≡ (ci − cj)mod Vy, where “mod V ” means that the

difference has to be taken moduloV ; (b) eitherV = 4N2, K = 2N2 − N, Λ = N2 − N or

V = 4N2, K = 2N2 + N, Λ = N2 + N , N being equal to2r or 3 · 2r, r ≥ 0 [18].

By placing the array elements at the HS locations, it is possible to synthesize a thinned array

with a normalized power pattern that, in the sidelobe region, is forced to take the constant value

(K −Λ)/K2 in correspondence with the points of the lattice whose coordinates are multiple of

(2π/Vx, 2π/Vy) [18]. Therefore, there are some constraints on the sidelobelevel, but undesired

ripples still verify. Moreover, it is not possible to define aHS whatever(V, K, Λ) value, but

only if (b) holds true. Accordingly, there is a constraint on the thinning percentageΓ achievable

through the HS-based synthesis method.

3.2 PSO-based Synthesis Method

PSOs are stochastic multiple-agents optimization algorithms extensively applied in the frame-

work of antenna array optimization (see [19] and the references cited therein). By imitating the

social behavior of groups of insect and animals in their foodsearching activities, they are based

upon the cooperation amongparticles. The ensemble of the particles, referred to asswarm,

explores the solution space to find out the best position (i.e., the optimum of a suitably defined

cost function). During the optimization process, each particle updates its position on the basis

of its own previous best position and of the swarm’s previousbest position.

In principle, applying PSO-based strategies to the synthesis of thinned arrays allows to effec-

tively explore the whole solution space and to figure out arrays with any thinning percentage.

However, if noa-priori information is available and/or exploited, a satisfactorysolution can be

found only after a non-negligible number of iterations. Clearly, the computational burden grows

with the dimension of the solution space (e.g., when large arrays are at hand).

3.3 Hybrid Synthesis Method

The considerations outlined in the previous Sections suggest that an improvement could be

achieved by integrating the HS-based method into the optimization process. More specifically,
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we expect that the hybrid strategy outperforms the HS-basedmethod in terms of both thinning

percentage and PSL, and the PSO-based method in terms of convergence rate and computational

costs.

Because of the discrete nature of the problem at hand, a binary PSO is used. Thep-th trial

solution is a two-dimensional array

Xp =
{

ap
m,n; m = 0, ..., Vx − 1; n = 0, ..., Vy − 1

}

, ap
m,n ∈ {0, 1} (5)

p = 0, ..., P − 1 being the particle index andP the swarm dimension. Moreover, in order to

ensure the best compromise in terms of both PSL andΓ, the cost function to be minimized is

defined as follows

F = αFPSL + βFΓ (6)

where

FPSL =
max(u,v)∈L |f(u, v)|2

max∀(u,v) |f(u, v)|2
(7)

FΓ =
1

V

Vx−1
∑

m=0

Vy−1
∑

n=0

am,n. (8)

The weighting coefficientsα andβ are chosen so that the final solution has both PSL andΓ

lower, or equal, than those of the optimal HS-based array configuration[H ]
(V,K,Λ)
OPT provided in

[18], i.e.,

α =











1, PSL ≤ PSL
[H]

(V,K,Λ)
OPT

Υ ≫ 1, PSL > PSL
[H]

(V,K,Λ)
OPT

(9)

β =











1, Γ ≤ Γ
[H]

(V,K,Λ)
OPT

Υ ≫ 1, Γ > Γ
[H]

(V,K,Λ)
OPT

. (10)

In the following, the steps of the hybrid algorithm are summarized.

• Initialization Step ( i = 0). The positions of theP particles of the swarm (i.e., the

initial trial solutions) are generated according to the optimal HS-based array configuration
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[H ]
(V,K,Λ)
OPT , which is known and provided in [18]. More in detail:

X0,p =























[H ]
(V,K,Λ)
OPT , p = 0

℘p

{

[H ]
(V,K,Λ)
OPT

}

, 1 ≤ p ≤
√

V − 1

µp

{

[H ]
(V,K,Λ)
OPT

}

,
√

V − 1 + 1 ≤ p ≤ P − 1

(11)

℘p

{

[H ]
(V,K,Λ)
OPT

}

andµp

{

[H ]
(V,K,Λ)
OPT

}

being a cyclic shift and a randomly mutated ver-

sion of [H ]
(V,K,Λ)
OPT , respectively. On the other hand, thevelocityof each particleS0,p =

{

s0,p
m,n; m = 0, ..., Vx − 1; n = 0, ..., Vy − 1

}

is randomly generated:

s0,p
m,n =











1, ρ0,p
m,n ≥ 0.5

0, ρ0,p
m,n < 0.5

(12)

whereρ0,p
m,n is a random number with uniform distribution in the range[0, 1].

