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ABSTRACT

Many geometric computations have at their core the evaluation of the sign of the deter-
minant of a matrix. A fast, failsafe determinant sign operation is often a key part of a
robust implementation. While linear problems from 3D computational geometry usually
require determinants no larger than six, non-linear problems involving algebraic curves
and surfaces produce larger matrices. Furthermore, the matrix entries often exceed ma-
chine precision, while existing approaches focus on machine-precision matrices. In this
paper, we describe a practical hybrid method for computing the sign of the determi-
nant of matrices of order up to 60. The stages include a floating-point filter based on
the singular value decomposition of a matrix, an adaptive-precision implementation of
Gaussian elimination, and a standard modular arithmetic determinant algorithm. We
demonstrate our method on a number of examples encountered while solving polynomial
systems.
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1. Introduction

Determinant sign evaluation is an important problem for geometric applications.
For some applications, a common technique for alleviating robustness problems is to
express algorithmic decisions as determinant signs, and then focus on a fast, exact
implementation of this operation. Researchers have developed many specialized
techniques for determinant signs of small matrices, often focusing on 6×6 matrices
and smaller.

In non-linear geometric computation, robustness requires effective handling of
algebraic numbers. The key tool is often the Sturm sequence of a polynomial. One
of the most effective ways to evaluate the Sturm sequence is with the subresultant
algorithm, which expresses the terms of the sequence as matrix determinants. Often
only the signs are needed. However, the matrix size grows with the degree of the
polynomials. Evaluating a degree-n polynomial’s Sturm sequence using the subre-
sultant algorithm requires a determinant of order 2n−1 (and also the determinants
of smaller matrices). For example, a three-dimensional algorithm requiring inter-
sections of quadric surfaces involves algebraic numbers of degree eight, leading to
subresultant matrices of order 15. Polynomials of much higher degree may be used
as well. Of the known specialized methods for fast, exact determinant signs, most
are ineffective for matrices of this size.

A further difficulty is the bit length of the matrix entries. In some linear prob-
lems, the matrix entries are simple formulae in the input data. But in non-linear
computation, the matrix entries tend to have a bitlength significantly greater than
the input bitlength, simply because the matrix entries are further removed from
the input data. Specialized determinant sign algorithms often have a bit length
restriction which is not satisfied in practice.

Overview. In section 2, we summarize the known techniques for computing the
sign of the determinant of a moderate-sized matrix. In section 3, we describe several
applications for determinant sign evaluation. The examples come from non-linear
geometric computation in two and three dimensions.

Sections 4 through 6 present determinant sign algorithms. In section 4, we re-
view the technique of modular arithmetic, including recent advances. In section 5,
we present a new floating-point filter based on singular value decomposition. In
section 6, we present a determinant sign method based on multiprecision interval
arithmetic.

In section 7, we examine the performance of several algorithms on a variety of
matrices encountered in non-linear geometric computation. In section 8, we weigh
the strengths and weaknesses of the different methods and demonstrate that the
methods may be combined into a powerful, efficient multistage method. We conclude
in section 9.
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2. Previous Work

Many interesting techniques have been proposed for fast, exact determinant sign
computation. The most well-known general technique, “Chinese remaindering,”
computes the determinant of an integer matrix using modular arithmetic. The ma-
trix determinant is computed modulo several primes, and the complete determinant
is reconstructed from the residues. Brönnimann et al.5 have improved the recon-
struction step by avoiding the use of multiprecision arithmetic. The authors have
also released an efficient implementation of their algorithm, which works for in-
teger matrices with 53-bit entries. Wiedemann31 computes the determinant of a
sparse matrix in a finite field (modulo a prime number, for example) by comput-
ing the characteristic polynomial. The Wiedemann algorithm has been improved
and extended to dense matrices by Kaltofen and Villard.19 Finally, Abbott et al.1

have combined Hensel lifting with Chinese remaindering into an algorithm that
compares favorably to plain Chinese remaindering, especially when the matrix size
grows above about 200 × 200.

