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A Hybrid Approach Based on PSO and Hadamard Difference

Sets for the Synthesis of Square Thinned Arrays
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Abstract

A hybrid approach for the synthesis of planar thinned ardeamays is presented. The
proposed solution exploits and combines the most atted@atures of a particle swarm
algorithm and those of a combinatorial method based on theyutic difference sets of
Hadamard type. Numerical experiments validate the prapestition, showing improve-

ments with respect to previous results.
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1 Introduction

This paper deals with arrays composed by elements placed womf@am lattice with half-
wavelength spacing between adjacent points. Active elesrame fed with equal amplitude
currents while the remaining ones are turned off (i.e., emted to a matched or dummy load).
For a given lattice size, since the resolution mainly degentthe aperture dimension in wave-
length, the thinning operation allows one to obtain an apipnately unaltered main lobe width
with reduced cost, weight, power consumption, and heatpdien. On the other hand, for
a given number of active elements, narrower beamwidth caeche&ved since larger antenna
sizes are possible. However, the thinning operation ugualplies a reduced antenna gain and
a non-negligible loss of the sidelobe level control.

In principle, an exhaustive search is possible to syntleasie thinned configuration with the
minimum peak sidelobe level (PSL). As a matter of fact, umlilon-uniformly spaced arrays,

which are determined by means of both algorithmic and rangi@@ement techniques [1]-[4],

v
only a finite number of thinned configurations is allowed.][i. , V and K being the
K

number of array elements and of turned on elements, resp8dti Nevertheless, it is evident
that an exhaustive sampling of the solution space is feasibly dealing with small arrays
[2], while more sophisticated thinning techniques are eeesdhen large arrays are at hand. In
such a framework, the use of optimization approaches ha®lsignificant advancements [5]-
[7]. As a matter of fact, Simulated Annealing [8], Genetigétithms (GAs) [9], and Particle
Swarm Optimizers (PSOs) [10] allow to manage very large goméitions and unlike dynamic
programming [11] they are not vulnerable to local minimantkeato their hill-climbing search.
However, such algorithms are quite slow when compared watkrahinistic techniques due to
their global nature. In particular, the convergence ratesaterably reduces in the neighborhood
of the optimal solution.

In order to speed up the optimization process, all the avigla-priori information or initial
solutions from available combinatorial tools must be tak#a account. The hybrid approach
proposed in [12] is based on such a philosophy. The efficieftlye GA-based search process
has been improved by means of a suitable integration witkdéterministic approach proposed

by Leeper [13][14]. When an array 0f elements is thinned according to a cyclic difference set



(CDS) [15], the array power pattern is forced to pass throvgimiformly spaced, equal, and
constant values that are less that times the main lobe peak. Unfortunately, the synthesized
power pattern presents undesired ripples, the greatestisuredly located near the main lobe.
Combining combinatorial and stochastic methods has atowdimit the ripple amplitudes,
leading to improved results in terms of PSL with respect tthb©DS- and GAs-optimized
arrays [12]. CDSs can be applied to thin both linear and plamays [14]. As regards to planar
arrays, the synthesis has been carried out starting frorrdivm@nsional sequences of ones and
zeros generated from linear CDSs by means of ad-hoc pladetgemithms [16]. Nevertheless,
in order to keep the CDSs’ positive features, the two-direered sequences can be located only
on rectangular grids with coprime side-lendths Consequently, the CDS-based approaches
cannot be applied to square arrays.

Leaning upon the same philosophy of [12] (i.e., combininghbmatorial and optimization-
based methods to exploit their positive features and to emsgte their drawbacks at the same
time), this contribution is aimed at proposing a hybrid aygwh for the synthesis of square
thinned arrays. The approach is based on the use of nontydidimensional difference sets
of Hadamard type (HSs) [17] to initialize an optimizatiolmpedure. In principle, HSs allow to
deal also with rectangular arrays [18]. Nevertheless, wasmn square configurations since in
this case for eaclk” value such that some HS exists and for< 300 the totality of possible
HS-based square thinned arrays has been analyzed and thiott®gthe lowest PSL has
been provided [18].

As far as the optimizer is concerned, taking into accountatieantages of PSOs when com-
pared to GAs (i.e., easier implementation and calibratmal, ability to control the convergence
of the optimization as well as its stagnation), a customasedi suitably integrated PSO is used
as optimization algorithm.

The paper is organized as follows. Section 2 briefly resurnasesuseful array notations. In
Section 3, the hybrid strategy is detailed pointing out tbg features of the HSs and of the
standard PSOs (SPSOs) methods. The numerical validatrepasted in Section 4, where the
hybrid approach is assessed through a comparative anahysaly, some concluding remarks

are given in Section 5.

