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)e fluctuations of economic and financial time series are influenced by various kinds of factors and usually demonstrate strong
nonstationary and high complexity. )erefore, accurately forecasting economic and financial time series is always a challenging
research topic. In this study, a novel multidecomposition and self-optimizing hybrid approach integrating multiple improved
complete ensemble empirical mode decompositions with adaptive noise (ICEEMDANs), whale optimization algorithm (WOA),
and random vector functional link (RVFL) neural networks, namely, MICEEMDAN-WOA-RVFL, is developed to predict
economic and financial time series. First, we employ ICEEMDANwith random parameters to separate the original time series into
a group of comparatively simple subseries multiple times. Second, we construct RVFL networks to individually forecast each
subseries. Considering the complex parameter settings of RVFL networks, we utilize WOA to search the optimal parameters for
RVFL networks simultaneously. )en, we aggregate the prediction results of individual decomposed subseries as the prediction
results of each decomposition, respectively, and finally integrate these prediction results of all the decompositions as the final
ensemble prediction results. )e proposed MICEEMDAN-WOA-RVFL remarkably outperforms the compared single and
ensemble benchmark models in terms of forecasting accuracy and stability, as demonstrated by the experiments conducted using
various economic and financial time series, including West Texas Intermediate (WTI) crude oil prices, US dollar/Euro foreign
exchange rate (USD/EUR), US industrial production (IP), and Shanghai stock exchange composite index (SSEC).

1. Introduction

Economic and financial time series, such as price move-
ments, stock market indices, and exchange rate, are usually
characterized by strong nonlinearity and high complexity,
since they are influenced by a number of extrinsic and in-
trinsic factors including economic conditions, political
events, and even sudden crises [1, 2]. Economic and financial
time series forecasting always play a vital role in social and
economic development, which is of great economic im-
portance to both individuals and countries. )erefore,
economic and financial time series forecasting is always a
very active research area.

In extant research, various forecasting methods were
proposed to forecast various economic and financial time
series. )ese forecasting methods mainly include statistical

and artificial intelligence (AI) approaches. )e frequently
used statistical approaches for economic and financial time
series forecasting include the error correction model (ECM)
[3], hidden Markov model (HMM) [4], random walk (RW)
model [5], autoregressive moving average (ARMA) model
[6], autoregressive integrated moving average (ARIMA)
model [7], and generalized autoregressive conditional het-
eroskedasticity (GARCH) model [8, 9]. Lanza et al. fore-
casted the series of crude oil prices in two distinct areas using
the ECM [3]. Hassan and Nath developed the HMM ap-
proach for forecasting stock price for interrelated markets
[4]. Kilian and Taylor analyzed the advantage of RW in
exchange rate forecasting [5]. Rout et al. integrated ARMA
with differential evolution (DE) to develop a hybrid model
for exchange rate forecasting [6]. Mondal et al. conducted a
study on the effectiveness of the ARIMA model on the

Hindawi
Complexity
Volume 2020, Article ID 9318308, 17 pages
https://doi.org/10.1155/2020/9318308

mailto:litaiyong@gmail.com
https://orcid.org/0000-0003-2432-4547
https://orcid.org/0000-0003-4626-8881
https://orcid.org/0000-0002-1546-8015
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9318308


forecasting of 56 Indian stocks from different sectors [7].
Alberg et al. conducted a comprehensive analysis of the stock
indices using various GARCHmodels, and the experimental
results showed that the asymmetric GARCH model en-
hanced the overall prediction performance [9].

Since most economic and financial time series involve
the complex characteristics of strong nonlinearity and
nonstationarity, it is difficult to obtain satisfactory fore-
casting accuracy by statistical approaches. Hence, various AI
approaches were proposed for economic and financial time
series forecasting. )ese AI forecasting approaches include
the artificial neural network (ANN) [10, 11], support vector
machine (SVM) [12, 13], extreme learning machine (ELM)
[14], random vector functional link (RVFL) neural network
[15], and recurrent neural network (RNN) [16]. Pradhan and
Kumar utilized ANN to forecast foreign exchange rate in
India, and the experimental results indicated that the ANN
could effectively forecast the exchange rate [10]. Das and
Padhy forecasted the commodity futures contract index
using the SVM, and the empirical analysis showed that the
proposed model was effective and achieved the satisfactory
prediction performance [12]. Li et al. made stock price
prediction using the ELM, and the comparison results
showed that the ELM with radial basis function (RBF)
kernels achieved better prediction performance with faster
speed than back propagation neural networks (BPNNs) [14].
Moudiki et al. employed quasirandomized functional link
networks for various time series forecasting, and the pro-
posed approach could generate more robust prediction
results [15]. Baek and Kim employed long short-term
memory (LSTM) for stock index forecasting, and the results
confirmed the LSTM model had excellent prediction ac-
curacy [16].

In order to effectively improve prediction accuracy,
various hybrid forecasting models were designed for eco-
nomic and financial time series forecasting. Babu and Reddy
combined ARIMA and nonlinear ANN models to develop a
novel hybrid ARIMA-ANN model, and the experiments on
electricity price and stock index indicated that the proposed
ARIMA-ANN had higher prediction accuracy [17]. Kumar
and )enmozhi compared three different hybrid models for
the forecasting of stock index returns and concluded that the
ARIMA-SVM model could obtain the highest prediction
accuracy [18].Hsu built a hybrid model based on a back
propagation neural network (BPNN) and genetic pro-
gramming (GP) for stock/futures price forecasting, and the
empirical analysis showed that the proposed hybrid model
could effectively improve the prediction accuracy [19].)ese
hybrid models are able to fully take advantage of the po-
tential of single models and, thus, obtain better prediction
accuracy than single models.

