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ABSTRACT 

This work describes the architecture for developing physics 

of failure models, derived as a function of machine sensor 

data, and integrating with data pertaining to other relevant 

factors like geography, manufacturing, environment, 

customer and inspection information, that are not easily 

modeled using physics principles. The mechanics of the 

system is characterized using surrogate models for stress and 

metal temperature based on results from multiple non-linear 

finite element simulations. A cumulative damage index 

measure has been formulated that quantifies the health of the 

component. To address deficiencies in the simulation results, 

a model tuning framework is designed to improve the 

accuracy of the model. Despite the model tuning, un-

modelled sources of variation can lead to insufficient model 

accuracy. It is required to incorporate these un-modelled 

effects so as to improve the model performance. A novel 

machine learning based model fusion approach has been 

presented that can combine physics model predictions with 

other data sources that are difficult to incorporate in a physics 

framework. This approach has been applied to a gas turbine 

hot section turbine blade failure prediction example. 

1. INTRODUCTION 

The ability to accurately predict the failure of hot section 

components (e.g. turbine blades, nozzles, rotor and 

combustor components) has been a critical problem to solve 

owing to the impending turbine down-time and high down-

stream damage costs in case of an un-intended failure. 

Condition based maintenance (CBM) can be performed on 

components for which accurate prediction of time to failure 

is available to avoid any such events. Hence, there has been 

a shift in the industry from fixed maintenance intervals 

towards CBM. 

Accurate prediction of time to failure can also enable interval 

extension of components that have sufficient life remaining, 

which provides more flexibility to operate the machine. The 

life of such components depends on many factors, such as 

operation conditions of the machine, material properties and 

associated variability, manufacturing variability and 

environment conditions to name a few. 

This work describes a method to fuse information from 

physics based failure models with other relevant features 

using machine learning methods. The physics based models 

mainly account for variability in operational behavior to 

capture the major failure modes. The other relevant features 

are chosen based on understanding of the system and are 

features that impact the failure of the component but are not 

easily accounted through physics models.  

2. FAILURE ESTIMATION 

In the past few decades, there have been many efforts to 

estimate the time to failure, or remaining useful life (RUL) in 

the industry and academia. Traditional approaches to 

estimating failure or reliability have been based on recording 

failure events on a population of identical units of machines. 

Then parametric approaches like Weibull, log-Normal, 

Poisson etc. have been used to model part or system 

reliability. Reliability studies have been extensively 

published in literature in (Kapur & Lamberson, 1977),            

(Keller, Perera, & Kamath, 1982), (Crowder, Kimber, 

Sweeting, & Smith, 1994), (Elsayed, 1996), (Groer, 2000), 

(Lawless, 2002) and (Schömig & Rose, 2003). In summary, 

these approaches use historical time to failure data to estimate 

the failure characteristics of a population. Though very useful 
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in maintenance scheduling for populations of machines, these 

models may be of limited use in CBM, as they provide very 

little information about an individual machine’s condition. 

Towards this, many prognostic approaches have been 

developed that try to estimate the life of components in 

individual machines. These approaches can be broadly 

categorized into three types, which are discussed in the 

following sections, followed by a brief description of the 

current approach. 

2.1. Physics Based Approaches 

One of the major approaches to estimate the RUL of 

components is through modeling their physics of failure 

(PoF). This method is heavily dependent on a deep 

understanding and modeling of the system’s fundamental 

process which could be mechanical, electrical, thermal or 

chemical. These physics models are used to make prediction 

of how long it will take for the failure to progress to a 

predefined state, for example, a crack to grow to a certain 

critical size. The methods generally work on obtaining the 

usage spectrum of the machine including speed, temperature, 

pressure and power data. This information is then processed 

to obtain local loading information like the loads, stresses, 

temperatures and strains that can be obtained, based on either 

phenomenological models or first principle models. Then a 

damage index can then be computed based on the history of 

loads and material property information present for the 

component in question. 

In the rotating machines space, such methods have been 

applied on various components (Heng, Zhang, Tan, & 

Mathew, 2009). A methodology to predict bearing defect size 

using fatigue crack propagation models, incorporating 

operation information, was developed in (Li, et al., 1999). It 

also presented the capability of the model through 

comparisons with experimental results. In (Oppenheimer & 

Loparo, 2002), an approach using Forman law for crack 

growth was applied to model rotor shaft crack growth.  

A spur gear fatigue crack prognostic methodology was 

devised in (Li & Lee, 2005), which combined a gear dynamic 

simulator for dynamic load estimation, a finite element-based 

simulator for calculating stress intensity factor and a fast 

algorithm based on a Paris crack growth model for crack 

propagation. The stress intensity factors were generated using 

the finite element simulations and pre-stored in a lookup 

table, enabling on-line application of the model.  