() Two integers are said to be coprime or relatively prime ifyttave no common factor other than 1 or,
equivalently, if their greatest common divisor is 1. Theegr side-lengths are coprime if the diagonal does not
intersect any other lattice point.



2 Antenna Arrays Notation

Let us consider a planar array on the- y plane whose half-wavelength spaced elements are
located on a uniform lattice df = V. x V,, locations numbered from (0,0) &, — 1, V,, — 1).

The corresponding array factor is defineéas
—1 Vz/

Z Z jw(mu—i—nv (1)

m=0 n=0

wherea,,,, = 1 if there is an element at then, n)-th location anda,,,, = 0, otherwise,

u = sin # cos ¢ andv = sin 6 sin ¢. Moreover, the PSL [4] turns out to be
PSL2 — max [f(u,0) @
= — Inax u,v
K (u,v)eL ’

whereL denotes the sidelobe region. Finally, the thinning pergel is given by

r4

<I =

3)

3 Hybrid Optimization Strategy

The objective of the synthesis is to find in a computationafficient way the array configura-
tion that represents the best compromise in terms of PSLRanding percentage. Towards this
end, we propose a hybrid optimization method. In order topoit the arguments that justify
an integrated strategy, the key features of the HS-baseduoa@nd of the PSO-based synthesis

technique are firstly discussed. Then, the integrated proeds carefully described.

3.1 HS-based Synthesis Method

By definition, a(V, K, A)-HS [17] is a set of{’ points defined on a integéf, x V, grid of V'
elements

HS = {(bo, Co), (bl, Cl>, ey (bK—b CK—I)} (4)

(2)To simplify the array factor expression and without loss efgrality, the steering angles have been set to
zero.




with 0 < b, < V, —1and0 < ¢; < V, — 1, such that: §) for any grid point(m,n),
0<m<V,—1land0 <n <V, — 1, there exist exacti\ pairs{(b;, c;), (b;, c;)} that satisfy
the equationsn = (b; — b;)mod V,, andn = (¢; — ¢;)mod V,,, where ‘mod V" means that the
difference has to be taken modulg (b) eitherV = 4N? K = 2N? — N, A = N? — N or

V =4N? K =2N?+ N, A= N? + N, N being equal t@" or3 - 2", r > 0 [18].

By placing the array elements at the HS locations, it is fdsdd synthesize a thinned array
with a normalized power pattern that, in the sidelobe reg®forced to take the constant value
(K — A)/K?in correspondence with the points of the lattice whose doatds are multiple of
(2m/V,, 27 /V,) [18]. Therefore, there are some constraints on the siddéat, but undesired
ripples still verify. Moreover, it is not possible to defindH8 whateverV, K, A) value, but
only if (b) holds true. Accordingly, there is a constraint on the timgrpercentagé&' achievable

through the HS-based synthesis method.

3.2 PSO-based Synthesis Method

PSOs are stochastic multiple-agents optimization algaorit extensively applied in the frame-
work of antenna array optimization (see [19] and the refeesrtited therein). By imitating the
social behavior of groups of insect and animals in their feedrching activities, they are based
upon the cooperation amorgrticles The ensemble of the particles, referred tosasarm
explores the solution space to find out the best position {the optimum of a suitably defined
cost function). During the optimization process, eachip@rupdates its position on the basis
of its own previous best position and of the swarm'’s previoest position.

In principle, applying PSO-based strategies to the symlafshinned arrays allows to effec-
tively explore the whole solution space and to figure outyarr&ith any thinning percentage.
However, if noa-priori information is available and/or exploited, a satisfacteojution can be
found only after a non-negligible number of iterations. &lg, the computational burden grows

with the dimension of the solution space (e.g., when larggyarare at hand).

3.3 Hybrid Synthesis Method

The considerations outlined in the previous Sections ssigipat an improvement could be

achieved by integrating the HS-based method into the opéitiin process. More specifically,



we expect that the hybrid strategy outperforms the HS-bassttiod in terms of both thinning
percentage and PSL, and the PSO-based method in terms efgence rate and computational
costs.