Avnaim et al.4 give a specialized determinant sign algorithm for 2× 2 and 3× 3
matrices. The algorithm computes the determinant sign using arithmetic on b or b+1
bits, where b is a bound on the entry bitlength. Brönnimann and Yvinec6 extend
this algorithm, obtaining the “lattice method” for n× n matrices using arithmetic
on O(b+n) bits. Clarkson9 proposes a determinant sign algorithm based on Gram-
Schmidt orthogonalization. The orthogonalization preconditions the matrix for safe
determinant sign computation by Gaussian elimination. For larger matrices, the
algorithm requires arithmetic at a higher precision than machine precision. It is
unclear how this algorithm would be implemented so as to be effective for larger
matrices. Brönnimann and Yvinec6 implement a variant of Clarkson’s algorithm
and demonstrate its performance primarily on matrices of order up to 6.

Much of the recent research is focused on filtered computation. For instance, one
may compute the determinant in interval arithmetic. If the interval contains zero,
the computation is repeated in higher precision or a slower exact method is used as a
fallback. Many filtered methods are variations on this idea. Unfortunately, determi-
nant sign seems to be a sort of worst-case problem for standard interval arithmetic:
the determinant is an interval that usually contains 0. Overcoming this problem,
Brönnimann et al.7 use a posteriori error estimates based on a floating-point LU-
decomposition. Fortune and Van Wyk15,16 analyze the structure of the determinant
computation at compile time to obtain static error bounds, minimizing the runtime
penalty of error analysis. The LEDA system24 and the CORE system20 provide nu-
meric datatypes supporting runtime error analysis and automating higher-precision
recomputation. For determinant sign computation, LEDA improves this model by
incorporating static error bounds (Burnikel et al.8). Shewchuk30 uses an unusual
form of multiprecision arithmetic to compute signs of matrices up to 4 × 4. In this
model, the actual error in each arithmetic operation is carried along, rather than
a bound on the error magnitude. All of these methods are based on analyzing the
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forward error in a numerical computation.
To our knowledge, few authors have attempted a backward error analysis of a

determinant algorithm. In two related articles, Pan et al.27,28 compute the sign of
the determinant by Gaussian elimination, and then validate the computation by
estimating the distance from the given matrix to the nearest singular matrix.

3. Determinant Signs in non-linear computation

The Sturm sequence is a basic tool for isolating the real roots of a univariate
polynomial. Given a square-free polynomial f(u) with integer coefficients, the
Sturm sequence is {f1(u), . . . , fm(u)} where f1(u) = f(u), f2(u) = f ′(u), and
fi = − rem(fi−1, fi−2). Here rem(f, g) gives the remainder on polynomial division
of f by g. Evaluating {fi} at a real number a and counting the number of sign
changes in the sequence gives the variation operator varf (a). The variation oper-
ator has the useful property that varf (b) − varf (a) computes the number of real
roots of f in the interval [a, b). Multiple roots are counted only once. Using varf (),
one may easily construct disjoint intervals, each containing one of the real roots
of f . Such an interval, together with f , is a complete specification of an algebraic
number.

Computing the Sturm sequence is an effective approach in some situations. But
the length of the coefficients of the polynomials fi can grow exponentially with i. In
fact, the coefficient growth is avoidable. The integer coefficients of fi share a large
common factor. The subresultant algorithm of Collins10 computes the coefficients
of fi/ci, where ci is a positive integer dividing the coefficients of fi. The coefficient
length of the modified sequence grows linearly. Further, the algorithm expresses the
coefficients as matrix determinants. The matrices are submatrices of the resultant
matrix of f and f ′. Each of the coefficients may be computed individually, so one
may compute only the constant terms of the {fi} and obtain varf (0). In fact,
we need only the signs of the constant terms. Thus, varf (0) can be computed
by evaluating determinant signs. The number of variations at a is computed by
expanding g(x) = f(x − a) symbolically and computing varg(0).

For systems of polynomial equations, our approach is to construct a univariate
polynomial whose roots are related to the roots of the system. Several techniques can
reduce the dimension of the system. In this section, we describe three multivariate
algebraic problems with geometric applications, and give a method for reducing
each problem to a univariate problem.

3.1. Curve-line Intersection

In the (s, t) plane, a line can be parametrized by u as (a + bu, c + du). The line is
intersected with the algebraic curve f(s, t) = 0. The intersection points correspond
to the roots of r(u) = f(a + bu, c + du). In this case, the substitution operation
reduces a two-dimensional problem to a univariate problem.
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Fig. 1. Curve-line intersection. The curve f(s, t) = 0 is a torus-ellipsoid intersection curve, pulled
back to the domain of one of the surfaces. The line is t = const.