• Evaluation Step. The optimality of each trial solution at thei-th iteration is evalu-

ated (i.e.,F i,p = F (X i,p), p = 0, ..., P − 1) and thepersonal best Bi,p =
{

bi,p
m,n; m = 0, ..., Vx − 1; n = 0, ..., Vy − 1

}

= arg

{

min
h=0,...,i

[

F (Xh,p)
]

}

as well as the

global bestGi =
{

gi
m,n; m = 0, ..., Vx − 1; n = 0, ..., Vy − 1

}

= arg

{

min
p=0,...,P−1

[F (Bi,p)]

}

positions are updated. The iterations index is increased (i = i + 1) and the termination

criteria are checked. If the maximum number of iterationI is reached or the cost of the

global best is smaller than a given thresholdη, then the optimization process stops and

the global bestGi is assumed as the problem solution.

• Velocity Updating Step. The velocity of each particle is updated according to the fol-

lowing relationship

si,p
m,n =























SMAX , ti,pm,n > SMAX

−SMAX , ti,pm,n < −SMAX

ti,pm,n,
∣

∣ti,pm,n

∣

∣ ≤ SMAX

(13)

whereSMAX is a constant clamping value [10] and

ti,pm,n = ωsi−1,p
m,n + c1ρ1(b

i,p
m,n − ai,p

m,n) + c2ρ2(g
i
m,n − ai,p

m,n) (14)
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ω, c1, andc2 being constant parameters calledinertial weight, cognitionandsocial accel-

eration, respectively. Moreover,ρ1 andρ2 are random positive coefficients drawn from a

uniform distribution with predefined upper limits [20].

• Position Updating Step.The position of each particle is updated as follows

xi,p
m,n =











1, ρi,p
m.n < T (si,p

m,n)

0, ρi,p
m.n ≥ T (si,p

m,n)
(15)

T (si,p
m,n) being the sigmoid function [21]

T (si,p
m,n) =

1

1 + e−s
i,p
m,n

. (16)

The optimization algorithm restarts from the“Evaluation Step”.

4 Numerical Results

This section provides the numerical assessment of the proposed hybrid approach, denoted by

the acronym HSPSO. Moreover, a comparative study with the HS-based strategy and the SPSO

is discussed. From the exhaustive set of numerical experiments, selected representative results

concerned with small arrays (V = 36), medium arrays (V = 144), and large arrays (V = 576)

are presented. The initial trial solutions of the HSPSO havebeen generated by relying on

the optimal HSs-based arrays determined by Kopilovich [18]whenK = 21, K = 78, and

K = 300, respectively. On the other hand, the SPSO has been randomlyinitialized. As regards

to the parameters setup of both the HSPSO and the SPSO, the reference values are given in

Table I. For each test case, both the HSPSO and the SPSO have been executedT = 100 times.

Figures 1-3 show the best array configurations obtained by applying the HSs-based strategy, the

SPSO, and the HSPSO. In the case of large arrays (i.e.,V = 576) the corresponding power

patterns are depicted as well (see Fig.3). The values of the PSL and of the thinning percentage

Γ are given in Table II. Finally, Table III shows the CPU-time necessary for the initializationτ0

, the CPU-time for iterationτi, and the iteration numberiη at which the convergence threshold

η has been reached. All the reported values have been obtainedby averaging on theT trials.
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As it can be noticed, the HSPSO significantly outperforms theHSs-based approach in terms of

both PSL and thinning percentageΓ. The improvements allowed by the PSO are particularly

evident when dealing with large arrays as confirmed by the results concerned with the config-

uration havingV = 576 elements (see Fig. 3 and right-hand side of Tab. II). The HSPSO

power pattern has a lower PSL,PSLHS − PSLHSPSO
∼= 3.25dB. Moreover, such a pattern

is obtained with a massive thinning,ΓHSPSO
∼= 0.44, with a notable reduction of the active

elements,KHS − KHSPSO = 46.