In a two series work (Koul, Zhou, Fuleki, Gauthier, & W., 

2005), (Koul, Bhanot, Tiku, & Junkin, 2007), a methodology 

for lifing turbine engine components was presented. The 

models incorporated engine operation data with detailed 

engine modeling, finite element model and a microstructural 

damage model to obtain high accuracy predictions of life to 

creep crack initiation. 

The advantage of these methods is that it does not require data 

sets associated with failure data to make prediction models 

feasible. However, this method does require understanding of 

the operating profile of the machine to relate operational 

conditions to failure. The disadvantage of this method is that 

physics models need to be developed for individual failure 

modes, making it time consuming. In addition, it is difficult 

to capture certain phenomena that are not understood well 

and hence difficult to model, but could be contributing to 

failure. 

2.2. Data Based Approaches 

Data-driven approaches, based on machine learning methods 

are increasingly being applied for lifing and fault prognostics. 

These approaches can be seen as a set of black-box models 

that learn directly from sensor data (eg: vibration, 

temperature, pressure, current etc.) collected from the 

machine. These models are built based on historical data and 

use input sensor data directly to produce the required output. 

In literature, data-based approaches using machine learning 

methods and statistical techniques have been widely used to 

predict component degradation (Heng, Zhang, Tan, & 

Mathew, 2009), (Si, Wang, Hu, & Zhou, 2011), (Sikorska, 

M.Hodkiewicz, & Ma, 2011) and  (Javed, 2014). 

Machine learning techniques attempt to learn from the 

available data, often capable of capturing complex 

relationships between the input parameters and desired 

output that can be difficult to describe using physics. 

Depending on the problem and available data, supervised or 

un-supervised learning methods can be applied. Supervised 

learning is applied in cases where the input and 

corresponding output are known. Unsupervised learning is 

applied to unlabeled data, i.e., learning data are only 

composed of input and desired output is unknown. 

A large number of machine learning algorithms are being 

developed for prognostics. Artificial Neural Network (ANN) 

is currently the most common method used to train the data-

driven models. An ANN consists of a layer of input nodes, 

one or more layers of hidden nodes, one layer of output nodes 

and connecting weights. The network learns the unknown 

function by optimizing its weights with multiple observations 

of inputs and outputs. Numerous studies across various 

disciplines have demonstrated the merits of ANNs (Tickle, 

Andrews, Golea, & Diederich, 1998), (Tse & Atherton, 

1999),  (Setiono, Leow, & Thong, 2000),  (Bostwichk & 

Burke, 2001) and (Joshi & Reeves, 2006).  

Other machine learning approaches like Bayesian methods, 

Instance based learning methods and particle filtering have 

been applied in (Sikorska, M.Hodkiewicz, & Ma, 2011), 

(Baraldi, Mangili, & Zio, 2012), (Medjaher, Tobon-Mejia, & 

Zerhouni, 2012), (Ramasso, Placet, Gouriveau, Boubakar, & 

Zerhouni, 2012) and (Saxena, et al., 2012). 
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The most common criticism of the data based models is that 

they require a lot failure data than the physics based 

approach. In practice, it is not feasible to obtain such data in 

large quantities as machines may not always run till they fail. 

Also, such models can be created only after seeing multiple 

failures and cannot help in identifying critical components 

that could drive maintenance schedules and cost. In addition, 

it is difficult to incorporate variability in material properties 

and operation during modelling which in turn causes errors 

in estimates. 

2.3. Hybrid Approach 

A hybrid approach is a combination of physics based and 

data-driven approaches, that takes the advantages of both 

approaches. The main idea is to achieve finely tuned 

prediction models that have better capability to manage 

uncertainty, and can result in more accurate RUL estimates. 

There have been two categories of hybrid approaches 

practiced in the past: series approach and parallel approach 

(Javed, 2014).  

A series approach, shown in Figure 1, combines a physics 

based model which captures the failure mode or process 

being modeled through an understanding of the system and a 

data driven approach that helps estimate the process 

parameters that are uncertain, using failure data from field. 

The data model can be a simple parameter optimization 

method using classical optimization techniques when 

historical data is available. In cases where the degradation 

may not be observed directly, on-line parameter estimation 

techniques like Kalman filter, Particle filter and their variants 

can be used (Sikorska, M.Hodkiewicz, & Ma, 2011). These 

methods update the tunable parameters when new data is 

collected. The fundamental idea behind using this approach 

in PHM is that the predicted feature is not necessarily a direct 

outcome of the tuned parameters but could be a down-stream 

parameter. For example, in a system, the cooling 

effectiveness for metal temperature calculation could be 

tuned using the crack lengths observed from a borescope 

inspection.  