This approach for curve-line intersection is used in the curve-curve intersection
algorithm presented in Keyser et al..21 Each of two curves f(s, t) = 0, g(s, t) = 0
is intersected with each of the four walls of an axis-aligned box. The algorithm
examines the configuration of the curve-line intersections and infers the presence
or absence of a root.

3.2. Curve-curve Root Projection

The resultant of a pair of polynomials is a projection operation. Given two curves
f(s, t) = 0, g(s, t) = 0, the Sylvester resultant with respect to s is a univariate
polynomial r(s) = ress(f, g) whose roots are the s-coordinates of the intersections
of f and g. The roots are effectively projected onto the s-axis. This operation may
also be viewed as eliminating the variable t from the system. “Elimination” here
carries the same meaning as it does in Gaussian elimination.

Projection is used in the curve-curve intersection algorithm (Keyser et al.21).
The x-resultant and the y-resultant are used together to compute possible locations
for roots.

3.3. Surface-surface-surface Intersection

To intersect three algebraic surfaces f(x, y, z) = 0, g(x, y, z) = 0, h(x, y, z) = 0,
one may use multivariate Sturm sequences to isolate the roots of the system. Mul-
tivariate Sturm theory was developed by Pedersen29 and Milne.25 Milne’s method
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Fig. 2. Curve-curve root projection. The closed curve f(s, t) = 0 is a torus-torus intersection curve,
pulled back to the domain of one of the surfaces. The other curve is ∂f/∂s = 0. The roots are
projected onto the s-axis by taking the resultant with respect to t.

introduces a fourth variable u and a carefully-chosen fourth equation in x, y, z, and
u. The variables x, y, z are then eliminated using a higher-order resultant. The re-
maining equation is a univariate polynomial V (u), called the volume function, whose
roots are in one-to-one correspondence with the roots of the three-dimensional sys-
tem. In effect, the system is promoted to four dimensions, and then the roots are
projected in such a way as to ensure that distinct roots have distinct projections.

Multivariate Sturm sequences are used in the polyhedral medial axis algorithm
presented by Culver et al..12 For this application, f, g, and h are quadrics, and the
roots of the system are points which are equidistant from four vertices, edges, or
faces.

4. Modular Arithmetic

The modular arithmetic approach computes |A| in modular arithmetic over a col-
lection of relatively prime numbers {pi}m

i=1. The determinant residues di = |A|
mod pi can be used to reconstruct the determinant residue over the ring of integers
modulo P =

∏
pi. That is, D = |A| mod P is computed from the {di}. If D is then

reinterpreted as an integer in the interval (−P/2, P/2), and the actual determinant
|A| is known to be within the same range, then D = |A|.

The {pi} are chosen so that arithmetic modulo pi can be implemented effi-
ciently in a hardware-supported data type. For instance, a machine with fast IEEE
double-precision floating point operations can use that data type for 53-bit integer
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arithmetic. In this system, one may use a modulus as large as 227 while avoiding
lost precision on multiplication. One may choose p1 to be the largest prime less
than 227, p2 the largest prime less than p1, and so on. Further, the {pi} must be
chosen so that

∏
pi > | det(A)|. This requires an a priori bound on the size of the

determinant. Hadamard’s bound states that

| det(A)| ≤
n∏

i=1

( n∑

j=1

A2
ij

)1/2

and so one uses just as many primes as is necessary so that their product exceeds
twice this bound. See Knuth.22

The usual choice for computing the modular determinant is fraction-free Gaus-
sian elimination, although Wiedemann’s algorithm31 may be more efficient for large,
sparse matrices. For the reconstruction step, the implementor has several options.
An algorithm attributed to Lagrange appears to be the fastest in the typical case.
An iterative algorithm attributed to Newton has the advantage that it allows early
termination. The determinant may have significantly fewer bits than Hadamard’s
bound predicts. If | det(A)| <

∏m′

i=1 pi with m′ < m, then only d1, . . . , dm′+1 need
be computed. The case of a small determinant can be detected, albeit without ab-
solute certainty, during reconstruction by noticing that d1, . . . , dm′ yield the same
answer as d1, . . . , dm′+1. If this happens, reconstruction can be halted early. There
remains the possibility that the answer is incorrect, with a probability of 1/pm′+1.
Newton’s algorithm is more efficient than Lagrange’s when the determinant magni-
tude is significantly less than Hadamard’s bound. See the cited work and Knuth22

for the details of these reconstruction algorithms. A third reconstruction algorithm
is given by Brönnimann et al.,5 based on Lagrange’s algorithm. Theirs is different
from all other known methods in that it requires only single-precision operations
(assuming single-precision input), yet computes the sign correctly.