Due to the complexity of original economic and financial
time series, conducting forecasting on original time series is
hard to obtain satisfactory prediction accuracy. To reduce
the complexity of original time series, a framework of
“decomposition and ensemble” is widely utilized in the field
of time series forecasting. )e framework includes three
stages: decomposition, forecasting, and ensemble. )e
original time series is firstly separated into a sum of

subseries, then a prediction model is used to forecast each
subseries, and finally, the predictions of all the subseries are
aggregated as the final prediction results. Decomposition, as
the first step, is very important for enhancing the perfor-
mance of the ensemble model. )e widely used decompo-
sition approaches include wavelet decomposition (WD),
variational mode decomposition (VMD), and empirical
mode decomposition (EMD) class methods. Lahmiri com-
bined VMD with a general regression neural network
(GRNN) to develop a novel ensemble forecasting model, and
the experimental results suggested that VMD outperformed
EMD for the prediction of economic and financial time
series [20]. Kao et al. integrated WD, support vector re-
gression (SVR), and multivariate adaptive regression splines
(Mars) to develop an ensemble forecasting model to forecast
stock price, and the proposed model obtained better pre-
diction accuracy [21]. In the second stage of the framework
of “decomposition and ensemble,” various optimization
approaches were introduced to enhance the performance of
predictors. Li et al. proposed a ridge regression (RR) with DE
to forecast crude oil prices and obtained excellent forecasting
accuracy [22]. Bagheri et al. introduced quantum-behaved
particle swarm optimization (QPSO) to tune the adaptive
network-based fuzzy inference system (ANFIS) for financial
time series forecasting [23]. Wang et al. employed brain
storm optimization (BSO) algorithm to optimize SVR, and
the results indicated that the developed approach was ef-
fective in stock market analysis [24].

In the “decomposition and ensemble” framework, de-
composition approaches and prediction approaches influ-
ence the final prediction results greatly. Considering the
powerful decomposition ability of ICEEMDAN, the excel-
lent search efficiency of WOA, and the accurate forecasting
ability of the RVFL network, we develop a novel ensemble
prediction model integrating multiple ICEEMDANs, WOA,
and the RVFL network, namely, MICEEMDAN-WOA-
RVFL, for economic and financial time series forecasting.
Firstly, ICEEMDAN with random parameters is utilized to
divide the original economic and financial time series into a
sum of subseries. Secondly, the RVFL network is applied to
forecast each decomposed subseries individually, and WOA
is used to optimize the parameter values of the RVFL
network simultaneously. Finally, the predictions of all in-
dividual subseries are aggregated as the prediction values of
one process of decomposition and ensemble. From our
observations, we find that the decomposition in the first
stage has some disadvantages of the uncertainties with a
quite randomness, which can lead to the difference and
instability of the prediction results. In addition, extensive
literature has shown that combining multiple forecasts can
effectively enhance prediction accuracy [25, 26]. )erefore,
we randomize the decomposition parameter values of
ICEEMDAN in the first stage, repeat the abovementioned
processes multiple times, and integrate the results of mul-
tiple decompositions and ensembles as the final prediction
values. We expect that the multiple decomposition strategy
can reduce the randomness of one single decomposition and
further improve the ensemble prediction stability and
accuracy.
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)e main contributions of this paper are as follows: (1)
we propose a new multidecomposition and self-optimizing
ensemble prediction model integrating multiple ICE-
EMDANs, WOA, and RVFL networks for economic and
financial time series forecasting. As far as we know, this is the
first time that the novel combination is developed for
economic and financial time series forecasting. (2) To further
enhance forecasting accuracy and stability, we utilize mul-
tiple differentiated ICEEMDANs to decompose original
economic and financial time series and, finally, ensemble the
predictions of all decompositions as the final predictions. (3)
WOA is firstly introduced to optimize various parameters of
RVFL networks. (4) )e empirical results on four different
types of economic and financial time series show that our
proposed MICEEMDAN-WOA-RVFL significantly en-
hances the prediction performance in terms of forecasting
accuracy and stability.

)e novelty of the proposed MICEEMDAN-WOA-
RVFL is three-fold: (1) a novel hybrid model integrating
multiple ICEEMDANs, WOA, and RVFL networks is
designed for economic and financial time series forecasting;
(2) the multiple decomposition strategy is firstly proposed to
overcome the randomness of one single decomposition and
to improve prediction accuracy and stability; and (3) WOA
is first applied to optimizing RVFL networks to improve the
performance of individual forecasting.

)e remainder of the paper is organized as follows.
Section 2 offers a brief introduction to the ICEEMDAN,
WOA, and RVFL network. Section 3 provides the archi-
tecture and the detailed implementation of the proposed
MICEEMDAN-WOA-RVFL. Section 4 analyzes the em-
pirical results on various economic and financial time series
forecasting. Section 5 discusses some details of the de-
veloped prediction model, and Section 6 concludes this
paper.

2. Preliminaries

2.1. Improved Complete Ensemble Empirical Mode Decom-
positionwithAdaptiveNoise (ICEEMDAN). Empirical mode
decomposition (EMD), an adaptive time-frequency analysis
approach for nonstationary signals, was designed by Huang
et al. [27]. EMD separates original time series into a sum of
“intrinsic mode functions” (IMFs) and one residue, and
thus, it can simplify time series analysis. Due to some
drawbacks of EMD, such as mode mixing, EEMD [28] and
CEEMDAN [29] have been proposed to improve decom-
position performance and applied in various fields [30–32].
In spite of that, these decompositionmethods still have some
new problems. To solve these problems, an improved
CEEMDAN (ICEEMDAN) was developed by Colominas
et al. [33].

Let Ek(·) be the operator which generates the kth mode
using EMD,M(·) be the operator which generates the local
mean of the series, and w(i) be a realization of zero mean
unit variance noise. When x is the original signal, the
detailed decomposition process of ICEEMDAN is as
follows:

(i) Step 1: employ EMD to compute the local means of I
realizations x(i)� x+ β0E1(w(i)) to achieve the first
residue r1 �M(x

(i)), and β0> 0
(ii) Step 2: calculate the first IMF1� x− r1

(iii) Step 3: calculate the average of local means of the
realizations as the second residue:
r2 � (r1 + β1E2(w

(i)))

(iv) Step 4: compute the kth residue for k� 3,. . ., K:
rk �M(rk−1 + βk−1Ek(w

(i)))

(v) Step 5: go to step 4 for next k

Since ICEEMDAN can effectively decompose the orig-
inal time series, it has been frequently introduced into
various time series forecasting [34–36]. In our study, we
employ ICEEMDAN to separate the original economic and
financial time series into a sum of simpler subseries for
subsequent forecasting.