 

 

Figure 1.  Series Approach in Hybrid Modeling 

On the other hand, in a parallel approach, the output from the 

physics model is combined with the data from other sources 

using data based methods. This is schematically shown in 

Figure 2. In this approach, the machine learning module can 

be trained to predict the errors in prediction that are not 

explained by the physics model, using other relevant features 

that cannot be modeled using the physics based model, but 

impact the failure mode. These other parameters and 

associated features can be thought to be estimates that 

account for un-modeled effects in the physics model (Javed, 

2014).  

Such a prediction could potentially capture the failure better 

than either of the models independently. Some examples of 

such approaches have been presented in (Hansen, Hall, & 

Kurtz, 1995), (Cheng & Pecht, 2009) and (Sutharssan, 

Stoyanov, Bailey, & Rosunally, 2012)     . 

 

 

Figure 2. Parallel Approach in Hybrid Modeling 

2.4. Current Work 

The purpose of this work is to communicate a fusion 

approach which combines both the series and parallel 

approaches in hybrid modeling to achieve better accuracy 

models, through application on a turbine hot section blade. 

The life model, built on the physical understanding of 

damage accumulation derived from intensive thermo-

mechanical analyses is described in section 3. A method for 

subsequent model updating to match actual field observations 

(e.g. Inspection data) is described in section 4. Finally, 

different methods to fuse the information from the calibrated 

model with information from other sources are explained in 

section 5. Comparisons of the methods show the importance 

of each method. The authors believe that this understanding/ 

approach could be later be leveraged to address similar such 

failure modes on other mechanical components.     
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3. PHYSICS-BASED DAMAGE ACCUMULATION MODEL 

The core of the proposed fusion framework is a physics based 

damage accumulation model that translates turbine operation 

data to the probability of failure of a given component. Thus, 

differences in accumulated damage due to differences in 

operation pattern in different gas turbines can be accounted 

for in this step. The ensuing section summarizes the key 

technical steps involved in the development of such a model 

to predict probability of failure in gas turbine components. 

3.1. Technical Approach 

An outline of the key steps followed is presented in Figure 3. 

The first step in this approach is to use historical data from 

sensors to determine the nature of operation of the gas 

turbine. Typically, this would first comprise aggregating time 

series information from key sensors (like temperature, 

pressure, turbine-speed and output power) followed by 

standard data pre-processing algorithms to eliminate 

erroneous data arising due to sensor or data-collection faults.  

In a physics based modeling framework, the sensor 

information gets translated into mechanical loads that result 

in progression of damage which can be estimated through 

intensive computational (CFD, FEA) simulations. In 

practice, it is impractical to perform these simulations over 

the entire operational history of each machine for which 

damage of components needs to be evaluated.  

To this end, a ‘design-of-experiments’ (DOE) is constructed 

using the key sensor parameters that govern gas-turbine 

operation. A statistical analysis of the ranges of these key 

parameters, using the previously aggregated data, helps in 

determining the ranges of these parameters that encompasses 

the machine operation envelope. Each point in the 

constructed DOE therefore corresponds to a different 

operating condition at which the state of the critical 

component must be evaluated. 

Thereafter a mechanistic approach is used to determine the 

‘state’ of the critical components under varying operating 

conditions in the DOE space. ‘State’ here refers to the 

physical condition of the component and in particular implies 

parameters like localized temperature, stress, strain, etc. that 

influence the concerned failure mode. For example, for a 

creep-driven failure mode the localized metal temperature 

and Von-Mises’ stress need to be determined as a function of 

the gas turbine operation. To achieve this, thermodynamics 

equations are used to calculate bulk gas temperatures and 

pressures around the critical components to be analyzed. This 

helps in determining the boundary conditions for 

computational fluid dynamics (CFD) and finite element (FE) 

simulations that need to be performed next. The CFD 

simulations help in determining the spatial variation of flow 

velocities, pressures and the heat transfer coefficients across 

the critical components. These results are then used as 

boundary conditions for FE simulations to determine the 

thermo-mechanical state of the critical component. 

The results of the DOE from the FE model simulations are 

used to construct a reduced order model (ROM) or surrogate 

model that can determine the key state variables as a function 

of the different operating conditions. For example, if the 

target failure mode of the key component is low-cycle fatigue 

(LCF), then reduced-order models need to be constructed to 

estimate the temperature and stress at the key locations of the 

component. This is typically achieved via meta-modelling 

techniques, such as regression or artificial neural networks 

(ANN), in which the inputs are the different operational 

parameters (at the different DOE points) and the outputs are 

the concerned states (e.g. stresses and temperatures) 

determined using the FE simulations. Depending on the 

complexity of the problem, the original DOE might have to 

be refined at this point in order to obtain a meta-model that is 

adequately accurate at the different operating condition. 