Modular arithmetic has two main advantages. First, the modular computation
can be carried out in a fixed-precision arithmetic, chosen for its efficiency on the
target platform. Second, the intermediate coefficients in Gaussian elimination grow
exponentially in length, typically exceeding Hadamard’s bound on the ultimate re-
sult. As a consequence, a “bigint” implementation suffers from coefficient explosion,
which modular arithmetic avoids.

5. A Floating-point Filter

We propose a floating-point filter based on the singular value decomposition of a
matrix. Like most useful floating-point matrix decompositions, the SVD leads to
an estimate of the determinant and its sign. However, the SVD has two additional
advantages. First, it can be computed by a backward-stable algorithm (Golub and
van Loan17). The error in the decomposition can be measured without assuming
that the maximum error occurs at each arithmetic operation. Second, a tight bound
is known on the error in the smallest singular value, which is the distance to the
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nearest singular matrix. The SVD assists in the computation of this bound. These
properties allow us to use the SVD both to find the determinant sign and to decide
whether the computed sign is reliable. As we will show, the computed sign is reliable
whenever the matrix is well-conditioned—a criterion that is decided by a threshold
on the condition number κ of the matrix.

The singular value decomposition of a square matrix An×n is a factorization
A = PΣQ, where P and Q are orthogonal, and Σ is a diagonal matrix with positive
entries σi. By convention, the σi are placed in nonincreasing order σ1 ≥ · · · ≥ σn.
The largest singular value σ1 is equal to the Euclidean matrix norm ‖A‖2. The
smallest singular value σn is equal to the Euclidean distance to the nearest singular
matrix to A. The SVD has many useful properties and many applications. For
details, and an algorithm based on QR iteration, see Golub and van Loan.17

The SVD can be computed in floating-point arithmetic with the following back-
ward error bound. The computed matrices PΣQ are the exact singular value de-
composition of a perturbed matrix A + ESV D, where

‖ESV D‖2 ≤ f1(n) · ε · ‖A‖2.

The value ε is machine epsilon. The function f1(n) is less than 100n3 (Demmel13)
but experience suggests that f1(n) = n is a safe assumption for the problem at hand.
The appropriate value for f1(n) is discussed further at the end of this section.

Demmel and Kahan14 improve the traditional SVD algorithm. Their modified
QR algorithm is forward stable as well as backward stable. The authors prove
fairly tight error bounds on all of the singular values computed by their algorithm,
whereas the traditional QR algorithm computes the smaller singular values with
less accuracy. In the modified QR algorithm, the relative error in each singular
value is on the order of nε. This can be expressed:

|σi − σ̃i| ≤ f2(n) · ε · σi (1)

where σi is a singular value of A, σ̃i is its computed value, and f2(n) is a modestly-
growing function of n, which may be safely assumed to be O(n) for the values of n

we consider. The modified QR algorithm is implemented in the LAPACK system.3

By combining the forward and backward error bounds, we can obtain condi-
tions for the correctness of the determinant sign as computed by the SVD. Let
A be an exact integer matrix, and A + EA its floating-point representation, with
‖EA‖ ≤ ε‖A‖. By backward stability, the SVD algorithm computes the sign of the
determinant of a matrix A + EA + ESV D for a small perturbation ESV D. On the
other hand, by forward stability, the distance from A + EA to the nearest singular
matrix is computed accurately as σn(A + EA). If the net perturbation of A is less
than the distance to the nearest singular matrix, then the computed sign is correct.
That is, the sign is correct if

‖EA + ESV D‖ < σn (2)

Neither of these quantities is available exactly. However, the following inequality can
be tested, and if it holds, it is sufficient to establish equation (2) and the correctness
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of the sign.

