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Abstract—In this paper we present a single-microphone speech
enhancement algorithm. A hybrid approach is proposed merging
the generative Mixture of Gaussians (MoG) model and the
discriminative neural network (NN). The proposed algorithm
is executed in two phases, the training phase, which does not
recur, and the test phase. First, the noise-free speech power
spectral density (PSD) is modeled as a MoG, representing the
phoneme based diversity in the speech signal. An NN is then
trained with phoneme labeled database for phoneme classification
with mel-frequency cepstral coefficients (MFCC) as the input
features. Given the phoneme classification results, an speech
presence probability (SPP) is obtained using both the generative
and discriminative models. Soft spectral subtraction is then
executed while simultaneously, the noise estimation is updated.
The discriminative NN maintain the continuity of the speech
and the generative phoneme-based MoG preserves the speech
spectral structure. Extensive experimental study using real speech
and noise signals is provided. We also compare the proposed
algorithm with alternative speech enhancement algorithms. We
show that we obtain a significant improvement over previous
methods in terms of both speech quality measures and speech
recognition results.

Index Terms—speech enhancement, MixMax model, Neural-
network, phoneme classification

I. INTRODUCTION

ENHANCING noisy speech received by a single mi-

crophone is a widely-explored problem. A plethora of

approaches can be found in the literature [1]. Although many

current devices are equipped with multiple microphones, there

are still many applications for which only a single microphone

is available.

One such application involves automatic speech recognition

(ASR) systems. It is well-known that such systems are sen-

sitive to mismatch between the train and test environments.

Enhancing the noisy speech signal prior to the application of

the ASR system, might alleviate the performance degradation

caused by the environment. Nonstationary noise environments

are usually more challenging, since the speech enhancement

algorithm should adapt to the changing statistics of the additive

noise.

The celebrated short-time spectral amplitude estimator

(STSA) and log spectral amplitude estimator (LSAE) [2],

[3] are widely-used model-based algorithms. The optimally
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modified log spectral amplitude (OMLSA) estimator and in

particular the improved minima controlled recursive averaging

(IMCRA) noise estimator are specifically tailored to nonsta-

tionary noise environments [4], [5]. However, fast changes in

noise statistics often yields the musical noise phenomenon.

Recently, NN techniques gained a lot of popularity due to

theoretical and algorithmic progress, and the availability of

more data and more processing power. Unlike past learning

algorithms for NN, it is now possible to infer the parameters

of the NN with many layers, and hence the name deep learn-

ing. Deep learning methods were mainly applied to speech

recognition and lately, for speech enhancement as well. NN

and a deep auto-encoder (DAE) were used as a nonlinear

filters in [6] and [7], respectively. The networks are trained on

stereo (noisy and clean) audio features, to infer the complex

mapping from noisy to clean speech. An experimental study

with this approach is shown in [8]. The NN reduces the noise

level significantly, yet, the enhanced signals still suffer from

noticeable speech distortion.

Other methods attempt to train an NN to find a mask, which

classifies the time-frequency bins into speech/noise classes.

Given the binary mask, the noisy bins are decreased. In [9] for

instance, a support vector machine (SVM) is used to estimate

the ideal binary mask (IBM) for speech separation from non-

speech background interference. An NN is trained to find the

input features for the SVM. A simpler approach is to train

the NN itself to find the IBM. Different targets for the NN are

presented in [10]. The IBM has shown advantageous in terms

of intelligibility [11]. Yet, the binary mask is known to intro-

duce artifacts such as musical noises. For intelligibility tasks,

this might not be problematic, though for speech enhancement

the IBM is not sufficient. To circumvent this phenomenon,

in [12] the NN is trained to find the ideal ratio mask (IRM),

which is a soft mask. A comparison between the IBM and

the IRM is presented in [13]. The soft mask is better than the

binary mask in terms of speech quality. These approaches do

not use models nor assumptions for their speech enhancement.

However, they are trained with specific noise types, resulting in

poor enhancement in an untrained noise environment. To cope

with this problem, in [14] the NN was trained with more than

100 different types of noise. Nevertheless, in real-life where

the number of noise types are not limited, this approach may

not be satisfactory.

Training-based algorithms, such as MixMax [15], were also

developed. These algorithms are performed in two phases, the

ar
X

iv
:1

51
0.

07
31

5v
1 

 [
cs

.S
D

] 
 2

5 
O

ct
 2

01
5



2

training phase and the test phase. In the training phase the

parameters of the model are found, usually with an unsuper-

vised machine learning algorithms, such as the expectation-

maximization (EM) algorithm in [15]. In the test phase, the

enhancement is carried out using the learned model param-

eters. One weakness of the algorithm is that the speech

parameters are found in an unsupervised manner that ignores

the phoneme-based structure of speech. Another drawback

of the MixMax algorithm is that the noise parameters are

estimated once at the beginning of the utterance and then

are kept fixed during the entire utterance. This enhancement

approach is not always sufficient for real-life noises.