Thereafter, the machine specific sensor data is provided as 

inputs to these surrogate models to obtain a time-series 

representation of the state at the critical locations in the 

components of interest. For example, if the failure mode of 

interest is LCF, then the stress and temperature time-histories 

need to be analyzed using rain-flow counting methods to 

compute the stress and temperature ranges in each cycle. 

 
Figure 3: Framework for developing a physics-based damage accumulation model 
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Finally, this time series then feeds into a damage 

accumulation rule (e.g. in this case Miner’s rule (Zaretsky, 

1998)) specific to the failure mode of concern. Thus, the 

sensor data time series is translated into a time series of the 

evolution of damage at the critical location. 

The damage accumulation law typically comprises material 

parameter coefficients that are determined through controlled 

experiments on coupons. For example, for determining the 

crack growth law, steady-state crack propagation 

experiments are performed on coupons, whose results are 

then used to determine Paris’ law coefficients (Paris & 

Erdogan, 1963). The inherent variability in material property 

(that results from microscopic variations in the 

microstructure of the components) can thus be captured by 

treating material parameters as random variables and 

estimating their distribution from the results of these 

experiments. For parameters estimated via regression, this 

typically implies computing both the mean and standard error 

of the parameter estimates. The effect of variability in 

material properties on damage can therefore be accounted for 

by using the distribution of material parameters to perform 

Monte Carlo simulations for damage evolution. This results 

in an ensemble of damage evolution curves, each 

corresponding to a realization of the material property 

parameters, that can then be used to obtain a distribution of 

damage at every instant of time (as shown in Figure 3). For 

gas turbine components that have multiple identical 

components subject to the same operating conditions (such as 

multiple blades at a given stage), this helps in estimating the 

variability one would see in the degree of damage across the 

different blades in the same stage in a given machine.  

Finally, the estimated damage is compared against a damage 

threshold (at which we expect to see a failure) to determine if 

the component would fail in the given failure mode. For more 

physical damage parameters (such as crack length) the 

threshold can be determined based on allowable engineering 

limits (such as maximum repairable crack-length). In other 

cases, the threshold can be determined by constructing a 

single variable (i.e. damage) classifier using historical failure 

data. In this case the damage threshold can be varied to obtain 

a desired true-positive and false-positive rate. The quality of 

the failure prediction model can thus be estimated by 

constructing the receiver operating characteristic (ROC) 

curve and computing the area under the curve (AUC). 

3.2. Example: Predicting Creep-driven Cracking of 

Turbine Blades 

The approach described in section 3.1 was used to develop a 

model for predicting failure of gas turbine blades in GE gas 

turbines. The primary failure mode in this case was creep-

driven cracking near the tip of the blade. Historical turbine 

repair data was used to identify 17 turbines that had reported 

one or more cracked blades and 21 turbines in which no crack 

was reported. 

In order to create the DOE for describing different operating 

conditions, historical sensor data was collected for a large 

number of turbines in the same fleet. Some key sensor 

parameters that were analyzed were output power ( 𝑃) , 

ambient air temperature (𝑇𝑎𝑚𝑏), combustor exit temperature 

(𝑇𝑐), compressor discharge conditions(𝐶𝐷𝐶), mass flow rate 

of air (�̇�), and exhaust gas temperatures(𝑇𝑒𝑥ℎ). A statistical 

analysis of these parameters was performed to determine the 

primary independent parameters and their ranges. This was 

then used to construct the operation-space DOE. 

Next, gas turbine performance models were used to 

determine the bulk pressure and temperatures close to the 

region of interest at different operating conditions. These 

results were used to determine boundary conditions for CFD 

simulations that were performed at each DOE point. The 

outputs of these simulations were used to determine the heat 

transfer coefficients and thermal boundary conditions for 

subsequent thermo-mechanical FE simulations. 