Now, let us compare the SPSO and the HSPSO in order to analyze how a suitable integration

affects the optimization performances. We start by observing that in all the considered test cases

the CPU-time necessary for the initialization through HSs is negligible with respect to the CPU-

time for iteration and it is comparable with the CPU-time of arandom initialization. When the

small array (i.e.,V = 36) is at hand, the HSPSO significantly outperforms the SPSO. Besides

an expected increase of the convergence rate ([iη ]SPSO

[iη ]HSPSO
≈ 2.5, Tab. III) as well as a reduction of

the overallCPU-time for the synthesis ([τ0+τi×iη ]SPSO

[τ0+τi×iη]
HSPSO

≈ [τi×iη ]SPSO

[τi×iη ]
HSPSO

≈ 3, Tab. III), a smart

initialization leads also to a considerably improved solution. The HSPSO allows a significant

thinning that cannot be attained with the SPSO,ΓHSPSO
∼= 0.42 vs. ΓSPSO = 0.5, along with

a lower PSL (Tab. II and Fig. 1). When dealing with larger arrays, the initialization through

HSs still reduces the computational costs ([iη ]SPSO

[iη ]
HSPSO

≈ [τi×iη]SPSO

[τi×iη ]
HSPSO

≈ 1.9 whenV = 144;

[iη ]SPSO

[iη ]HSPSO
≈ [τi×iη ]SPSO

[τi×iη ]HSPSO
≈ 1.8 when V = 576, Tab. III), but the SPSO and the HSPSO

practically allow identical performances in terms of thinning percentage and PSL (Tab. II and

Fig. 3). However, it must be taken into account that at present the collection of HSs is complete

only for V ≤ 36 [18]. Thus, HS-based arrays with lower PSL could be found when V > 36,

leading to final solutions with improved PSLs and thinning percentages besides the advantages

in terms of computational indexes already obtained withoutfully exploiting the potentialities of

the method.

5 Conclusions

In this letter, a hybrid approach devoted to the synthesis ofsquare thinned arrays has been pre-

sented. The proposed solution exploits and combines the positive features of the combinatorial

techniques and of the optimization strategies to obtain in acomputationally-effective way the
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best compromise solution in terms of both peak side-lobe level and thinning percentage. An

exhaustive set of numerical experiments has been performedshowing that the hybrid approach

outperforms both the SPSO and the HSs-based strategy. In particular, when compared to the HS-

based synthesis method, the HSPSO allows a massive thinningby improving at the same time

the obtained power pattern. Such an event highlights the capability of the integrated stochastic

optimization to control the unwanted ripples that occur when the HSs-based method is applied.

Moreover, when compared to the standard PSO-based optimization, the hybrid strategy allows

a significant improvement in the convergence rate.
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Figure Captions

• Figure 1. Small arrays (V = 36). Elements grid when (a) the HS-based method, (b) the

SPSO, and (c) the HSPSO are applied.

• Figure 2. Medium arrays (V = 144). Elements grid when (a) the HS-based method, (b)

the SPSO, and (c) the HSPSO are applied.

• Figure 3. Large arrays (V = 576). Synthesized power patterns and elements grid when

(a) the HS-based method, (b) the SPSO, and (c) the HSPSO are applied.

Table Captions

• Table I. PSO setup.

• Table II. Performance indexes.

• Table III. Computational indexes.
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(a) (b) (c)

Fig. 1 - M. Donelli et al., ”A Hybrid Approach ...”
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(a) (b) (c)

Fig. 2 - M. Donelli et al., ”A Hybrid Approach ...”
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(a)

(b)

(c)

Fig. 3 - M. Donelli et al., ”A Hybrid Approach ...”
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P I η ω c1 c2 max ρ1 max ρ2 VMAX

V
10

200 10−2 0.4 2.0 2.0 1.0 1.0 1

Tab. I - M. Donelli et al., ”A Hybrid Approach ...”
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V = 36 V = 144 V = 576

Method PSL [dB] Γ PSL [dB] Γ PSL [dB] Γ

HS −12.55 0.58 −15.47 0.54 −15.72 0.52

SPSO −12.72 0.50 −15.59 0.44 −18.53 0.43

HSPSO −13.06 0.42 −16.74 0.48 −18.97 0.44

Tab.
II-

M
.D

onelli
etal.,”A

H
yb

rid
A

p
p

ro
ach

...”

1
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V = 36 V = 144 V = 576

Method τ0 [s] τi [s] iη τ0 [s] τi [s] iη τ0 [s] τi [s] iη

SPSO 1 × 10−3 0.97 129 3 × 10−3 14.89 145 0.31 51.12 189

HSPSO 2 × 10−3 0.82 51 5 × 10−3 15.01 75 0.20 50.21 108

Tab.
III-

M
.D

onelli
etal.,”A

H
yb

rid
A

p
p

ro
ach

...”
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