Because of the discrete nature of the problem at hand, aybP@0 is used. The-th trial

solution is a two-dimensional array
Xt ={d,,;m=0,..,V,—1;n=0,...,V, -1}, da’,, €{0,1} (5)

p = 0,..., P — 1 being the particle index ang& the swarm dimension. Moreover, in order to
ensure the best compromise in terms of both PSLIgnithe cost function to be minimized is
defined as follows

F = aFpgy + BFr (6)

where

maX(u,v)EL |f(u7 'U) |2

maxy(y,v) ‘f(u7 U)‘Z

(7)

Fpgr, =

Ve—1Vy—1

FF:%Z Zam,n- (8)

m=0 n=0

The weighting coefficientsr and 3 are chosen so that the final solution has both PSLIand

lower, or equal, than those of the optimal HS-based arrafigamation | H ]E)V};?A) provided in

[18], i.e.,

1, PSL < PSLH (V,K,A)
o = (Hlopr (9)

T > 1, PSL > PSL (V,K,A)

(Hlopr
<
st P gy (10)
T > 1, I'>T , wvka
[Hlopr

In the following, the steps of the hybrid algorithm are sumized.

e Initialization Step (¢ = 0). The positions of theP particles of the swarm (i.e., the

initial trial solutions) are generated according to thdmpl HS-based array configuration



[H]EJV};[;’A), which is known and provided in [18]. More in detail:

V.K,A
[H](OPT )a p=0
X7 =3 o (G 1<p< VT (12)

w {HIGHY}, VW =T+1<p< Pt

©p {[H](OVI;I;’A)} and 1, {[H]g};};[‘)} being a cyclic shift and a randomly mutated ver-
sion of [H](OV,’D?’A), respectively. On the other hand, thelocityof each particleS*? =

{SO,p .

m,n’

m=0,.,V,=1;n=0,..,V, - 1} is randomly generated:

1, P02 >05
o = P (12)

’ 0, p%, <0.5

wherep)? is a random number with uniform distribution in the rarjge].

Evaluation Step. The optimality of each trial solution at theth iteration is evalu-

ated (i.e.,F'"? = F(X*), p = 0,...,P — 1) and thepersonal best B =

globalbesG = {¢, ,; m=0,...V, —1;n=0,..,V,— 1} = arg{ min [F(B’Vp)]}
' p=0,...,P—1

positions are updated. The iterations index is increased { + 1) and the termination

criteria are checked. If the maximum number of iteratiois reached or the cost of the

global best is smaller than a given threshgldhen the optimization process stops and

the global best is assumed as the problem solution.

Velocity Updating Step. The velocity of each particle is updated according to the fol

lowing relationship

Smax,  tF, > Suax

L __ 3

Sman = § —Smax, Uf, < —Suax (13)
Lo |tor, | < Swmax

whereS), 4 x is a constant clamping value [10] and

t;ﬁn = WS;;}L’IJ + cip1 (bzr;fn - azr;fn) + c2p2 (g;n,n - a%ﬁn) (14)



w, c1, ande, being constant parameters calladrtial weight cognitionandsocial accel-
eration respectively. Moreovep; andp, are random positive coefficients drawn from a

uniform distribution with predefined upper limits [20].

e Position Updating Step.The position of each particle is updated as follows

; 17 p%)n <T S%)n
i = g ( " ) (15)
0, pitn 2 T(sitn)

T'(s;P,) being the sigmoid function [21]

) 1
T(siP )=

L 1 -+ e—th’fn ’

(16)

The optimization algorithm restarts from thgvaluation Step”.

4 Numerical Results

This section provides the numerical assessment of the peapbybrid approach, denoted by
the acronym HSPSO. Moreover, a comparative study with théakgd strategy and the SPSO
is discussed. From the exhaustive set of numerical expatsnselected representative results
concerned with small array¥ (= 36), medium arraysy = 144), and large arraysi{ = 576)
are presented. The initial trial solutions of the HSPSO hawen generated by relying on
the optimal HSs-based arrays determined by Kopilovich ABgn K = 21, K = 78, and

K = 300, respectively. On the other hand, the SPSO has been randaitidlized. As regards
to the parameters setup of both the HSPSO and the SPSO, ¢hened values are given in
Table |. For each test case, both the HSPSO and the SPSO tavexeeuted” = 100 times.
Figures 1-3 show the best array configurations obtained plyaqm the HSs-based strategy, the
SPSO, and the HSPSO. In the case of large arrays Vi.es, 576) the corresponding power
patterns are depicted as well (see Fig.3). The values of$theadd of the thinning percentage
" are given in Table II. Finally, Table Il shows the CPU-timecessary for the initialization,

, the CPU-time for iteration;, and the iteration numbey, at which the convergence threshold

n has been reached. All the reported values have been obiayreaceraging on thé’ trials.



As it can be noticed, the HSPSO significantly outperformd+Bs-based approach in terms of
both PSL and thinning percentagjfe The improvements allowed by the PSO are particularly
evident when dealing with large arrays as confirmed by thelt®soncerned with the config-
uration havingl” = 576 elements (see Fig. 3 and right-hand side of Tab. Il). The HBPS
power pattern has a lower PSESLys — PSLyspso = 3.25dB. Moreover, such a pattern
is obtained with a massive thinninggspso = 0.44, with a notable reduction of the active
elementsKys — Kyspso = 46.