Since the dominant failure mode in this case was creep, non-

linear steady state FE runs were performed at each DOE 

condition to determine the metal temperature and the stress 

relaxation curve at the critical location (near the tip of the 

blade). At first the steady state heat transfer (FE) problem was 

solved for each DOE point with its corresponding thermal 

boundary condition. The results of these simulations 

provided the spatial distribution of metal temperature in the 

gas turbine blade at different DOE point. This result was then 

used to construct a surrogate model that relate the metal 

temperature at the critical location, 𝑇𝑚 , to the operating 

conditions of the turbine (as the different DOE points 

correspond to different operating conditions) as follows: 

𝑇𝑚 =  𝑓𝑇(𝑃, 𝑇𝑎𝑚𝑏 , 𝐶𝐷𝐶, 𝑇𝑐 , 𝑇𝑒𝑥ℎ , �̇�) (1) 

 

Next steady-state non-linear structural FE simulations were 

performed at each DOE point using the corresponding metal 

temperature distributions, gas pressure loads and centrifugal 

forces. The results of the FE simulations were used to build a 

surrogate model for the von-Mises stress, S, as a function of 

operation, 𝑇𝑚  and time, 𝑡, (to account for the stress relaxation 

due to creep strain accumulation) as follows: 

𝑆 =  𝑓𝑆(𝑃, 𝑇𝑎𝑚𝑏 , 𝐶𝐷𝐶, 𝑇𝑐 , 𝑇𝑒𝑥ℎ , �̇�, 𝑇𝑚, 𝑡) (2) 

 

Thereafter, sensor data collected for all the 38 gas turbine 

units were used in combination with Equations 1 and 2 to 

obtain a time-history of stress and temperature at the critical 

location of the gas turbine blade for each unit. 

Next, the metal temperature and stress histories were used to 

determine intervals of operations over which the metal 

temperature and stress remains fairly constant. For each such 

interval, 𝑖 , with metal temperature 𝑇𝑚
𝑖  and stress 𝑆𝑖 , creep 

rupture curves were used to determine the expected time-to-

rupture, 𝑡𝑟
𝑖 , using equation 2. 
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𝑡𝑟
𝑖 =  𝑓𝑡(𝑇𝑚

𝑖 , 𝑆𝑖), (2) 

 

where, 𝑓𝑡 represents empirical creep rupture curves obtained 

from experiments. The expected time to rupture, 𝑡𝑟 
𝑖 , is then 

used in a linear damage accumulation framework to estimate 

the creep damage in the 𝑖 -th interval. Specifically, 

Robinson’s rule (Suresh, 1998) and (Spera, 1969) is used to 

calculate damage at the 𝑖-th time- interval, 𝐷𝑖  , as: 

𝐷𝑖 =  
Δ𝑡𝑖

𝑡𝑟
𝑖

  
(3) 

 

where, 𝑡𝑟
𝑖  is the time-to-rupture at the 𝑖-th time- interval and 

Δ𝑡𝑖 is the time spent at the 𝑖-th time-interval. Thus, the total 

damage accumulated over 𝑇  hours of operation of the 

turbine, 𝐷𝑇 , was computed as: 

𝐷𝑇 =  ∑ 𝐷𝑖

𝑁

𝑖=1

   
(4) 

where, 𝑁 is the total no of constant stress-temperature time 

intervals identified over 𝑇  hours of turbine operation. As 

described in the previous section, the variability in the 

material curves was used to compute an ensemble of such 

damage evolution curves for each turbine and thus a damage 

distribution at each time instant was constructed. The mean 

value for the damage distribution at the end of the operation 

history for each machine was computed. This has been 

considered as a damage severity index to distinguish the 

failure progression across machines. 

It is to be noted here that the critical damage threshold, that 

defines failure is not essentially 1. This is primarily because 

the nature of the failure observed in the field (micro-cracks) 

are different from those observed in laboratory experiments 

conducted to obtain the creep rupture curves that are used to 

calculate damage at each time step. Furthermore, the 

variability in material life curves makes our damage estimate 

probabilistic and it is not necessary that the critical damage 

threshold for the mean damage should be set to 1. Instead, we 

develop a single-variable logistic regression classifier model 

to decide the appropriate damage threshold. For this, 22 units 

(11 failed and 11 healthy) were selected to train the classifier 

model. The critical damage threshold was varied to construct 

an ROC curve as shown in Figure 4. This helps in 

understanding the predictive capability of the model and also 

to select a classifier threshold that would maximize the 

probability of detection (POD) while minimizing the false 

positive rate (FPR).  

As evident from Figure 4, the predictive capability of a model 

based on the physics based damage estimate is not very high 

– the AUC for this ROC curve is only 0.578. This is also 

evident from the boxplots of damage shown in Figure 5, 

which show a significant overlap in the distribution of 

damage values from both failed and healthy units. 

The ROC curve was then used to determine an optimal 

damage threshold by choosing the knee-point of the ROC 

curve.  The damage threshold chosen was then used to predict 

failure in the remaining 16 units. The confusion matrix 

corresponding to this prediction, as presented in Table 1, 

shows that the probability of detection (POD) or True 

Positive Rate (TPR) of this model is only 33.33%. 