(f1(n) + 1) · ε · σ1 < σn. (3)

The sufficiency of (3) is established using the backward stability of the SVD algo-
rithm, which ensures that ‖ESV D‖ is small.

‖EA + ESV D‖ ≤ ‖EA‖ + ‖ESV D‖
≤ ε · ‖A‖ + f1(n) · ε · ‖A + EA‖
≤ ε · ‖A‖ + f1(n) · ε · (1 + ε) · ‖A‖
≈ (f1(n) + 1) · ε · ‖A‖
= (f1(n) + 1) · ε · σ1

(For simplicity we have dropped the factor of (1 + ε).) Rearranging equation (3),
we find that it expresses a static bound on the condition number κ = σ1/σn:

σ1/σn <
1

(f1(n) + 1) · ε . (4)

In other words, the SVD algorithm dependably computes the sign of the deter-
minant whenever the matrix is well-conditioned. Moreover, the notion of “well-
conditioned” is explicitly defined in terms of a largest allowable condition number,
determined by the matrix size and the working precision.

To evaluate the test (4), we use the computed singular values σ̃1, σ̃n. These are
not the exact singular values, but they are close. We need to weaken the test slightly
to account for the error present in the singular values. Taking advantage of forward
stability (1), we find absolute error bounds on the actual singular values σ1, σn in
terms of the computed singular values σ̃1, σ̃n. We use the upper bound on σ1 and
the lower bound on σn. The computed version of (4) is

σ̃1/σ̃n <
1

(f1(n) + 1) · ε · 1 − f2(n) · ε
1 + f2(n) · ε (5)

The procedure for computing the determinant sign is straightforward.

(1) Approximate the integer matrix A with a double-precision floating-point matrix
and compute the singular value decomposition PΣQ.

(2) Compute the condition number from Σ and the determinant sign from P and
Q.

(3) If κ is small (as defined by equation (5)), accept the determinant sign.

If κ is large, the filter fails, and we must use another method to find the sign.
Many systems offer some form of extended precision arithmetic implemented in

software, with a precision of ε′. If extended precision is available, the same value
of κ can be compared against the looser static bound involving ε′. That is, we
know whether the extended-precision SVD will give a dependable answer before we
compute it. Lastly, the determinant magnitude can be estimated by

∏
σ̃i, so even

when the filter fails, the SVD reveals a good guess as to whether Lagrange-style or
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Newton-style reconstruction will be more efficient if modular computation follows.
This idea is developed in section 8, in which we propose a multistage strategy.

Reliability of filters based on backward error estimation. It should be
noted that backward error bounds in numerical analysis are usually viewed as “ap-
proximate error bounds.” In other words, the error bounds are an accurate estimate
of the actual net error committed. The bounds are not mathematically proven to
be strict upper bounds. Often such bounds are known only up to a constant factor.

Therefore, the possibility remains that a determinant sign filter based on back-
ward error estimation, like our SVD filter, could return an incorrect sign and certify
it as correct. Using the most conservative error bounds, such as f1(n) = 100n3 in
the backward error in LAPACK’s SVD algorithm, does not remove this possibility.

Yet in practice, the error bounds are accurate. In our tests, the SVD filter
always returned either the correct sign or a warning that the sign was not to be
trusted. Experimentation showed that the less conservative bound f1(n) = n was
still conservative enough for all matrices in our tests.

6. Multiprecision Interval Arithmetic

In this section, we describe a means for computing the determinant sign using multi-
precision floating-point arithmetic with explicit maintenance of lost precision. This
method complements the methods in sections 4 and 5. The arithmetic system, based
on the work of Aberth and Schaefer,2 is described in detail in Krishnan et al..23

The system forms the foundation of the PRECISE library for matrix operations
and polynomial root finding.

The numerical data structure consists of a sign, a mantissa, an exponent, and
a bound δ on the absolute error. The mantissa is represented as an arbitrary-
length array of digits. Only significant digits are stored, so as the error increases
through the computation, the mantissa length decreases. This strategy has two
principal advantages. One is that arithmetic speeds up as precision is lost. The
other advantage is that the error always lies entirely in the last digit, allowing δ

to be represented by a single-precision quantity. Our number type is similar to the
BigFloat type of the Real/Expr (now CORE) system.33,26 The PRECISE number
type behaves like interval arithmetic over multiprecision floating-point numbers,
though it requires only one multiprecision computation per operation, and a single-
precision computation to maintain δ, rather than two multiprecision operations.