In this paper, we apply a hybrid algorithm, which integrates

the generative model-based approach with the discriminative

NN tool. As in [15], we use a two phase algorithm. In the

training phase, the clean speech is modeled with a phoneme-

based MoG that is built using phoneme labeled database. A

NN is then trained to classify clean1 time-frame features as

one of the phonemes from the phoneme-based MoG. Once

the training phase is over, the training does not recur. With

the NN estimated phonemes, an SPP is calculated in the test

phase using the generative model. Soft spectral subtraction

is then carried out using the SPP, while, simultaneously, the

noise estimation is updated. The continuity of the speech is

maintained using the NN that uses context frames in addition

to the current frame. In addition, the NN assists the calculation

of the SPP. Furthermore, the phoneme-based MoG and the soft

SPP preserve the spectral structure of the speech thus alleviat-

ing the musical noise phenomenon. This approach utilizes the

benefits of both the generative and the discriminative methods

to alleviate the drawbacks of the mentioned above algorithms.

The rest of the paper is organized as follows. In Section II,

a generative model is presented. Section III presents the

proposed enhancement algorithm and describes its imple-

mentation in details. A comprehensive experimental results

using speech databases in various noise types are presented in

Section IV. In Section V the building blocks of the algorithm

are analyzed. Finally, some conclusions are drawn and the

paper is summarized in Section VI.

II. A GENERATIVE NOISY SPEECH MODEL

In this section, a generative model of the noisy speech

signal is presented. We follow the model proposed by Nádas

et al. [16] that was utilized in [15].

The following notation is used throughout the paper. Up-

percase letters are used for random variables, lower case for

a given value and a boldface symbols denotes vectors.

A. Maximization approximation

Let x(t) and y(t) 0 < t < T denote the speech and noise

signals, respectively. The observed noisy signal z(t) is given

by

z(t) = x(t) + y(t). (1)

1The NN is trained on clean signals in order to remain general and not to
adjust the network for certain noise types.

Applying the short-time Fourier transform (STFT) with frame

length set to L samples and overlap between successive frames

set to 3L/4 samples to z(t) yields Z(n, k) with n the frame

index and k = 0, 1, . . . , L− 1 the frequency index. The frame

index n is henceforth omitted for brevity, whenever applicable.

Let Z denote the L/2 + 1 dimensional log-spectral vector,

defined by

Zk = log |Z(k)|, k = 0, 1, . . . , L/2.

Note that the other frequency bins can be obtained by the

symmetry of the discrete Fourier transform (DFT). Similarly,

we define X and Y to be the log-spectral vectors of the speech

and noise signals, respectively.

It is assumed that the noise is statistically independent of the

speech signal. Furthermore, it is assumed that both the speech

and noise are zero-mean stochastic processes. Due to these

assumptions the following approximation can be justified:

|Z(k)|2 ≈ |X(k))|2 + |Y (k)|2

hence

Zk ≈ log(eXk + eYk).

Following Nádas et al. [16], the noisy log-spectral can be

further approximated:

Z ≈ max(X,Y) (2)

where the maximization is component-wise over the elements

of X and Y. This approximation was found useful for speech

recognition [16], speech enhancement [15], [17] and speech

separation tasks [18], [19]. In a speech enhancement task, only

the noisy signal Z is observed, and the aim is to estimate the

clean speech X.

B. Clean speech model - Phoneme based MoG

It is well-known that a speech utterance can be described

as a time-series of phonemes, i.e. speech is uttered by pro-

nouncing a series of phonemes [20]. In our approach, we give

this observation a probabilistic description, namely the log-

spectral vector of the clean speech signal, X, is modelled by a

MoG distribution, where each mixture component is associated

with a specific phoneme. Unlike [15], that uses unsupervised

clustering of the speech frames, we use here a supervised

clustering, explicitly utilizing the labels of the phonemes of

the training speech signals. Based on the MoG model, the

probability density function f(x) of the clean speech X, can

be written as

f(x) =
m
∑

i=1

cifi(x) =

m
∑

i=1

ci
∏

k

fi,k(xk) (3)

where m is the number of mixture components and

fi,k(xk) =
1√

2πσi,k

exp

{

− (xk − µi,k)
2

2σ2

i,k

}

. (4)

Let I be the phoneme indicator random variable (r.v.) associ-

ated with the MoG r.v. X, i.e. p(I = i) = ci. The term fi(x)
is the Gaussian probability density function (p.d.f.) of X given

that I = i. The scalar ci is the probability of the i-th mixture
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and µi,k and σi,k are the mean and the standard deviation of

the k-th entry of the i-th mixture Gaussian, respectively. Due

to the Fourier transform properties, we neglect any residual

correlation between the frequency bins. Since for each class

I = i the r.v. X is Gaussian, the frequency bins are also

statistically independent. Consequently, the covariance matrix

of each mixture component is diagonal. To set the MoG pa-

rameters we used the phoneme-labeled TIMIT database [21],

[22] as described in Sec. III-D.

C. Noisy speech model

Let Y define the log-spectral vector of the noise signal, and

let g(y) denote the p.d.f. of Y. As with the log-spectral vector

of the speech signal, it is assumed that the components of Y

are statistically independent. For simplicity, g(y) is modeled

as a single Gaussian, with diagonal covariance i.e.,

g(y) =
∏

k

gk(yk) (5)

where

gk(yk) =
1√

2πσY,k

exp

{

− (yk − µY,k)
2

2σ2

Y,k

}

. (6)

Initial estimation and adaptation the noise parameters will be

explained in Sec. III-E.