Now, let us compare the SPSO and the HSPSO in order to anatyze Isuitable integration
affects the optimization performances. We start by obsegrthat in all the considered test cases
the CPU-time necessary for the initialization through HSsdgligible with respect to the CPU-
time for iteration and it is comparable with the CPU-time ahadom initialization. When the
small array (i.e.} = 36) is at hand, the HSPSO significantly outperforms the SPSGidBs

an expected increase of the convergence %ﬁéﬁ% ~ 2.5, Tab. Ill) as well as a reduction of
MHSPSO

the overallC' PU-time for the synthesis- &7 <nlseso o [ixinlseso ~ 3 Tap. [I1), a smart

[ +7i Xinl s pso [Ti Xinlgspso

initialization leads also to a considerably improved solut The HSPSO allows a significant
thinning that cannot be attained with the SP$Qgps0 = 0.42 vs. 'spso = 0.5, along with
a lower PSL (Tab. Il and Fig. 1). When dealing with larger gsrahe initialization through

. . inlgpso  ~ TiXinlspso — .
HSs still reduces the computational co% o ~ 1.9 whenV = 144;

TiXinlgspso

inlspso o, ITiXinlspso o 1.8 whenV = 576, Tab. 1), but the SPSO and the HSPSO

[i'I]HSPSO [TiXi'I]HSPSO

practically allow identical performances in terms of thimgp percentage and PSL (Tab. 1l and

Fig. 3). However, it must be taken into account that at pretbencollection of HSs is complete
only for V' < 36 [18]. Thus, HS-based arrays with lower PSL could be foundmiie> 36,
leading to final solutions with improved PSLs and thinningcpatages besides the advantages
in terms of computational indexes already obtained withiollit exploiting the potentialities of

the method.

5 Conclusions

In this letter, a hybrid approach devoted to the synthessgjafire thinned arrays has been pre-
sented. The proposed solution exploits and combines theyedgatures of the combinatorial

techniques and of the optimization strategies to obtainéoraputationally-effective way the
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best compromise solution in terms of both peak side-lobellaxid thinning percentage. An

exhaustive set of numerical experiments has been perfosmeding that the hybrid approach

outperforms both the SPSO and the HSs-based strategy.ticupar, when compared to the HS-

based synthesis method, the HSPSO allows a massive thibpimgproving at the same time

the obtained power pattern. Such an event highlights thalshiy of the integrated stochastic

optimization to control the unwanted ripples that occur whiee HSs-based method is applied.

Moreover, when compared to the standard PSO-based optianiz¢éhe hybrid strategy allows

a significant improvement in the convergence rate.
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Figure Captions

e Figure 1. Small arrays ¥ = 36). Elements grid whend) the HS-based methody)(the
SPSO, andd) the HSPSO are applied.

e Figure 2. Medium arrays { = 144). Elements grid whenga) the HS-based method))(
the SPSO, and) the HSPSO are applied.

e Figure 3. Large arrays¥{ = 576). Synthesized power patterns and elements grid when

(a) the HS-based methody)(the SPSO, and) the HSPSO are applied.

Table Captions

e Table I. PSO setup.
e Table Il. Performance indexes.

e Table Ill. Computational indexes.
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Fig. 1 - M. Donelli et al., "A Hybrid Approach ...”
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Fig. 2 - M. Donelli et al., "A Hybrid Approach ...”
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Fig. 3 - M. Donelli et al., "A Hybrid Approach ..”
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max pi

max P9

Virax

={aSlay

200

1.0

1.0

Tab. 1 - M. Donelli et al., "A Hybrid Approach ...”
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. yoeouddy pughH v, “fe ® 1j1suod "IN - 1l “gel

V =36 V =144 V =576
Method [ PSL[dB]| T |PSL[dB]| T [PSL[dB]| T
HS | —1255 058 —15.47 [0.54 ] —15.72 | 0.52
SPSO | —12.72 [ 050 | —15.59 [0.44 | —18.53 |0.43
HSPSO| —13.06 |0.42 | —16.74 | 0.48 | —18.97 |0.44




0z
. yoeouddy pughkH v. “fre ® 1j1suod "IN - 111 “gel

V =36 V =144 V =576
Method | 7o (s] | 7ils]| 4y ols] | mls]| iy | Tols]| mls]| iy
SPSO |1 x 1073|097 | 129 |3 x 1073 |14.89| 145 | 0.31 |[51.12| 189
HSPSO| 2 x1073| 0.82 | 51 |5 x 1073 |15.01| 75 0.20 | 50.21 | 108
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