2.2. Whale Optimization Algorithm (WOA). Whale opti-
mization algorithm (WOA) is a type of optimizationmethod
and outperforms particle swarm optimization (PSO), ant
colony optimization (ACO), gravitational search algorithm
(GSA), and fast evolutionary programming (FEP) in the
optimization performance [37, 38]. Simulating the hunting
process of whales, WOA includes three main operators:
encircling prey, bubble-net foraging, and search for prey. In
each iteration, individuals update their positions toward the
best individual in the last iteration, which can be formulated
as follows:

P(t + 1) � Pbest(t) − A · C · Pbest(t) − P(t)
∣∣∣∣ ∣∣∣∣, (1)

where t represents the tth iteration, A and C are two co-
efficient vectors, Pbest is the best individual so far, P is the
position of an individual, || represents the absolute value,
and · indicates an element-by-element multiplication.

In the exploitation (bubble-net foraging) phase, the
individual position is updated based on its distance to the
best individual by simulating the helix-shaped movement of
whales, which is formulated as follows:

P(t + 1) � D · ebl · cos(2πl) + Pbest(t), (2)

where D� |Pbest(t)− P(t)| represents the distance between
the best individual obtained so far and the ith individual, l is
a random number in [−1, 1], and b is a constant which is
used to define the shape of logarithmic spiral.

In exploration (search for prey) phase, the individual
position is updated using a randomly selected individual.
)e mathematical model is follows:

P(t + 1) � Prand − A · C · Prand − P(t)
∣∣∣∣ ∣∣∣∣, (3)

where Prand represents a randomly selected individual.
)e detailed flowchart of WOA is illustrated in Figure 1,

where p is a random number in [0, 1]. Due to its very
competitive search ability, WOA has been widely applied in
various fields [39–41]. )erefore, we consider taking ad-
vantage of the effective search ability of WOA to seek the
optimal parameters for RVFL networks.
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2.3. RandomVector Functional Link (RVFL) Neural Network.
As a kind of modification of the multilayer perceptron
(MLP) model, the random vector functional link (RVFL)
neural network was proposed by Pao et al. [42]. )e RVFL
neural network is able to overcome the slow convergence,
overfitting, and local minimum inherently in the traditional
gradient-based learning algorithms. Like MLP, the archi-
tecture of the RVFL neural network includes three layers,
which is illustrated in Figure 2.)emain modification in the
RVFL network lies in the connection in the network
structure. Since the RVFL network has the direct connec-
tions from the input layer to the output layer, it can perform
better compared to no direct link [43, 44].

)e neurons in the hidden layer, known as enhancement
nodes, calculate the sum of all the output of the input layer
neurons and obtain their output with an activation function:

hm � g ∑N
n�1

wnmin + bm , (4)

where wnm denotes the weight between in and hm, bm rep-
resents the bias of the mth neuron in hidden layer, and g(·)
represents an activation function.

)e output layer neurons integrate all the output from
the hidden layer and input layer neurons, and the final
output is

ol � ∑M
m�1

wmlhm +∑N
n�1

wnlin, (5)

where wml represents the weight between hm and ol and wnl
indicates the weight between in and ol.

To enhance the training efficiency, the RVFL neural
network utilizes a given distribution to fix the values of wnm

and bm and obtain the weights of wml andwnl by minimizing
the system error:

E �
1

2P
∑P
j�1

t(j) − Bd(j)( )2, (6)

where P indicates the number of training samples and t are
the target values, B is the combination of wml and wnl, and d
represents a combined vector.

)e RVFL neural network has demonstrated an ex-
tremely efficient and fast forecasting ability and has been
frequently used in time series forecasting [44, 45].

3. MICEEMDAN-WOA-RVFL: The Proposed
Approach for Economic and Financial Time
Series Forecasting

Referring to the framework of “decomposition and en-
semble,” we design a multidecomposition and self-opti-
mizing hybrid model that integrates multiple
ICEEMDANs, WOA, and RVFL networks, termed as
MICEEMDAN-WOA-RVFL, to forecast economic and
financial time series. )e architecture of the proposed
hybrid model is illustrated in Figure 3.

Our proposed MICEEMDAN-WOA-RVFL takes ad-
vantage of the idea of “divide and conquer” that was fre-
quently used in time series forecasting, image processing,
fault diagnosis, and so on [46–53]. A procedure of “de-
composition and ensemble” in the MICEEMDAN-WOA-
RVFL is as follows:

(i) Stage 1: decomposition: ICEEMDAN is employed
to separate original time series into several subseries
(i.e., several IMFs and one residue).

Initialize the whales population Pi (i = 1, 2, ..., n)

Calculate the �tness of each individual and obtain the best individual Pbest

t < maximum
number of iterations

Update A, C, p and l for each individual respectively

p ≥ 0.5

Update the position of the current search by the Eq. (2) A < 1

Update the position of the current search by the Eq. (1) Update the position of the current search by the Eq. (3)

Calculate the �tness of each individual and update the best individual Pbest

t = t + 1

Obtain the best individual Pbest

True

True False

False

True False

Figure 1: )e flowchart of whale optimization algorithm (WOA).
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(ii) Stage 2: individual forecasting. Each decomposed
subseries is divided into a training dataset and a
testing dataset, then the RVFL network with WOA
optimization is developed on each training dataset
independently, and finally, the developed RVFL
model is used to each testing dataset. )e reason
why we select the RVFL network as the predictor is
its powerful forecasting ability in extant research
[15, 34, 44]. Since the parameter setting of the RVFL
network plays an important role in the prediction
performance, we introduce WOA to seek the op-
timal parameter values for the RVFL network in the
forecasting stage.

(iii) Stage 3: ensemble: the predictions of all the
decomposed subseries are aggregated as the final
prediction results of one “decomposition and en-
semble” using addition aggregation.

In this study, to enhance both accuracy and stability of
final prediction, we generate random values for the de-
composition parameters of ICEEMDAN in the decompo-
sition stage, including number of realizations (Nr), noise
standard deviation (Nsd), and maximum number of sifting
iterations (Maxsi), for each decomposition, and repeat the
procedure of “decomposition and ensemble” M times and,
finally, combine all the results of multiple “decompositions
and ensembles” using the RMSE-weighted method as the
final prediction results. )e corresponding weight of ith
forecasting model is as follows:

Weighti �
1/RMSEi∑Mj�11/RMSEj, (7)

where M denotes the number of individual models and
RMSEi indicates the RMSE value of the ith forecasting model
in the training process.