Using the maximum assumption in the log-spectral vector of

the noisy speech Z = max(X,Y), as explained above, it can

be verified [16] that the p.d.f. of Z is given by the following

mixture model:

h(z) =

m
∑

i=1

cihi(z) =

m
∑

i=1

ci
∏

k

hi,k(zk) (7)

where

hi,k(zk) = fi,k(zk)Gk(zk) + Fi,k(zk)gk(zk) (8)

such that Fi,k(x) and Gk(y) are the cumulative distribution

functions of the Gaussian densities fi,k(x) and gk(y), respec-

tively. The term hi(z) is the p.d.f. of Z given that I = i.
The generative modeling described above was nicknamed

MixMax [15], [16], since it is based on the maximum as-

sumption and on the modelling of the clean speech as a

(Gaussian) mixture p.d.f. and the noisy speech is modeled

as the maximum of the clean speech and the noise signal.

Originally, the mixture components were not associated with

phonemes, but rather learned in an unsupervised manner.

III. THE NEURAL-NETWORK MIXMAX ALGORITHM

In this section, we describe the proposed enhancement

algorithm. In Sec. III-A we remind the minimum mean square

error (MMSE) estimator based on the MixMax model [15],

[16]. We then propose in Sec. III-B a new variant of the

estimator that utilizes the same model but allows for better

noise reduction. In Sec. III-C an NN approach is introduced

as a tool for accurate phoneme classification. Issues regarding

the training of the NN are discussed in Sec. III-D. Finally,

test-phase noise adaption is discussed in Sec. III-E.

A. The MMSE based approach

An MMSE of the clean speech x from measurement z is

obtained by the conditional expectation x̂ = E(X|Z = z).
Note, that since the p.d.f. of both x and z is non-Gaussian, this

estimator is not expected to be linear. Utilizing the generative

model described in the previous section we can obtain a

closed-form solution for the MMSE estimator as follows.

x̂ =

m
∑

i=1

p(I = i|Z = z)E(X|Z = z, I = i). (9)

The posterior probability p(I = i|Z = z) can be easily

obtained from (7) by applying the Bayes’ rule:

p(I = i|Z = z) =
cihi(z)

h(z)
. (10)

Since the Gaussian covariance matrices of both the speech and

the noise models are diagonal, we can separately compute

x̂i = E(X|Z = z, I = i)

for each frequency bin. For the k-th frequency bin we obtain:

x̂i,k = E(Xk|Zk = zk, I = i) (11)

= ρi,kzk + (1− ρi,k)E(Xk|Xk < zk, I = i)

such that

ρi,k = p(Yk < Xk|Zk = zk, I = i) =
fi,k(zk)Gk(zk)

hi,k(zk)
(12)

and for the second term in (11):

E(Xk|Xk < zk, I = i) = µi,k − σ2

i,k

fi,k(zk)

Fi,k(zk)
. (13)

The closed-form expression for the MMSE estimator of

the clean speech x̂ = E(X|Z = z) [16] is obtained

from (9),(11),(12),(13). These expressions are the core of the

MixMax speech enhancement algorithm proposed by Bur-

shtein and Gannot [15]. In their approach the MoG parameters

of the clean speech are inferred from a database of speech

utterances utilizing the EM in an unsupervised manner.

B. Soft mask estimation of the clean speech

Assuming the maximization model in (2) is valid, ρi,k
was obtained in (12). Summing over all the possible mixture

components, we obtain:

ρk =

m
∑

i=1

p(I = i|Z = z)ρi,k = p(Xk > Yk|Z = z). (14)

The term ρk can be interpreted as the probability that given

the noisy speech vector z, the k-th frequency bin of the current

log-spectral vector z is originated from the clean speech and

not from the noise. The probability ρk can thus be viewed

as a training-based SPP detector, namely the probability that

the designated time-frequency bin is dominated by speech.

Consequently, (1 − ρk) can be interpreted as the posterior

probability that the k-th bin is dominated by noise.

Using ρk and (9),(11) the k-th frequency bin of the MMSE

estimator x̂ = E(X|Z = z) can be recast as follows:

x̂k = ρkzk + (1− ρk)E(Xk|Xk < zk,Z = z). (15)
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Hence, given the generative model, the enhancement procedure

in (15), substitutes the frequency bins identified as noise with

the a priori value drawn from the MoG model and using (13).

The structure of voiced speech PSD consists of dominant

spectral lines which recur at multiples of the fundamental

frequency (known as pitch). The PSD of different speakers

pronouncing the same phoneme share similar properties, but

are never identical. Hence, the MoG parameters inferred

from multiple speakers, is never individualized to the current

speaker and therefore cannot represent the specific periodicity.

The phoneme-based MoG parameters are only capable of

preserving the general structure of an averaged phoneme.

This phenomenon might lead to residual noise even when the

algorithm identifies the noise correctly.

To circumvent this phenomenon, we propose to substitute

the optimal estimator that uses the MoG parameters with a

simpler estimate based on the spectral substraction paradigm,

namely:

E(Xk|Xk < zk,Z = z)

is substituted by:

zk − β

where β is a noise reduction level. It is well-known that

the basic spectral subtraction method is prone to musical

noise [23] [24]. In our proposed method, the estimator also

incorporates the soft mask deduced from the SPP, thus poten-

tially alleviating the musical noise phenomenon.

Substituting (zk − β) in (15) we obtain the following

simplified expression for the estimated clean speech:

x̂k = ρk · zk + (1− ρk) · (zk − β) (16)

or, equivalently

x̂k = zk − (1− ρk) · β (17)

which can be interpreted as SPP-driven (soft) spectral subtrac-

tion algorithm.