  

Figure 4: ROC curve - Pure physics model 

 

Figure 5: Damage box plots - pure physics model 

 

  Predicted 

Healthy Fail 

Observed 
Healthy 10 0 

Fail 4 2 

TPR = 33.33%, FPR = 0%, Accuracy = 75% 

Table 1. Confusion matrix - Pure physics model 

The accuracy of such physics based damage accumulation 

models are governed primarily by the modelling assumptions 

in the thermo-mechanical (CFD and FE) simulations 

performed to construct the model (i.e. modelling 

inaccuracies) and by the extent to which other un-modelled 

effects play a role in the failure. The first can be accounted 

for by calibrating the model using field failure information 

(see Figure 6). Typically, this update is performed on the 
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parameters belonging to the portion of the model that has 

most modelling uncertainties.  

However, the process of model tuning can often be met with 

challenges especially when the actual damage mechanism 

has not been captured entirely using the physics-based 

framework. For example, various hot gas path components in 

a gas turbine are subjected to damage with varying level of 

contributions from low cycle fatigue, high cycle fatigue, 

creep, oxidation, erosion, fouling, hot corrosion etc. In some 

cases, the actual degradation mechanism for a specific failure 

mode or the interaction among failure modes is often not well 

understood especially for a multi-physics problem and hence, 

it gets challenging to model the system behavior. In addition, 

there could be effects from other parameters like 

manufacturing vendor variation, customer operating 

characteristics (water wash frequency, mission profiles, 

machine trips etc.), geographical effects, atmospheric 

parameters (dust quality, air salinity levels, humidity, etc.) 

that could alter the progression of damage. Most times, the 

quantification of the effect of each of these variables on the 

overall part damage becomes difficult to model.  

 

 

 

Figure 6: Model calibration 

 

To counter these challenges, a model fusion strategy has been 

adopted (see Figure 7) that involves combining a damage 

severity index from a physics model along with other 

unaccounted variables within a machine learning modelling 

framework. The first step in this process is to typically 

formulate a physics-based model based on the dominant 

failure modes identified through historical engineering 

knowledge or fractographic studies. The damage severity 

index for the dominant failure modes could then be combined 

with other unaccounted features through an embedded 

feature selection algorithm so as to down select the vital 

features and thereby come up with a final model with an 

improved performance. The advantages of this approach are: 

(1) Quantification of effect of dominant failure mode on 

component damage (2) Ability to handle known interactions 

of operational parameters within a physics framework (3) 

Ability to translate temporal information in operational 

parameters into a cumulative damage index (4) Fusion with 

additional features within a machine learning framework 

helps assess the effect of other additional variables that could 

enhance a physics model prediction. Application of these two 

steps to the example problem in section 3.2 are presented in 

the subsequent sections. 

 

 

 

Figure 7: Data fusion framework 

4. MODEL CALIBRATION 

For the example problem mentioned in section 3.2, the 

parameters in the metal temperature prediction model were 

updated using field failure information. This was done since 

the uncertainties in the flow-thermal models were higher than 

those in the structural model. For this the field data set was 

first partitioned into a training (22 machines) and test (16 

machines) data set. Thereafter SQP (Sequential Quadratic 

programming) optimization routine in MATLAB was used to 

choose optimal parameters in the metal temperature 

estimation model that would ensure an increase in prediction 

accuracy. Finally, the updated model was tested on the test 

data-set. The box-plots in Figure 8 show a better separation 

between the damage distributions for the failed and non-

failed turbines. This improvement is also reflected in the 

ROC curve (Figure 9) which now has an AUC of 0.892. 

Finally, this also results in a significant improvement in the 

prediction accuracy of the test set (Table 2) with a POD of 

66.67%. 
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Figure 8: Damage box plots: calibrated model 

 

 

Figure 9: ROC curve for calibrated model 

 

  Predicted 

Healthy Fail 

Observed 
Healthy 6 4 

Fail 2 4 

TPR = 66.7%, FPR = 40%, Accuracy = 62.5% 

Table 2. Confusion matrix - Calibrated physics model 

5. MODEL FUSION 

The example illustrated in Example 3.2 has been used for 

demonstrating the proposed model fusion approach. The 

calibrated damage values computed in Section 4 for the 

dataset of 38 machines were used in addition to a list of 

additional features identified based on engineering 

knowledge. These would include parameters like: (1) 

Machine operating behavior like Turbine starts count, 

Turbine trip count (2) Manufacturing vendor – Fraction of 

buckets manufactured by Vendor A, Vendor B, Vendor C (3) 

Regional environmental parameters – Dust density, Sea Salt 

density, Atmospheric chemical constituents’ densities 

(ACC1, ACC2), Black carbon mass density and Organic 

carbon mass density. Details of the features used for the 

analysis are illustrated in Table 3. 