Decomposition

Individual forecasting

Ensemble

… … … …

… …

… …

Economic and �nancial time series

ICEEMDAN1

IMF1 IMFn Residue

RVFL

Predicted
result of IMF1

Addition

Predicted results1

WOA RVFL

Predicted
result of IMFn

Predicted
result of residue

Randomize the parameters
of ICEEMDAN1

Randomize the parameters
of ICEEMDANm

WOA RVFL WOA … …

… …

ICEEMDANm

IMF
1 IMFn

Residue

RVFL

Predicted
result of IMF1

Addition

Predicted resultsm

WOA RVFL

Predicted
result of IMFn

Predicted
result of residue

WOA RVFL WOA

……

Ensemble

Final predicted results

Figure 3: )e flowchart of the proposed MICEEMDAN-WOA-RVFL.

Input layer

Hidden layer

Output layer

i1

iN

hM

h2

h1

o1

oL

{wnm, bm} wml

wnl

Figure 2: )e architecture of the random vector functional link (RVFL) neural network.
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Although some recent studies also employ the RVFL
network for time series forecasting, they obviously differ
from the current study in the decomposition technique and
network optimization: (1) they divide the original time
series using WD or EMD; (2) they construct RVFL net-
works using the fixed parameter values. Unlike the previous
studies, our study decomposes economic and financial time
series using ICEEMDAN and searches the optimal pa-
rameter values of RVFL networks based on WOA. Fur-
thermore, the previous research mainly focuses on dividing
original time series by one single decomposition or dual
decomposition [20, 35, 54]. In dual decomposition, the
original signal is first decomposed into several compo-
nents, and then, the high-frequency components continue
to be decomposed into other components using the same or
different decomposition method. Essentially, the dual de-
composition process belongs to one decomposition, just
including two different decomposition stages. Unlike the
previous research, one main improvement in this study is
the multiple decomposition strategy, which can success-
fully overcome the randomness of one single decomposi-
tion and further improve the prediction accuracy and
stability of the developed forecasting approach. To our
knowledge, it is the first time that the multiple decom-
position strategy is developed for the forecasting of eco-
nomic and financial time series.

4. Experimental Results

4.1. Data Description. As we know, economic and financial
time series are influenced by various factors, sometimes raising
and dropping down in a short time. )e dramatic fluctuations
usually lead to the significant nonlinearity and nonstationarity
of the time series. To comprehensively evaluate the effectiveness
of the proposed MICEEMDAN-WOA-RVFL, we choose four
different time series, including the West Texas Intermediate
crude oil spot price (WTI), US dollar/Euro foreign exchange
rate (USD/EUR), US industrial production (IP), and Shanghai
stock exchange composite index (SSEC), as the experimental
datasets. )e first three datasets can be accessed via the website
of St. Louis Fed Research [55], and the last one can be obtained
via the website of NetEase [56].

Each time series is separated into two subdatasets: the
first 80% for training and the last 20% for testing. Table 1
shows the divided samples of the abovementioned four
economic and financial time series.

We utilize ICEEMDAN to decompose these time series
into groups of relatively simple subseries. Figure 4 offers an
example of the decomposition of the WTI dataset using
ICEEMDAN.

4.2. Evaluation Indices. In this study, we use four evaluation
metrics, including the mean absolute percent error (MAPE),
the root mean squared error (RMSE), the directional statistic
(Dstat), and the Diebold–Mariano (DM) test, to assess the
performance of the proposed model. Among them, MAPE
and RMSE are used to assess the forecasting error, defined as
follows:

MAPE �∑N
t�1

Ot − Pt
Ot

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ × 100N , (8)

RMSE �

��������������
1

N
∑N
t�1

Ot − Pt( )2
√√

, (9)

where N is the size of the evaluated samples, Ot denotes the
actual values, and Pt represents the predicted values at time t.
)e lower the values of RMSE and MAPE, the better the
prediction models.

)e Dstat indicates the performance of direction pre-
diction, which is formulated as follows:

Dstat �
1

N
∑N
i�1

di × 100%, (10)

where di� 1 if (Pt+1−Ot) (Ot+1−Ot)≥ 0; otherwise, di� 0. A
higher value of Dstat indicates a more accurate direction
prediction.

Furthermore, to test the significance of the prediction
performance of pairs of models, we employ the Die-
bold–Mariano (DM) test in this study.

4.3. Experimental Settings. In this study, we compare the
proposed MICEEMDAN-WOA-RVFL with several state-of-
the-art forecasting models, including the single models and
the ensemble models. Among all these models, the single
models include one popular statistical model, RW, and two
popular AI models. BPNN and least square SVR (LSSVR).
)e ensemble models derive from the combination of the
single models and the decomposition method ICEEMDAN.

)e detailed parameters of all prediction models, de-
composition approach ICEEMDAN, and optimization
method WOA in the experiments are shown in Table 2. )e
parameter values of BPNN, LSSVR, RVFL, and ICEEMDAN
refer to the previous literature [22, 34, 45].

All experiments were conducted using Matlab R2019b
on a PC with 64 bit Microsoft Windows 10, 8GB RAM, and
1.8GHz i7-8565U CPU.

4.4. Results and Analysis. We compare the forecasting
performance of six prediction models, including three single
models.

(RW, LSSVR, and BPNN) and three ensemble modes
(ICEEMDAN-RW, ICEEMDAN-LSSVR, and ICEEMDAN-
BPNN) with that of our proposed MICEEMDAN-WOA-
RVFL in terms of MAPE, RMSE, and Dstat. Due to the
different horizons, we train different forecasting models
separately. )at is to say, we use the proposed scheme for
different horizons to train different models. Tables 3–5 re-
port the experimental results in terms of each evaluation
index with 1-, 3-, and 6-horizon, respectively.