C. Neural network for phoneme classification

The gist of our approach is the calculation of the SPP

ρk (14). This calculation necessitates two terms, ρi,k which

is given by (12) and the posterior phoneme probability pi ,
p(I = i|Z = z). Utilizing the generative model defined in

Section II, pi is obtained from (7) by applying the Bayes’

rule:

pi =
cihi(z)

h(z)
. (18)

This approach exhibits some major shortcomings. Estimating

the required noise statistics is a cumbersome task, especially in

time-varying scenarios. Furthermore, as the calculation in (18)

is carried out independently for each frame, continuous and

smooth speech output cannot be guaranteed.

In our approach, (unlike [15]) we adopt a supervised

learning approach in which each mixture component of the

clean speech is associated with a specific phoneme. Hence

the computation of the mixture index posterior probability

becomes a phoneme classification task (based on the noisy

speech). To implement this supervised classification task, we

substitute (18) with an NN that is known to be significantly

better than MoG models for phoneme classification tasks (see

e.g. [25]).

The NN is trained on a phoneme-labeled clean speech. For

each log-spectral vector, z, we calculate the corresponding

MFCC features (and their respective delta and delta-delta

features). To preserve the continuity of the speech signal, 9

MFCC vectors are concatenated (the current feature vector, 4

past vectors and 4 future vectors) to form the feature vector,

denoted v, which is a standard feature set for phoneme classi-

fication. This feature vector is used as the input to the NN, and

the phoneme label as the corresponding target. The phoneme-

classification NN is trained on clean signals. However, as

part of the speech enhancement procedure, we apply it to

noisy signals. To alleviate the mismatch problem between train

and test conditions, we use a standard preprocessing stage

for robust phoneme classification, namely cepstral mean and

variance normalization (CMVN) [26].

The SPP ρk is calculated using (14), which requires both

ρi,k and pi. While ρi,k is calculated from the generative model

using (12), we propose to replace (18) for calculating pi by a

better phoneme-classification method.

It is therefore proposed, to infer the posterior phoneme

probability by utilizing the discriminative NN, rather than

resorting to the generative MoG model:

pNN
i = p(I = i|v;NN). (19)

Note, that the compound feature vector v is used instead of

the original log-spectrum z. Finally, the SPP ρk is obtained

using (12) and (19):

ρk =

m
∑

i=1

pNN
i ρi,k. (20)

The proposed SPP calculation is based on a hybrid method,

utilizing both the generative MoG model and a discriminative

approach to infer the posterior probability. For the latter we

harness the known capabilities of the NN.

D. Training the MoG model and the NN classifier

We used the phoneme-labeled clean speech TIMIT

database [21], [22] to train the NN phoneme classifier and the

MoG phoneme-based generative model. We next describe the

training procedure. We used the 462 speaker from the training

set of the database excluding all SA sentences, since they

consist of identical sentences to all speakers in the database,

and hence can bias the results.

In training the phoneme-based MoG we set the number

of Gaussians to m = 39 (see [27]), where each Gaussian

corresponds to one phoneme. All frames labeled by the i-th
phoneme were grouped, and for each frequency bin the mean

and variance were computed using (21) and (22), respectively.

First, the log-spectrum of the segments of clean speech utter-

ances is calculated. Since the database is labeled each segment

is associated with a phoneme i. We can then calculate the
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following first- and second-moment with phone label i:

µi,k =
1

Ni

Ni
∑

n=1

xi,k(n)

σ2

i,k =
1

Ni − 1

Ni
∑

n=1

(xi,k(n)− µi,k)
2

(21)

where xi,k(n) is k-th bin of the n-th log-spectra vector with

phoneme label i. The term, Ni is the total number of vectors

associated with phoneme labeled i. The mixture coefficients

ci are set to be the relative frequency of each phoneme in the

training dataset:

ci =
Ni

∑m

n=1
Nn

. (22)

Note that since the data is already labeled, no iterative clus-

tering procedure, such as the EM algorithm, is required.

For training the NN as a discriminative phoneme classifier,

we used the MFCC feature vectors v powered by the delta

and delta-delta coefficients. In total, 39 coefficients per time

frame were used. Context frames (4 from the future and 4

from the past) were added to the current frame as proposed

in [28]. Hence, each time frame was represented by 351 MFCC

features. We used a single hidden layer NN comprising of

500 neurons. (Although adding more hidden layers slightly

improves phoneme classification rate, we didn’t gain any sig-

nificant improvement in the overall enhancement procedure.)

The network is constructed of sigmoid units as the transfer

function for the hidden layer:

hi =
1

1 + exp(−w⊤

1,iv)
, i = 1, . . . , 500

and a softmax output layer to obtain a vector m probabilities

associated with the various phonemes:

p(I = i|v) =
exp(w⊤

2,ih)
∑m

k=1
exp(w⊤

2,kh)
, i = 1, . . . ,m

where w1 and w2 are the weights matrices, of the hidden

layer and the output layer, respectively. Given a sequence

of MFCC feature vectors v1, ..,vN , where N is the total

number of vectors in the training set, with the corresponding

phoneme labels, I1, . . . , IN ∈ {1, . . . ,m}, the NN is trained

to maximize the log-likelihood function:

L(w1,w2) =

N
∑

t=1

log p(It|vt;w1,w2). (23)

To train the network we can start with random weights (or

use pre-training methods (see [29])) and then, by applying

back-propagation algorithm as part of a gradient ascent pro-

cedure, the parameter sets of the network, w1 and w2, are

found. In our implementation we used MATLABr R2014b

pattern recognition toolbox [30] to train the NN. The default

training function, namely the scaled conjugate gradient back-

propagation [31] was used. To avoid mismatch between train

and test conditions each utterance was normalized, such that

the utterance samples mean and the variance are zero and one,

respectively.