No. Features 

1 Damage severity index 

2 Machine starts 

3 Machine trips 

4 Manufacturing vendor type (A/B/C) 

5 Dust Column Mass Density (PM 2.5) 

6 Dust Column Mass Density 

7 Sea Salt Column Mass Density (PM 2.5) 

8 Sea Salt Column Mass Density 

9 ACC1 

10 ACC2 

11 Organic Carbon Column Mass Density 

12 Black Carbon Column Mass Density 

Table 3. Machine learning model features 

Shrinkage regression methods have been very commonly 

used in literature (Hastie, Friedman, & Tibishirani, 2001) to 

identify vital features during a model selection process. Some 

of the very common regularization methods used include 

Least absolute shrinkage and selection operator (LASSO), 

Ridge, Elastic net, Orthogonal matching pursuit and LARS.  

In this analysis, two of the above mentioned regularization 

methods have been applied on a logistic regression 

framework so as to arrive at vital features for failure 

prediction. In addition, a tree-based classification method has 

also been demonstrated. 

To avoid model over fitting, the dataset of 38 machines have 

been split as earlier into training data (22 datasets) for 

building the model and testing data (16 datasets) for reporting 

model performance. Cross-validation process has been 

adopted during model building to identify the optimal penalty 

parameters for each shrinkage regression method. ROC curve 

developed on the training data has been used to identify 

optimal thresholds and this has been applied during 

prediction on the test datasets. 

5.1. Ridge Classifier 

A Ridge classifier estimates model coefficients while 

imposing an L2 norm penalty on the size of the coefficients 

(Hastie, Friedman, & Tibishirani, 2001). Addition of the 

penalty parameter results in shrinking the value of the model 

coefficients while considering all predictor variables. The 

extent of shrinkage is controlled primarily by the penalty 

parameter and has been arrived at an optimal value using 

cross-validation. The ridge classifier was built on the training 

data and the ROC curve was generated as in Figure 10. The 

AUC is 0.876 indicating a marked improvement from the 

calibrated model. The trained ridge classifier was then 

applied on the test dataset (16 machines) and the model 

metrics are shown in Table 4. This model gives a TPR: 

83.33%, FPR: 20% and Accuracy: 81.25%. Although the 

accuracy of the ridge classifier is high, the number of 

predictor variables is also very high. This is because the ridge 

classifier doesn’t drive the coefficients of the insignificant 



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

9 

features entirely to zero and thereby resulting in their 

removal. 

 

Figure 10: Ridge classifier ROC curve 

 

  Predicted 

Healthy Fail 

Observed 
Healthy 8 2 

Fail 1 5 

TPR = 83.3%, FPR = 20%, Accuracy = 81.25% 

Table 4. Confusion matrix - Ridge classifier 

 

5.2. LASSO Classifier 

A LASSO classifier imposes an L1 norm penalty on the size 

of the coefficients during model building (Hastie, Friedman, 

& Tibishirani, 2001). Unlike the ridge classifier, 

incorporating the L1 penalty helps shrink the estimate of the 

model coefficients to zero. In the analysis, in addition to the 

Damage index, environment variables turned up as 

significant. This indicates that environmental parameters also 

impact the probability of failure. As it is difficult to include 

failure due to environment parameters into physics models 

today, this data fusion method is a good way to incorporate 

these features. The ROC curve over the training data is shown 

in Figure 11 and the AUC is 0.926. Table 5 shows the test 

data metrics for the trained LASSO classifier: TPR : 83.33%, 

FPR : 40%, Accuracy : 81.25%.  

 

 

Figure 11: LASSO classifier - ROC curve 

 

  Predicted 

Healthy Fail 

Observed 
Healthy 6 4 

Fail 1 5 

TPR = 83.3%, FPR = 40%, Accuracy := 68.75% 

Table 5. Confusion matrix - LASSO classifier 

5.3. Classification and Regression Trees (CART) 

Tree based methods are very simple methods and are great 

for interpreting the results, but because of their implicit 

simplicity, they are generally less accurate than advanced 

supervised learning techniques (Hastie, Friedman, & 

Tibishirani, 2001). In the case of classification problems, like 

the problem at hand, classification trees can be used. Tree 

based methods involve segmenting the predictor space into a 

number of simple regions. To make predictions for a given 

set of independent variables, its region is determined and the 

output is given by the majority class in that region. Figure 12 

shows the CART model developed on the training data. The 

test data metrics for the CART model are shown in Table 6. 