From Table 3, we can see that the proposed
MICEEMDAN-WOA-RVFL obtains the lowest (the best)
MAPE values with all the horizons in all the datasets. RW
obtains the best MAPE values with all the horizons in all the
datasets among all the compared single models,
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Figure 4: )e WTI crude oil price series and the corresponding decomposed subseries by ICEEMDAN.

Table 1: Samples of economic and financial time series.

Dataset Type Dataset Size Date

WTI Daily
Sample set 8641 2 January 1986∼15 April 2020
Training set 6912 2 January 1986∼24 May 2013
Testing set 1729 28 May 2013∼15 April 2020

USD/EUR Daily
Sample set 5341 4 January 1999∼10 April 2020
Training set 4272 4 January 1999∼30 December 2015
Testing set 1069 31 December 2015∼10 April 2020

IP Monthly
Sample set 1215 January 1919∼Match 2020
Training set 972 January 1919∼December 1999
Testing set 243 January 2000∼Match 2020

SSEC Daily
Sample set 7172 19 December 1990∼21 April 2020
Training set 5737 19 December 1990∼4 June 2014
Testing set 1435 5 June 2014∼21 April 2020
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demonstrating it is better than LSSVR and BPNN for the
forecasting of economic and financial time series. Of all the
ensemble models, the ICEEMDAN-LSSVR model and
ICEEMDAN-BPNN model obtain the close MAPE values,
obviously better than the ICEEMDAN-RW.

)e RMSE values of the four time series datasets are
listed in Table 4. From this table, we can find that the
proposed MICEEMDAN-WOA-RVFL outperforms all
the single and ensemble models with all the horizons in all
the datasets. )e statistical model RW obtains the best
RMSE values in 10 out of 12 cases, demonstrating that it is
more suitable for economic and financial time series
forecasting than LSSVR and BPNN among all the single
models. As to the ensemble models, the proposed
MICEEMDAN-WOA-RVFL obtains the lower RMSE
values than the compared ensemble models,

demonstrating that the former is more effective for eco-
nomic and financial time series forecasting.

Table 5 shows the directional statistics Dstat, and we can
see that the MICEEMDAN-WOA-RVFL achieves the
highest Dstat values in all the 12 cases, indicating that it has
better performance of direction forecasting. Amongst the
single prediction models, LSSVR and RW obtain the best
Dstat values in 5 cases, respectively, better than the BPNN.
Similarly, the ICEEMDAN-LSSVRmodel and ICEEMDAN-
BPNN model obtain the close Dstat values, obviously better
than the ICEEMDAN-RW model in all the 12 cases.

From the all prediction results, we can find that all the
ensemble prediction models except ICEEMDAN-RW greatly
outperform the corresponding single prediction models in all
the 12 cases, showing that the framework of decomposition
and ensemble is an effective tool for improving the forecasting

Table 2: )e settings for the parameters.

Method Parameters Description

ICEEMDAN
Nsd� 0.2 Noise standard deviation
Nr� 100 Number of realizations

Maxsi� 5000 Maximum number of sifting iterations

LSSVR
Rp� 2{−10,−9, . . ., 11,12} Regularization parameter

WidRBF� 2
{−10, −9, . . ., 11,12} Width of the RBF kernel

BPNN
Nhe� 10 Number of hidden neurons

Maxte� 1000 Maximum training epochs
Lr� 0.0001 Learning rate

WOA
Pop� 40 Population size

Maxgen� 100 Maximum generation

MICEEMDAN-WOA-
RVFL

Nsd� [0.01, 0.4] Noise standard deviation in ICEEMDAN
Nr� [50, 500] Number of realizations in ICEEMDAN

Maxsi� [2000, 8000]
Maximum number of sifting iterations in

ICEEMDAN
Nhe� [5, 30] Number of hidden neurons in RVFL

Func� {sigmoid, sine, hardlim, tribas, radbas, sign} Activation function in RVFL
Mod� 1: Regularized least square, Mode in RVFL
2: Moore–Penrose pseudoinverse

Lag� [3, 20] Lag in RVFL
Bias� {true, false} Bias in RVFL

Rand� {1: Gaussian, 2: Uniform} Random type in RVFL
Scale� [0.1, 1] Scale value in RVFL

ScaleMode� {1: Scale the features for all neurons, Scale mode in RVFL
2: Scale the features for each hidden neuron,

3: Scale the range of the randomization for uniform
diatribution}

Table 3: )e mean absolute percent error (MAPE) values of different prediction models.

Dataset Horizon MICEEMDAN -WOA-RVFL RW LSSVR BPNN ICEEMDAN -RW ICEEMDAN -LSSVR ICEEMDAN -BPNN

WTI
1 0.0036 0.0176 0.0177 0.0182 0.0200 0.0044 0.0055
3 0.0080 0.0307 0.0309 0.0320 0.0331 0.0092 0.0094
6 0.0113 0.0441 0.0449 0.0457 0.0458 0.1202 0.0130

USD/EUR
1 0.0006 0.0034 0.0034 0.0034 0.0044 0.0010 0.0010
3 0.0015 0.0063 0.0063 0.0063 0.0071 0.0020 0.0021
6 0.0022 0.0087 0.0088 0.0087 0.0094 0.0032 0.0031

IP
1 0.0012 0.0049 0.0057 0.0056 0.0053 0.0024 0.0022
3 0.0023 0.0102 0.0140 0.0123 0.0104 0.0033 0.0033
6 0.0032 0.0183 0.0279 0.0235 0.0184 0.0043 0.0049

SSEC
1 0.0020 0.0096 0.0096 0.0097 0.0111 0.0026 0.0026
3 0.0044 0.0178 0.0178 0.0179 0.0185 0.0047 0.0051
6 0.0065 0.0259 0.0259 0.0269 0.0268 0.0072 0.0074
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performance. Of all the compared models, the proposed
MICEEMDAN-WOA-RVFL obtains the highest Dstat values
and the lowest MAPE and RMSE values in all the time series
datasets, showing that it is completely superior to the
benchmark prediction models. Furthermore, for each pre-
dictionmodel, theMAPE and RMSE values increase while the
Dstat values decrease with the horizon.)is demonstrates that
it is easier to forecast time series with a short horizon than
with a long one. It is worth noting that the proposed
MICEEMDAN-WOA-RVFL still achieves the relatively good
MAPE and RMSE with the increase of horizon among the
compared models. For example, when the proposed model
obtains 0.7737 Dstat with horizon 6 in the WTI dataset, it
achieves the relatively low MAPE (0.0113) and RMSE
(0.8146), indicating that the prediction values are very close to
the real values although the proposed model misses direction
about 22.63%. In other words, the proposed MICEEMDAN-
WOA-RVFL can still achieve satisfactory forecasting accuracy
with a long horizon.