To verify the accuracy of the classifier, the trained NN

was applied to a clean test set (24-speaker core test set

drawn from TIMIT database), obtaining 71% correct phoneme

classification results, which is a reasonably high score.

During the test phase of the algorithm, the NN is applied

to speech signals contaminated by additive noise. We have

therefore applied the CMVN procedure before the classifier

to circumvent the noisy test condition [26].

E. Noise parameter initialization and adaptation

To estimate the noise parameters it is assumed that the first

part of the utterance (usually 0.25 Sec) the speech is inactive

and it consists of noise-only segments. These first segments

can therefore be used for initializing the parameters of the

noise Gaussian distribution as follows:

µY,k =
1

NY

NY
∑

n=1

yk(n)

σ2

Y,k =
1

NY − 1

NY
∑

n=1

(yk(n)− µY,k)
2

(24)

where NY is the number of vectors constructed form the noise-

only samples. The term yk(n) denotes the k-th bin of the n-th

noise vector.

In [15], the noise parameters remain fixed for the entire

utterance, rendering this estimate incapable of processing non-

stationary noise scenarios. To alleviate this problem, we will

apply an adaptation procedure (see [5] for alternative noise

PSD adaptation techniques). Using the SPP derived in (20), the

following adaptation scheme for the noise model parameters

can be stated:

µnew
Y,k =ρk · µold

Y,k+

(1− ρk)
(

α · zk + (1− α) · µold
Y,k

)

σnew
Y,k =ρk · σold

Y,k+

(1− ρk)
(

α ·
√

(zk − µnew
Y,k)

2 + (1− α) · σold
Y,k

)

(25)

where µnew
Y,k and σnew

Y,k are the updated parameters and µold
Y,k and

σold
Y,k are the parameters before adaption, and 0 < α < 1 is

a smoothing parameter. Using this scheme, the noise statis-

tics can be adapted during speech utterances, utilizing the

frequency bins that are dominated by noise. This scheme

is particularly useful in non-stationary noise scenarios. As a

consequence, the first few segments, assumed to be dominated

by noise, are only used for initializing the noise statistics and

their influence is fading out as more data is collected.

The proposed algorithm is summarized in Algorithm 1. We

dub the proposed algorithm neural network mixture-maximum

(NN-MM) to emphasize its hybrid nature, as a combination of

the generative MixMax model and the phoneme-classification

NN.

IV. EXPERIMENTAL STUDY

In this section we present a comparative experimental study.

We first describe the experiment setup in Sec. IV-A. Objective

quality measure results are then presented in Sec. IV-B. In
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Algorithm 1: Summary of the proposed neural network mixture-maximum (NN-MM) algorithm.

Train phase:

input: Log-spectral vectors z1, . . . , zN , MFCC vectors v1, . . . ,vN , and their corresponding phoneme labels i1, . . . , iN .

MoG training:

Set the phoneme-based MoG parameters using (z1, i1), . . . , (zN , iN ) (21) and (22).

NN training:

Train a NN for phoneme classification using (v1, i1), . . . , (vN , iN ).
Test phase:

input: Log-spectral vector of the noisy speech z and a corresponding MFCC vector v.

output: Estimated log-spectral vector of the clean speech x̂.

Compute the phoneme classification probabilities (19):

pNN
i = p(I = i|v;NN), i = 1, . . . ,m

for k=1:L/2 do
Compute (12):

ρMM
i,k = p(Yk < Xk|Zk = zk, I = i) =

fi,k(zk)Gk(zk)

hi,k(zk)
, i = 1, ..,m

Compute the speech presence probability (20):

ρNN-MM
k =

m
∑

i=1

pNN
i ρMM

i,k

Estimate the clean speech (17):

x̂k = zk − (1− ρk) · β.
Adapt the noise parameters (25):

µnew
Y,k =ρk · µold

Y,k + (1− ρk)
(

α · zk + (1− α) · µold
Y,k

)

σnew
Y,k =ρk · σold

Y,k + (1− ρk)
(

α ·
√

(zk − µnew
Y,k)

2 + (1− α) · σold
Y,k

)

end

Sec. IV-C ASR results are compared with different approaches.

Finally, the algorithm is tested with an untrained database in

Sec. IV-D.

A. Experimental setup and quality measures

To test the proposed algorithm we have contaminated

speech signal with several types of noise from NOISEX-92

database [32], namely Speech-like, Babble, Car, Room, AWGN

and Factory. The noise was added to the clean signal drawn

from the test set of the TIMIT database (24-speaker core test

set), with 5 levels of signal to noise ratio (SNR) at −5 dB,

0 dB, 5 dB, 10 dB and 15 dB in order to represent various

real-life scenarios. The algorithm was tested similarly, with

the untrained wall street journal (WSJ) database [33]. We

compared the proposed NN-MM algorithm to the OMLSA

algorithm [4] with IMCRA noise estimator [5], a state-of-

the-art algorithm for single channel enhancement. The default

parameters of the OMLSA were set according to [34].