To perform a computation over our numerical type, we first specify a fixed
maximum precision P for the computation. First the input data are rounded off
to P bits, and then as the computation progresses, numbers are computed only
to a precision of P bits. The bounds δ keep track of the forward error in the
computation. If the result has enough precision, the computation terminates. For
instance, if one is interested in the sign of an expression, the result’s interval is
checked to see whether it contains zero. If the result is too imprecise, P is increased
and the computation restarts. By controlling P , the system adapts the precision
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to the forward stability of the computation. The performance of any algorithm in
this framework clearly depends on the number of times the computation has to be
repeated.

The possibility remains that the result is exactly zero. In general, this situation
is difficult to resolve. But if the result is known to be an integer, as it is in our
application, the sign is established whenever the interval length is less than one.

We compute the determinant sign by performing interval Gaussian elimination
with partial pivoting. The algorithm starts by fixing the initial precision P for
the computation. Ideally, P should be set to its ideal value Pideal: the smallest
value such that the sign of the diagonal entries after Gaussian elimination can
be determined unambiguously. A larger value for P results in extra work at each
arithmetic operation. A smaller value also results in extra work, in the form of
restarts. The ideal value Pideal is difficult to compute, so we describe an estimation
method which has been successful in practice. We begin by setting

P = α · n · log ‖A‖F ,

where α is a constant less than one (0.1 in our implementation). It is easy to
see that if α = 1, this bound is similar to the determinant bitlength predicted
by Hadamard’s bound. During the course of Gaussian elimination, if any diagonal
element loses enough precision so that its sign is indeterminate, we increase P

and redo all the computation. Suppose that the pivot after i steps of Gaussian
elimination (0 ≤ i ≤ n − 1) is found to have an ambiguous sign. We then increase
P , noting that the closer i is to n, the closer P is to Pideal. The increase is given by

∆P = α · i · log ‖Ai‖F .

where ‖Ai‖F is the absolute value of the largest element in the lower right-hand
submatrix of A before column i is eliminated. (Ai is therefore a matrix of size
(n − i) × (n − i).) In our experiments, this estimate is good especially when the
determinant size predicted by Hadamard’s bound is pessimistic.

The principal difference between PRECISE’s number type and adaptive pre-
cision schemes like LEDA’s real type and CORE’s Expr type is that PRECISE
does not store the structure of the determinant expression at run time. The disad-
vantage to our approach is that PRECISE’s numbers are not drop-in replacements
for built-in numerical datatypes. The outer loop for repeating the computation at
higher precision must be explicitly programmed. The advantage is that the struc-
ture is not stored. As most determinant algorithms perform O(n3) arithmetic op-
erations, the cost of maintaining the expression structure is appreciable for even a
moderate-sized matrix.

7. Empirical Results

To evaluate our filter system, we chose several representative algebraic problems
of the type described in section 3. The table in figure 3 describes the problems in



July 24, 2003 15:41 WSPC/Guidelines main

12 T. Culver, J. Keyser, D. Manocha &S. Krishnan

Problem Degree Deg f(u) Coef bits f(u) Max matrix n Matrix entry bits

Curve-line 4 4 32 7 34
intersection 8 8 56 15 59

16 16 54 31 58

Curve-curve 4,4 8 105 15 107
root projection 8,7 24 156 47 160

8,7 28 157 55 161

Surface-surface-surface 2,2,2 8 2820 15 2822
root isolation

Fig. 3. Algebraic and numerical complexity of the geometric problems used to generate the test
matrices.

terms of their algebraic degree and bit complexity, and characterizes the matrix
determinants in terms of their size and bit complexity. In all cases, the curves and
surfaces are derived from inputs with reasonable bit lengths. The algebraic curves
are intersection curves of various ellipsoids and tori. An ellipsoid is defined in terms
of a center point p and three axis vectors {vi}, while a torus is defined in terms
of a vector frame {vi} and two radii r1, r2. The surface-surface-surface problem
intersects three quadric surfaces. The surfaces are line-line bisectors, where each
line is defined by two points p1,p2. For the examples considered here, all of the
quantities p,pi,vi, ri are given as 32-bit integers, and most require fewer than eight
bits.