Furthermore, we can find that the multiple decompo-
sition strategy does not improve the forecast for the RW
model. One possible explanation is simply that RW infers
that the past movement or trend of a time series cannot be
used to predict its future movement, and thus, it cannot take
advantage of the historical data and the diversity of multiple
decomposition to make the future prediction. )erefore,
when we aggregate the multiple RWmodel predictions of all
the decomposed subseries, we just integrate several random
predictions and, thus, cannot significantly improve the
ensemble prediction results. In contrast, the LSSVR and

BPNN, as well as RVFL, can fully use all the historical data
and the diversity of multiple decomposition to make the
future prediction. Specifically, the multiple decomposition
using different parameters generates many groups of dif-
ferent decomposed subseries, and the diversity of decom-
position can successfully overcome the randomness of one
single decomposition and further improve the prediction
accuracy and stability of the developed forecasting approach.

In addition, the Diebold–Mariano (DM) test is utilized
to evaluate whether the forecasting accuracy of the proposed
MICEEMDAN-WOA-RVFL significantly outperforms
those of the other compared models. Table 6 shows the
statistics and p values (in brackets).

On one hand, the DM statistical values between the
ensemble prediction models and their corresponding single
predictors are much lower than zero and the corresponding
p values are almost equal to zero with all the horizons except
for the RW model, showing that the architecture of “de-
composition and ensemble” contributes to greatly im-
proving prediction accuracy and the combination of
ICEEMDAN and AI predictors is more effective for eco-
nomic and financial time series forecasting.

On the other hand, DM test results on the prediction of
all the four time series datasets indicate that the
MICEEMDAN-WOA-RVFL is significantly better than the
single models and the other ensemble models with all the
horizons, and the corresponding p values are much lower
than 0.01 in all the cases.

In summary, the DM test results demonstrate that the
combination of multiple ICEEMDANs, RVFL networks, and

Table 4: )e root mean squared error (RMSE) values of different prediction models.

Dataset Horizon MICEEMDAN -WOA-RVFL RW LSSVR BPNN ICEEMDAN -RW ICEEMDAN -LSSVR ICEEMDAN -BPNN

WTI
1 0.2715 1.3196 1.3228 1.3744 1.8134 0.3467 0.4078
3 0.5953 2.1784 2.1929 2.2867 2.5041 0.6754 0.7620
6 0.8146 3.0737 3.1271 3.1845 3.2348 0.8692 0.9462

USD/EUR
1 0.0009 0.0051 0.0052 0.0052 0.0099 0.0015 0.0016
3 0.0022 0.0091 0.0092 0.0092 0.0129 0.0031 0.0031
6 0.0033 0.0127 0.0128 0.0127 0.0154 0.0047 0.0046

IP
1 0.2114 0.7528 0.8441 0.8230 0.8205 0.3861 0.4175
3 0.3875 1.4059 1.8553 1.8311 1.4401 0.5533 0.5294
6 0.5340 2.4459 3.6015 2.8116 2.4569 0.6408 0.8264

SSEC
1 10.8115 50.0742 49.8800 50.8431 63.3951 12.6460 13.7928
3 22.2983 89.1834 88.5290 89.1781 93.2887 25.2526 29.7784
6 35.7201 131.6386 131.3487 133.5647 137.2598 40.4357 49.6341

Table 5: )e directional statistic (Dstat) values of different prediction models.

Dataset Horizon MICEEMDAN -WOA-RVFL RW LSSVR BPNN ICEEMDAN -RW ICEEMDAN -LSSVR ICEEMDAN -BPNN

WTI
1 0.9381 0.4815 0.5243 0.5191 0.4977 0.9190 0.9097
3 0.8576 0.4873 0.5087 0.5012 0.4907 0.8300 0.8449
6 0.7737 0.5116 0.4902 0.4948 0.5185 0.7714 0.7575

USD/EUR
1 0.9410 0.5019 0.4719 0.4897 0.5056 0.8998 0.9026
3 0.8502 0.4888 0.4897 0.4925 0.4916 0.8118 0.8024
6 0.7828 0.4991 0.5318 0.5253 0.5047 0.7023 0.7154

IP
1 0.9256 0.5579 0.5909 0.5785 0.5620 0.8636 0.8760
3 0.8802 0.6983 0.5455 0.4876 0.6529 0.8430 0.8058
6 0.8141 0.6198 0.5537 0.5661 0.6405 0.7355 0.7645

SSEC
1 0.9156 0.4944 0.5049 0.5098 0.4979 0.9024 0.9002
3 0.8396 0.5042 0.5021 0.5007 0.4965 0.8222 0.8145
6 0.7587 0.4833 0.5063 0.4965 0.4805 0.7448 0.7455
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WOA optimization can significantly enhance the prediction
accuracy of economic and financial time series forecasting.

5. Discussion

To better investigate the proposed MICEEMDAN-WOA-
RVFL, we further discuss the developed prediction model,
including the comparison of single decomposition and
multiple decompositions, the optimization effectiveness of
WOA, and the impact of ensemble size in this subsection.

5.1. Comparison of Single Decomposition and Multiple
Decompositions. One of the main novelties of this study is
the multiple decomposition strategy, which can successfully
overcome the randomness of a single decomposition and
improve the prediction accuracy and stability of the de-
veloped forecasting model. To evaluate the effectiveness of
the multiple decomposition strategy, we compare the pre-
diction results of MICEEMDAN-WOA-RVFL and ICE-
EMDAN-WOA-RVFL. )e former ensembles the
prediction results of M(M� 100) individual ICEEMDAN
decompositions with random parameters, while the latter
only employs one ICEEMDAN decomposition. We ran-
domly choose 5 out of these 100 decompositions and execute
ICEEMDAN-WOA-RVFL for time series forecasting.
Tables 7–9 report the MAPE, RMSE, and Dstat values of the
MICEEMDAN-WOA-RVFL and the five ICEEMDAN-
WOA-RVFL models using single decomposition and the
corresponding mean values of these five models using single
decomposition.