In order to evaluate the performance of the NN-MM speech

enhancement algorithm, several objective and subjective mea-

sures were used, namely the perceptual evaluation of speech

quality (PESQ) quality measure, which has a high correlation

with subjective score [35], and a composite measure [36],

weighting the log likelihood ratio (LLR), the PESQ and the

weighted spectral slope (WSS) [37]. The composite measure

outputs background distortion (Cbak), speech distortion (Csig)

and overall quality (Covl) results.

As an additional measure we have examined the perfor-

mance improvement of an ASR system. We used the Pock-

etSphinx ASR system [38]. The feature set of the system

is composed of 39 MFCC features powered by delta and

delta-delta features. The acoustic model consists of a hidden

Markov model with 5000 states. Each state is represented

by a MoG with 16 mixture components. Finally, the 20,000-

word vocabulary language model was trained using WSJ

corpus [33]. Finally, we have carried out informal listening

tests2.

B. Objective results - TIMIT test set

We first evaluate the objective results of the proposed

NN-MM algorithm and compare it with the results obtained by

the OMLSA algorithm. To further examine the upper bound of

the proposed method we also replaced the NN classifier with

an ideal classifier that always provides the correct phoneme,

denoted ideal-NN-MM. The test set was the core set of the

TIMIT database.

2Audio samples can be found in www.eng.biu.ac.il/gannot/
speech-enhancement.

www.eng.biu.ac.il/gannot/speech-enhancement
www.eng.biu.ac.il/gannot/speech-enhancement
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Fig. 1 depicts the PESQ results of all examined algorithm

for the Speech-like, Room, Factory and Babble noise types

as a function of the input SNR. In Fig. 2 we show the Covl

results for factory and room noises. The results behave in a

similar way, with other noise types.

It can be clearly deduced that the proposed NN-MM al-

gorithm outperform the OMLSA algorithm in the two desig-

nated objective measures. The ideal-NN-MM outperforms the

NN-MM, but the difference is rather marginal. Still, there is a

room for improvement, would a better phoneme classifier be

available.

To gain further insight, we have also compared the enhance-

ment capabilities of the proposed algorithm and the state-of-

the-art OMLSA algorithm in the challenging factory noise

environment. It is clearly depicted in Fig. 3 (obtained in

SNR=5 dB) that the proposed NN-MM is less prone to musical

noise, while maintaining comparable noise level at the output.

C. Automatic speech recognition results

Speech enhancement algorithms can also serve as a pre-

processing stage on front of ASR systems. In order to test

the performance of the NN-MM enhancement algorithm we

added four types of noise in four different SNR levels to a

database comprising five female and five male speakers, each

uttering approximately 150 English sentences. The utterances

were taken from different speech databases (samples from the

WSJ were not included). Overall, the test database consists of

1497 sentences, 24 Sec long (28 words each).

As before, we have the proposed NN-MM algorithm with

the original MixMax and the OMLSA algorithms. The results

are depicted in Table I. The NN-MM algorithm significantly

outperforms both competing algorithms for the factory and

babble noise, and most the speech-like for most SNR values

(besides 5 dB). In the white noise case, the original MixMax

exhibits slightly better performance. The superior results of the

proposed NN-MM algorithm can be attributed to the improved

phoneme classification, which is one of the main building

blocks of an ASR system.

D. Performance with different database

Finally, we would like to demonstrate the capabilities of

the proposed NN-MM algorithm when applied to speech

signals from other databases. In this work we have trained the

phoneme-based MoG and the NN using the TIMIT database.

In this section we apply the algorithm to 30 clean signals

drawn from the WSJ database [33]. The signals were con-

taminated by the challenging factory and babble noise with

several SNR levels. Note, that the algorithm does not train with

noisy signals. Fig. 4 depicts the PESQ measure of the NN-MM

algorithm in comparison with the OMLSA algorithm. It is that

the performance of proposed algorithm and its advantages are

maintained even for sentences from different database than the

training database. Here we show the challenging factory and

Babble noise types. The results in other noise types have the

same construction.

TABLE I: ASR results for various noise types.

Babble noise

Method \SNR 5[dB] 10[dB] 15[dB] 20[dB]

Noisy signal 8.8 43.0 68.8 79.7

MixMax 18.7 53.7 72.9 81.0

OMLSA 13.7 45.0 66.0 76.2

NN-MM 28.2 60.3 76.2 81.9

Factory noise

Method \SNR 5[dB] 10[dB] 15[dB] 20[dB]

Noisy signal 1.1 32.7 62.2 76.1

MixMax 9.5 44.4 68.3 78.7

OMLSA 16.3 47.4 69.0 78.0

NN-MM 19.5 52.9 71.9 80.1

Speech-like noise

Method \SNR 5[dB] 10[dB] 15[dB] 20[dB]

Noisy signal 7.9 44.4 68.4 77.5

MixMax 38.5 64.9 77.4 81.6

OMLSA 41.3 65.4 75.8 81.3

NN-MM 40.4 66.6 78.0 82.2

White noise

Method \SNR 5[dB] 10[dB] 15[dB] 20[dB]

Noisy signal 10.4 31.8 53.6 68.9

MixMax 28.9 51.7 67.2 77.1

OMLSA 25.8 46.1 65.1 74.5

NN-MM 26.1 45.8 65.5 75.8

V. ANALYSIS OF THE BUILDING BLOCKS OF THE

ALGORITHM

In this section, we analyze the individual contributions of

each component of the proposed algorithm to the overall

performance. First, in Sec. V-A the phoneme-based MoG is

analyzed. In Sec. V-B example of the SPP is presented and the

NN phoneme classifier is compared to the generative approach

in Sec. V-C. Finally, in Sec. V-D the noise adaptation is tested

in real-life scenario.