The SVD algorithm of James Demmel is implemented in the LAPACK library.3

For the modular algorithm, we use Patrick Theobald’s implementation in the LiDIA
library,18 which uses Lagrange’s interpolation algorithm. We have modified the
library to support Newton’s algorithm as well. Sylvain Pion’s implementation of
the Brönnimann et al. algorithm5 is very efficient for matrices with 53-bit entries,
but unfortunately our matrices do not fit this restriction. The multiprecision interval
arithmetic is our implementation in the PRECISE library.23

Figures 4, 5, and 6 show running times of the determinant-sign algorithms on
the matrices generated by our examples. The matrices from the various problems
are pooled, then collated into three categories: well-conditioned, ill-conditioned but
nonsingular, and singular.

One important observation from our experiments is that small determinants are
rare. When we examined the determinant bitlength, we found that it was always at
least 80% of the length predicted by Hadamard’s bound, and usually above 95%.
Newton reconstruction takes about the same amount of time as Lagrange recon-
struction when the determinant bitlength is large. Figures 4 and 5 omit the Newton
algorithm for this reason. As the determinant magnitude grows, the running time
is dominated by Gaussian elimination, and the choice of reconstruction algorithm
matters less.

Singular matrices, on the other hand, do occur, and Newton’s algorithm far out-
performs Lagrange’s algorithm on these matrices. The matrices are ill-conditioned



July 24, 2003 15:41 WSPC/Guidelines main

A Hybrid Approach for Determinant Signs of Moderate-size Matrices 13

by definition, so the SVD filter fails. Yet the SVD does reveal an estimate of the
determinant magnitude which can be used to choose between Newton and Lagrange
reconstruction. Since full Lagrange reconstruction is unnecessary on these matrices,
Lagrange time is absent from figure 6. PRECISE requires significantly more time
on singular matrices—so much more that it goes from an order of magnitude faster
than modular arithmetic to an order of magnitude slower. Singular matrices are
typically a worst-case input for methods based on forward error.

In all cases, the floating-point SVD algorithm takes a fraction of the time of
the modular algorithms. In the data in figures 4 and 5, the ratio of SVD time to
modular time never exceeds 0.28, and is less than 0.06 for larger matrices (n > 10).
In figure 6, the SVD algorithm runs in about one-fourth the time of the Newton
algorithm.

Unfortunately, the SVD filter fails on all matrices above n = 15 in our exper-
iment. One might think that this due to overly pessimistic bounds on the error
in the SVD algorithm, but in fact, the SVD computes an incorrect sign for about
one-third of the ill-conditioned matrices in the experiment. Large matrices are not
necessarily ill-conditioned in general, but all of the large matrices generated by our
test cases are ill-conditioned.

In a separate experiment, we ran the algorithms on matrices with 5 ≤ n ≤ 53
with uniformly-distributed 100-bit random entries (figure 7). Such matrices tend to
be well-conditioned, and the SVD filter succeeded on all of the matrices we tried.
Such a distribution might occur in a high-dimensional convex hull or Delaunay
triangulation algorithm.

Since the subresultant matrices have a sparse structure, we implemented Wiede-
mann’s algorithm.31 The algorithm computes the characteristic polynomial over a
finite field by iteratively multiplying the matrix by random vectors. Since the in-
put matrix is used only for matrix-vector multiplication, the running time depends
on the number of nonzero entries. We found that it ran significantly slower than
the others we examined. This may reflect a flaw in our implementation strategy. It
is also possible that our matrices are not large enough for the better asymptotic
complexity of the sparse algorithm to take over.

The performance of the PRECISE-based algorithm depends on the determinant
magnitude. From our data, PRECISE’s performance appears to be independent of
the condition number.



July 24, 2003 15:41 WSPC/Guidelines main

14 T. Culver, J. Keyser, D. Manocha &S. Krishnan

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

n

se
cs

SVD             
PRECISE         
Modular−Lagrange

Fig. 4. Well-conditioned matrices. Each symbol represents a matrix for which the SVD filter
succeeded. SVD is many times faster than PRECISE. PRECISE is also many times faster than
modular arithmetic, though this is not expressed in the graph. The SVD filter fails on all matrices
above n = 15. The symbols fall into curves, since the matrices are not evenly distributed with
respect to entry bitlength.