This model gives TPR : 66.67%, FPR : 20%, Accuracy : 75% 

 

Figure 12: CART Classifier Tree Structure 
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  Predicted 

Healthy Fail 

Observed 
Healthy 8 2 

Fail 2 4 

TPR = 66.67%, FPR = 20%, Accuracy = 75% 

Table 6. Confusion matrix - CART classifier 

5.4. Interpretation of Model Fusion 

In traditional life assessment methods, a constant damage 

threshold is identified based on prior understanding of the 

failure mode and prior laboratory coupon level testing. When 

working with real-life problems, the application of the same 

damage threshold universally for different machines gets 

challenging, as the working environment for the component 

need not remain identical to each other as well as to that in a 

laboratory setup. For example, a creep failure mode in a 

corrosive environment can experience a more pronounced 

damage progression behavior. Moreover, the physics model 

may not incorporate the effect of other critical environmental 

parameters that are to account for this, an approach towards 

identifying an optimal threshold is imperative. 

 

 

 

(a)                                            (b) 

Figure 13. Cumulative damage models for two machines (a) 

and (b) with variable damage thresholds. A normalized time 

scale has been used for plotting purposes. 

 

The proposed model fusion approach attempts to address this 

by evaluating unit-specific thresholds by taking into account 

the effect of regional environmental parameters. To study this 

behavior, the ridge classifier model developed in Section 5.1 

has been used as an example on two machines that had 

experienced component failure. The cumulative damage 

progression over time were computed for both the units based 

on their operational parameter histories. The time histories of 

the cumulative damage values were then applied along with 

other environmental parameters as inputs into the Ridge 

classifier. This resulted in a time series of classifier 

predictions. Figure 13 illustrates the time progressed 

cumulative damage values for the two machines. The time 

instances where the classifier predicts healthy are plotted in 

green color and the faulty instances are plotted in red. The 

damage value at the time when the machine transitions from 

healthy towards faulty is thus the threshold damage value for 

that machine. It could be observed in Figure 13 that machine 

(b) has a much lesser damage threshold than machine (a).  

This is due to the effect of environmental parameters like 

dust, atmospheric constituents, sea-salt and manufacturing 

parameters that also contribute to this failure mode but are 

not captured in the physics model. 

6. CONCLUSIONS 

In this work, a novel machine learning based model fusion 

approach has been demonstrated that combines physics 

model predictions with other data sources that are difficult to 

incorporate in a physics framework. A detailed physics model 

is constructed for this work, which lays the foundation of the 

model. In many other works in literature (Heng, Zhang, Tan, 

& Mathew, 2009), a direct data approach is chosen (where 

temporal parameters are condensed into statistical features to 

build models) instead of a physics model. Even though the 

physics model is cumbersome to construct, the authors 

believe it offers certain key advantages. Firstly, it 

consolidates many operation parameters into a damage 

feature, which is a strong feature (as shown by the model 

performance). This helps in feature reduction, while 

maintaining an understanding of the physics. In addition, it 

gives insight into the impact of parameters, which can be 

difficult to interpret or sometimes even be not understood in 

a data-based model. It offers the ability to translate temporal 

sensor data into a cumulative damage index that evolves over 

time and can therefore be used to predict RUL. But, since all 

parameters impacting the damage are not necessarily 

captured in a physics model, the accuracies may not be 

adequate. This necessitates development of fusion 

methodology which is presented in this work. 

The methodology was applied to a gas turbine blade failure 

example. A creep-based damage accumulation model was 

used to compute the damage indices for 38 machines based 

on operation. The physics model was calibrated using field 

failure data to improve its accuracy. Further, other un-

modelled effects were incorporated multiple machine 

learning models.  

A comparison of the ROC curves generated for each model 

is shown in Figure 14. It can be observed that the predictive 

capability of the model improves with model calibration and 

data fusion. The test set prediction results are summarized in 

Table 7. The Ridge model with 14 input features shows up as 

the model with the best test set performance among the 

models. LASSO model on the other hand is the simplest 

model with highest failure detection capability. 
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Figure 14. ROC curves comparison between models 

 

Model No. of 

features 

TPR FPR 

Pure physics 1 33.33% 0% 

Calibrated physics 1 66.67% 40% 

Ridge + physics 14 83.33% 20% 

LASSO + physics 5 83.33% 40% 

CART + physics 3 66.67% 20% 

Table 7. Comparison of model metrics on test set 

Overall, these approaches help in identifying important un-

modelled effects and augment a physics model performance. 

These features can also be identified for further detailed study 

that can help in building an enriched physics model. 
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