A. The Phoneme-based MoG

One of the major differences between the original MixMax

algorithm and the proposed NN-MM algorithm is the con-

struction of the MoG model. While the former uses unsuper-

vised clustering procedure based on the EM algorithm, the

latter uses supervised clustering using the labeled phonemes.

Consequently, the clusters in the proposed algorithm consists

of different variants of the same phoneme, while the cluster

obtained by the EM algorithm mixtures of various phonemes.

We postulate that the supervised clustering is therefore ad-

vantageous over the unsupervised clustering. We will examine

this claim in the current section, using clean speech signal

contaminated by Room noise with SNR=5 dB.

First, define the averaged PSD of the speech utterance as

the weighted sum of the Gaussian centroids, as inferred by

the two clustering procedures. The weights give the respective

posterior probabilities (either (10) or (19)). The averaged PSD

obtained by the supervised clustering and the discriminative

NN is given by:

µNN-MM
k =

m
∑

i=1

pNN
i µi,k. (26)
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(a) Speech noise. (b) Room noise.

(c) Factory noise. (d) Babble noise.

Fig. 1: Speech quality results (PESQ) for several noise types.

(a) Factory noise. (b) Room noise.

Fig. 2: Results of Covl in different noise types.

Similarly, the averaged PSD obtained by the unsupervised

clustering and the generative model is given by

µEM
k =

m
∑

i=1

piµ
EM
i,k . (27)

In Figs. 5a and 5b we show the clean and noisy PSD,

respectively. Fig. 5c and Fig. 5d illustrates the estimated

weighted Gaussians µNN-MM and µEM. It evident that µEM is

not as successful as successful as µNN-MM in estimating the

clean speech PSD.

B. The speech presence probability

The SPP is the probability that the time-frequency bin is

dominated by speech. In this section we examine the SPP

ρNN-MM
k developed in this work as given in Algorithm 1.

To further validate the advantages of the hybrid scheme we

compare it with the SPP used in the original MixMax, namely

the posterior probabilities are inferred from the generative

model and the MoG is trained in an unsupervised manner.

The latter SPP is denoted ρEM

We continue the example in Sec. V-A. Both SPPs, ρEM and

ρNN-MM, are depicted in Figs. 5e and 5f, respectively. It can

be easily observed that ρNN-MM has a better resemblance to

the clean speech spectrogram shown in Fig. 5a and suffers

from less artifacts. Additionally, it is smoother than the ρEM in

both time and frequency aspects. Conversely, vertical narrow

spectral lines can be easily observed in ρEM. This spectral

artifacts may be one of the causes for the differences in the



9

(a) Clean signal. (b) Noisy signal.

(c) Signal at the output of the OMLSA algorithm. (d) Signal at the output of the NN-MM algorithm.

Fig. 3: STFT and time-domain plots of clean, noisy (factory noise, SNR=5 dB), and signals enhanced by the OMLSA and the

NN-MM algorithms.

(a) Factory noise. (b) Babble noise.

Fig. 4: PESQ results with WSJ database for various SNR levels.

enhancement capabilities of the two algorithms, as depicted in

Figs. 5e and 5f.

We postulate that the designated advantages of the proposed

approach stem from the better classification capabilities as

exhibited by the NN. While the original MixMax algorithm

is only utilizing the current frame for inferring the posterior

probabilities, the proposed algorithm takes into account the

context of the phoneme by augmenting past and future frames

to the current frame. This guarantees a smoother SPP and

consequently less artifacts at the output of the algorithm.

This context-aware feature vector together with the

phoneme-based MoG may also alleviate the musical noise phe-

nomenon. This observation is also supported by the smoother

spectral envelop of the MoG centroid as can be deduced from

comparing Figs. 5c and 5d.

C. Phoneme classification task

We turn now to the assessment of the proposed phoneme

classifier. For that we compare the classification accuracy of

the NN with that of the generative model in (10) using the

phoneme-labeled MoG.

Fig. 6 depicts the percentage of correct classification results

obtained on the test data. Two types of noise were added to

the clean signals, namely factory and babble noise. The results

clearly indicate that the NN based classifier significantly

outperforms the classifier based on the generative model, and

hence better suited for the task at hand.

D. The Noise adaptation

In this section we examine the noise adaptation scheme

described in (25). A city ambiance noise [39] that consists

of a siren and passing cars was chosen, as it is a highly
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(a) Clean signal (b) Noisy signal

(c) µEM (Log-spectrum). (d) µNN-MM (Log-spectrum).

(e) ρEM parameter. (f) ρNN-MM parameter.

(g) MixMax Enhanced. (h) NN-MM Enhanced.

Fig. 5: STFT of the clean, noisy and enhanced signals together with the averaged PSDs and the SPPs using either the NN-MM

model or the original MixMax model.

(a) Factory noise. (b) Babble noise.

Fig. 6: Results of phoneme classification task performed on noisy data.
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(a) Clean signal. (b) Noisy signal (SNR=5 dB).

(c) Real noise (Log-spectrum). (d) Estimated noise (Log-spectrum).

(e) OMLSA enhanced. (f) NN-MM enhanced.

Fig. 7: Noise adaptation capabilities with highly non-stationary siren noise (SNR=5 dB), and the outputs of the OMLSA and

NN-MM algorithms.

non-stationary noise source with fast PSD changes during the

speech utterance. The clean and noisy signals are depicted in

Figs. 7a and 7b. The input SNR was set to 5 dB (resulting in

input PESQ=2.124.