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

n

se
cs

SVD             
PRECISE         
Modular−Lagrange

Fig. 5. Ill-conditioned, but nonsingular, matrices. Each symbol represents a matrix for which the
SVD failed, but which turned out to be nonsingular. Since the SVD’s sign is not dependable, we
rely on the next fastest method, which is PRECISE in all cases. The SVD time is included on this
graph to show that not much time is wasted on computing the SVD.
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Fig. 6. Singular matrices. The SVD filter fails. For these matrices, our Newton implementation
ceases after discovering that the determinant is zero modulo a single prime. As a consequence,
modular arithmetic performs very well. PRECISE, on the other hand, performs poorly.
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Fig. 7. Random matrices with uniformly-distributed 100-bit entries. The SVD filter succeeds on

all of the matrices in this test.
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8. Hybrid Methods

The algorithms presented here perform differently on different matrix classes. The
following table indicates the most efficient algorithm for each class. Note that in
the geometric literature, the term “near-singular” usually refers to a matrix with a
small determinant magnitude, while in the numerical computational literature, the
same term refers either to an ill-conditioned matrix or a matrix with a tiny singular
value σn. Both concepts are important, so we avoid the term “near-singular.”

Well-conditioned Ill-conditioned Singular
but nonsingular

Large | det | SVD PRECISE —
Small | det | Modular-Newton

Two modular reconstruction algorithms are not mentioned in the table. La-
grange reconstruction is useful when the tiny probability of failure inherent in
early-exit Newton reconstruction is not tolerable, and the algorithm of Brönnimann
et al. is useful for machine-precision matrices.

We propose a hybrid method, based on combining these algorithms in a
flowchart. The design of the flowchart depends on the efficiency of the implemen-
tation of the various algorithms. Just as importantly, the design depends on the
distribution of the matrices in the application at hand. For example, if singular
matrices are extremely rare in practice, then modular arithmetic could be omitted.
One should also consider whether the unlikely possibility that Newton reconstruc-
tion fails is tolerable. One fact that seems constant is that the SVD is by far the
cheapest algorithm, and even when it fails, it provides enough information to sug-
gest which of the other algorithms may be most efficient.

A flowchart for our application follows. It is based on several observations about
our matrix distribution: singular matrices occur with some regularity, and nonsin-
gular matrices with small determinants do not occur. Further, we are willing to
tolerate the possibility that Newton reconstruction may fail.

(1) Compute the SVD in machine-precision floating point arithmetic, with relative
precision ε.

(2) If the matrix is well-conditioned with respect to ε, stop.
(3) If the matrix is ill-conditioned with respect to ε, but well-conditioned with

respect to a system-supported extended arithmetic with precision ε′, compute
the SVD in this arithmetic and stop.

(4) If the matrix is very ill-conditioned:

(a) Guess whether the matrix is singular by comparing the smallest singular
value to a threshold: is σn < T ? (The value of T affects only efficiency, not
correctness.)

(b) If the matrix appears nonsingular, evaluate the sign using adaptive-precision
arithmetic.
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(c) If the matrix appears singular, compute the determinant in modular arith-
metic with Newton reconstruction. (If the determinant is nonzero modulo
the first prime, the matrix is nonsingular; switch to adaptive precision.)

9. Conclusions

We have presented a hybrid method for exactly computing the sign of the deter-
minant of a moderate-sized integer matrix. The method begins by computing the
singular value decomposition of the matrix. If the matrix is well-conditioned, the
sign is known. Otherwise, information from the SVD is used to choose between a
multiprecision interval algorithm and a modular arithmetic algorithm.

The determinant-sign filter based on the singular value decomposition is effective
for well-conditioned matrices. For such matrices, the SVD reveals the sign at a
fraction of the cost of an exact algorithm.

For ill-conditioned matrices, the SVD filter fails, but the cost of the filter re-
mains small compared to the fallback algorithm. Further, the SVD reveals useful
information about the matrix that can aid in choosing a reconstruction algorithm.
An efficient multiprecision interval arithmetic system is effective on ill-conditioned
but nonsingular matrices. Modular arithmetic is effective at verifying that a matrix
is singular.
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