On one hand, compared with the prediction results of
the five single decompositions and the mean prediction
results, the proposed MICEEMDAN-WOA-RVFL achieves
the lowest MAPE and the highest Dstat values in all the 12
cases and the lowest RMSE values in 11 out of all the 12
cases, indicating that the multiple decomposition strategy
can successfully overcome the randomness of single de-
composition and improve the ensemble prediction accuracy.

On the other hand, we can find that the multiple de-
composition strategy can greatly improve the stability of the
prediction model. For example, the range of MAPE values of
the five single decomposition models with horizon 6 in the
IP time series dataset is from 0.0034 to 0.1114, indicating
that different single decomposition can produce relatively
great difference in prediction results. When we employ the
multiple decomposition strategy, we can overcome the
randomness of single decomposition and, thus, enhance
prediction stability.

In summary, the experimental results suggest that the
multiple decomposition strategy and prediction ensemble
can effectively enhance prediction accuracy and stability.
)e main reasons for the prediction improvement lie in
three aspects: (1) the multiple decomposition can reduce the

randomness of one single decomposition and simulta-
neously generate groups of differential subseries; (2) pre-
dictions using these groups of differential subseries can
achieve diverse prediction results; and (3) the selection and
ensemble of these diverse prediction results can ensure both
accuracy and diversity and, thus, improve the final ensemble
prediction.

5.2. 9e Optimization Effectiveness of WOA. When we use
RVFL networks to construct predictors, a number of pa-
rameters need to be set in advance. In this study, WOA is
introduced to search the optimal parameter values for
RVFL predictors using its powerful optimization ability. To
investigate the optimization effectiveness of WOA for
parameter search, we compare the proposed MICEEM-
DAN-WOA-RVFL with MICEEMDAN-RVFL without
WOA optimization. According to the literature [45], we
fixed the number of hidden neurons Nhe� 100, activation
function Func� sigmoid, and random type Rand �Gaussian
in MICEEMDAN-RVFL. )e MAPE, RMSE, and Dstat
values are reported in Tables 10–12, respectively.

In all the four time series datasets, the prediction per-
formance of the proposed MICEEMDAN-WOA-RVFL
model is better than or equal to that of the MICEEMDAN-
RVFL model without WOA optimization in all the 12 cases
except for the RMSE value with horizon 1 in the SSEC dataset
in terms of MAPE and RMSE, as listed in Tables 10 and 11. In
addition, the MICEEMDAN-WOA-RVFL obtains the higher
Dstat values in 10 out of 12 cases, which can be seen in Ta-
ble 12.)e all results indicate thatWOA can effectively search
the optimal parameter settings for RVFL networks, further
improving the overall prediction performance.

5.3. 9e Impact of Ensemble Size. )e previous research has
demonstrated that the ensemble strategy of using all indi-
vidual prediction models is unlikely to work well and the
selection of individual prediction models contributes to
improving the ensemble prediction performance [57]. In
this study, we sort all individual prediction models based on
their past performance (RMSE values) and, then, select the
topN percent as the ensemble size to construct the ensemble
prediction model. To further investigate the impact of en-
semble size on ensemble prediction, we use different en-
semble sizes (es� 10%, 20%,. . ., 100%) to select the top N
percent of individual forecasting models to develop the
ensemble prediction model and conduct the one-step-ahead
forecasting experiment on the four time series datasets. )e
results are demonstrated in Figure 5.

We can see that the MICEEMDAN-WOA-RVFL obtains
the best forecasting performance in the WTI, IP, and SSEC
datasets when the ensemble size es is in the range of 20%–
40% and in the USD/EUR dataset when the ensemble size es
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Table 7: )e mean absolute percent error (MAPE) values of single decomposition and multiple decompositions.

Dataset Horizon
MICEEMDAN-
WOA-RVFL

ICEEMDAN-
WOA-RVFL1

ICEEMDAN-
WOA-RVFL2

ICEEMDAN-
WOA-RVFL3

ICEEMDAN-
WOA-RVFL4

ICEEMDAN-
WOA-RVFL5

Mean

WTI
1 0.0036 0.0043 0.0045 0.0045 0.0041 0.0040 0.0043
3 0.0080 0.0088 0.0084 0.0084 0.0082 0.0083 0.0084
6 0.0113 0.0132 0.0115 0.0113 0.0118 0.0120 0.0112

USD/
EUR

1 0.0006 0.0011 0.0010 0.0008 0.0010 0.0008 0.0009
3 0.0015 0.0021 0.0021 0.0015 0.0017 0.0015 0.0018
6 0.0022 0.0033 0.0022 0.0023 0.0023 0.0024 0.0025

IP
1 0.0012 0.0016 0.0016 0.0017 0.0017 0.0015 0.0016
3 0.0023 0.0024 0.0026 0.0030 0.0028 0.0024 0.0026
6 0.0032 0.0036 0.0034 0.1114 0.0036 0.0041 0.0252

SSEC
1 0.0020 0.0024 0.0023 0.0026 0.0023 0.0023 0.0024
3 0.0044 0.0045 0.0046 0.0052 0.0045 0.0047 0.0047
6 0.0065 0.0067 0.0070 0.0085 0.0068 0.0075 0.0073

Table 8: )e root mean squared error (RMSE) values of single decomposition and multiple decompositions.