In Fig. 7c the real noise STFT is depicted and in Fig. 7d its

estimate using the proposed adaptation scheme and the SPP

inferred by the NN-MM algorithm. It can be observed that the

estimate is quite accurate even when the noise PSD changes

very fast. Note that during speech dominant time-frequency

bins, the noise estimate cannot adapt. These adaptation ca-

pabilities are also reflected at the output of the algorithms,

especially in comparison with the OMLSA algorithm, as

depicted in Figs. 7e and 7f. We observe that the NN-MM

algorithm outperforms the OMLSA in reducing this challeng-

ing noise. This is also indicated by the PESQ measure. While

the OMLSA degrade the speech quality (PESQ=1.847), the

proposed hybrid algorithm slightly improves it (PESQ=2.361).

The reader is also referred to our website where these sound

clips can be found.

VI. CONCLUSION

In this paper a novel speech enhancement scheme, denoted

NN-MM, is presented. The proposed algorithm is based on

a hybrid scheme which combines phoneme-based generative

model for the clean speech signal with a discriminative, NN-

based SPP estimator. In the proposed algorithm we try to

adopt the advantages of model-based approaches and NN

approaches. While the former usually trade-off noise reduction

abilities with residual musical noise, the latter often suffer

from speech distortion artifacts.

In the proposed algorithm we take advantage of the dis-

criminative nature of the NN that preserves speech smooth-

ness by using context frames. Moreover, the phoneme-based
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MoG model, where each Gaussian corresponds to a specific

phoneme, preserves the general phoneme structure and reduces

musical noise.

The proposed algorithm requires neither noise samples

nor noisy speech utterances to train. Alternatively, using the

embedded NN-based SPP, allows for fast adaptation to fast-

changing noise PSD.

A comprehensive set of experiments demonstrate the ca-

pabilities of the proposed algorithm in both improving ASR

scores as well as objective quality measures. The NN-MM

algorithm is shown to outperform state-of-the-art algorithm

(OMLSA) for both stationary and non-stationary environmen-

tal noises and a variety of SNR levels.

REFERENCES

[1] P. C. Loizou, Speech enhancement: theory and practice. CRC press,
2013.

[2] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator,” IEEE Trans.

on Acoustics, Speech and Signal Processing, vol. 32, no. 6, pp. 1109–
1121, Dec 1984.

[3] ——, “Speech enhancement using a minimum mean-square error log-
spectral amplitude estimator,” IEEE Trans. on Acoustics, Speech and

Signal Processing, vol. 33, no. 2, pp. 443–445, Apr 1985.
[4] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise

environments,” Signal processing, vol. 81, no. 11, pp. 2403–2418, 2001.
[5] ——, “Noise estimation by minima controlled recursive averaging for

robust speech enhancement,” IEEE Signal Processing Letters, vol. 9,
no. 1, pp. 12–15, Jan 2002.

[6] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An experimental study on
speech enhancement based on deep neural networks,” IEEE Signal

Processing Letters, vol. 21, no. 1, pp. 65–68, Jan 2014.
[7] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based on

deep denoising autoencoder.” in Proceedings of the annual conference of

the International Speech Communication Association (INTERSPEECH),
2013, pp. 436–440.

[8] D. Liu, P. Smaragdis, and M. Kim, “Experiments on deep learning
for speech denoising,” in Proceedings of the annual conference of

the International Speech Communication Association (INTERSPEECH),
2014.

[9] Y. Wang and D. Wang, “Towards scaling up classification-based speech
separation,” IEEE Trans. on Audio, Speech, and Language Processing,
vol. 21, no. 7, pp. 1381–1390, July 2013.

[10] Y. Wang, A. Narayanan, and D. Wang, “On training targets for super-
vised speech separation,” IEEE Trans. on Audio, Speech, and Language

Processing, vol. 22, no. 12, pp. 1849–1858, Dec 2014.
[11] D. Wang, U. Kjems, M. S. Pedersen, J. B. Boldt, and T. Lunner,

“Speech intelligibility in background noise with ideal binary time-
frequency masking,” The Journal of the Acoustical Society of

America, vol. 125, no. 4, pp. 2336–2347, 2009. [Online]. Available:
http://scitation.aip.org/content/asa/journal/jasa/125/4/10.1121/1.3083233

[12] S. Srinivasan, N. Roman, and D. Wang, “Binary and ratio time-frequency
masks for robust speech recognition,” Speech Communication, vol. 48,
no. 11, pp. 1486–1501, 2006, robustness Issues for Conversational
Interaction. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167639306001129

[13] C. Hummersone, T. Stokes, and T. Brookes, “On the ideal ratio mask
as the goal of computational auditory scene analysis,” in Blind Source

Separation, ser. Signals and Communication Technology, G. R. Naik
and W. Wang, Eds. Springer Berlin Heidelberg, 2014, pp. 349–368.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-55016-4 12

[14] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression approach to speech
enhancement based on deep neural networks,” IEEE Trans. on Audio,

Speech, and Language Processing, vol. 23, no. 1, pp. 7–19, Jan 2015.
[15] D. Burshtein and S. Gannot, “Speech enhancement using a mixture-

maximum model,” IEEE Trans. on Speech and Audio Processing,
vol. 10, no. 6, pp. 341–351, Sep 2002.
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