Dataset Horizon
MICEEMDAN-
WOA-RVFL

ICEEMDAN-
WOA-RVFL1

ICEEMDAN-
WOA-RVFL2

ICEEMDAN-
WOA-RVFL3

ICEEMDAN-
WOA-RVFL4

ICEEMDAN-
WOA-RVFL5

Mean

WTI
1 0.2715 0.3316 0.3376 0.3352 0.3191 0.3148 0.3277
3 0.5953 0.6557 0.6214 0.6200 0.6058 0.6133 0.6232
6 0.8146 0.9490 0.8239 0.8199 0.8508 0.8597 0.8607

USD/
EUR

1 0.0009 0.0017 0.0017 0.0012 0.0015 0.0012 0.0015
3 0.0022 0.0031 0.0034 0.0023 0.0025 0.0023 0.0027
6 0.0033 0.0048 0.0033 0.0035 0.0035 0.0036 0.0037

IP
1 0.2114 0.2894 0.3080 0.3656 0.3220 0.2589 0.3088
3 0.3875 0.4098 0.4507 0.4809 0.4776 0.4027 0.4443
6 0.5340 0.5502 0.5563 1.0081 0.5697 0.6466 0.6661

SSEC
1 10.8115 11.5515 13.0728 16.7301 12.2465 14.3671 13.5936
3 22.2983 22.0603 22.8140 33.9937 23.9755 25.8004 25.7288
6 35.7201 37.0255 41.9033 55.5066 38.6140 48.2131 44.2525

Table 9: )e directional statistic (Dstat) values of single decomposition and multiple decompositions.

Dataset Horizon
MICEEMDAN-
WOA-RVFL

ICEEMDAN-
WOA-RVFL1

ICEEMDAN-
WOA-RVFL2

ICEEMDAN-
WOA-RVFL3

ICEEMDAN-
WOA-RVFL4

ICEEMDAN-
WOA-RVFL5

Mean

WTI
1 0.9381 0.9201 0.9161 0.9184 0.9323 0.9271 0.9228
3 0.8576 0.8414 0.8548 0.8385 0.8553 0.8513 0.8483
6 0.7737 0.7419 0.7703 0.7668 0.7627 0.7616 0.7607

USD/
EUR

1 0.941 0.9008 0.9270 0.9204 0.9073 0.9157 0.9142
3 0.8502 0.8052 0.8418 0.8399 0.8296 0.8427 0.8318
6 0.7828 0.6826 0.7809 0.7819 0.7772 0.7706 0.7586

IP
1 0.9256 0.8967 0.8926 0.9132 0.8967 0.9174 0.9033
3 0.8802 0.8760 0.8430 0.8223 0.8471 0.8802 0.8537
6 0.8141 0.8017 0.8017 0.7066 0.7851 0.8017 0.7794

SSEC
1 0.9156 0.9052 0.9052 0.9052 0.9087 0.9135 0.9076
3 0.8396 0.8222 0.8292 0.8208 0.8368 0.8264 0.8271
6 0.7587 0.7462 0.7441 0.7134 0.7594 0.7448 0.7416

Table 10: )e mean absolute percent error (MAPE) values with and without WOA optimization.

Dataset Horizon MICEEMDAN-WOA-RVFL MICEEMDAN-RVFL

WTI
1 0.0036 0.0037
3 0.0080 0.0082
6 0.0113 0.0118

USD/EUR
1 0.0006 0.0006
3 0.0015 0.0015
6 0.0022 0.0023

IP
1 0.0012 0.0013
3 0.0023 0.0023
6 0.0032 0.0036

SSEC
1 0.0020 0.0020
3 0.0044 0.0044
6 0.0065 0.0066
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Table 11: )e root mean squared error (RMSE) values with and without WOA optimization.

Dataset Horizon MICEEMDAN-WOA-RVFL MICEEMDAN-RVFL

WTI
1 0.2715 0.2824
3 0.5953 0.6079
6 0.8146 0.8485

USD/EUR
1 0.0009 0.0010
3 0.0022 0.0022
6 0.0033 0.0034

IP
1 0.2114 0.2362
3 0.3875 0.4033
6 0.5340 0.5531

SSEC
1 10.8115 10.7616
3 22.2983 22.7456
6 35.7201 36.3150

Table 12: )e directional statistic (Dstat) values with and without WOA optimization.

Dataset Horizon MICEEMDAN-WOA-RVFL MICEEMDAN-RVFL

WTI
1 0.9381 0.9358
3 0.8576 0.8565
6 0.7737 0.7656

USD/EUR
1 0.941 0.9317
3 0.8502 0.8455
6 0.7828 0.7762

IP
1 0.9256 0.9174
3 0.8802 0.8430
6 0.8141 0.7893

SSEC
1 0.9156 0.9191

3 0.8396 0.8351
6 0.7587 0.7594
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Figure 5: Continued.
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is in the range of 10%–40% in terms of MAPE, RMSE, and
Dstat. When the es is greater than 40%, the MAPE and RMSE
values continue to worsen and become the worst when the
ensemble size grows to 100. )e experimental results in-
dicate that the ensemble size has an overall significant
impact on ensemble prediction, and an ideal range of en-
semble size is about 20% to 40%.

6. Conclusions

To better forecast economic and financial time series, we
propose a novel multidecomposition and self-optimizing en-
semble prediction model MICEEMDAN-WOA-RVFL com-
bining multiple ICEEMDANs, WOA, and RVFL networks.
)e MICEEMDAN-WOA-RVFL first uses ICEEMDAN to
multiply separate original economic and financial time series
into groups of subseries many times, and then, RVFL networks
are used to individually forecast the decomposed subseries in
each decomposition. Simultaneously, WOA is introduced to
optimize RVFL networks to further improve the prediction
accuracy. )irdly, the predictions of subseries in each de-
composition are integrated into the forecasting results of each
decomposition using addition. Finally, the prediction results of
each decomposition are selected based on RMSE values and are
combined as the final prediction results.

As far as we know, it is the first time that WOA is
employed for the optimal parameter search for RVFL net-
works and themultiple decomposition strategy is introduced
in time series forecasting. )e empirical results indicate that

(1) the proposed MICEEMDAN-WOA-RVFL significantly
improves prediction accuracy in various economic and fi-
nancial time series forecasting; (2) WOA can effectively
search optimal parameters for RVFL networks and improve
prediction performance of economic and financial time
series forecasting; and (3) the multiple decomposition
strategy can successfully overcome the randomness of a
single decomposition and enhance the prediction accuracy
and stability of the developed prediction model.

We will extend our study in two aspects in the future: (1)
applying the MICEEMDAN-WOA-RVFL to forecast more
economic and financial time series and (2) improving the
selection and ensemble method of individual forecasting
models to further enhance the prediction performance.
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