
 

 

http://uu.diva-portal.org 
 
 
 
 
This is an author produced version of a paper presented at The Design 
Automation Conference 2012, June 3-7, 2012, San Francisco, California, 
USA. This paper has been peer-reviewed but may not include the final 
publisher proof-corrections or pagination. 
 
Kumar, Pratyush et al. 
”	  A Hybrid Approach to Cyber-Physical Systems Verification" 



A Hybrid Approach to Cyber-Physical Systems Verification

Pratyush Kumar, Dip Goswami1, Samarjit Chakraborty1,
Anuradha Annaswamy2, Kai Lampka3, Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich
1Institute of Real-Time Computer Systems, TU Munich

2Department of Mechanical Engineering, MIT
3Department of Information Technology, Uppsala University

ABSTRACT
We propose a performance verification technique for cyber-
physical systems that consist of multiple control loops imple-
mented on a distributed architecture. The architectures we
consider are fairly generic and arise in domains such as auto-
motive and industrial automation; they are multiple proces-
sors or electronic control units (ECUs) communicating over
buses like FlexRay and CAN. Current practice involves an-
alyzing the architecture to estimate worst-case end-to-end
message delays and using these delays to design the con-
trol applications. This involves a significant amount of pes-
simism since the worst-case delays often occur very rarely.
We show how to combine functional analysis techniques with
model checking in order to derive a delay-frequency inter-
face that quantifies the interleavings between messages with
worst-case delays and those with smaller delays. In other
words, we bound the frequency with which control messages
might suffer the worst-case delay. We show that such a
delay-frequency interface enables us to verify much tigher
control performance properties compared to what would be
possible with only worst-case delay bounds.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
[Real-time and embedded systems]; D.2.4 [Software/Program
Verification]: [Formal methods]; D.4.5 [Reliability]: [Fault
tolerance]

General Terms
Design, Theory, Verification

Keywords
Cyber-Physical Systems, Frequency-Delay Metric, Stability,
Real-Time Calculus, Timed-Automata

1. INTRODUCTION
Cyber-physical systems involve a tight interaction between

the cyber (computational) and the physical components of
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Figure 1: Architecture considered for example

an embedded system. In this paper we study cyber-physical
systems in which multiple control applications are imple-
mented in a distributed fashion on a set of electronic control
units (ECUs) that communicate over buses like CAN and
FlexRay (see Figure 1). Such a setup is fairly generic and
can be found in automotive systems, industrial automation
systems, large-scale robotic systems and in avionics.

Traditionally, the control theory community has largely
ignored the implementation aspects (both software and ar-
chitecture) of controllers and has focused on mathematical
models, their analysis, and high-level simulation. In this
process, a number of simplifying assumptions have been
made when designing controllers. They include neglecting
the computation times when evaluating control laws and
neglecting the control message communication times. The
implementation of the high-level control laws while taking
into account implementation issues that have been ignored
while designing these laws, mostly fell within the domain
of embedded systems and software design. Several research
threads within the embedded systems community have tried
to systematically address these issues. They include the de-
velopment of the synchronous language paradigm [4], time-
triggered languages like Giotto [7] and other related for-
malisms such as PTIDES [16]. In parallel to these efforts,
as the implementation platforms became more complex and
the semantic gap between high-level control models and
their implementations widens, the control theory commu-
nity started investigating what is referred to as networked
control systems (NCS) [13, 14], where the focus has been on
distributed controllers communicating over a wireless net-
work. Research with NCS takes into account issues such as
delays suffered by control messages, message loss and jitter,
and factors these issues into controller design.

In the case of distributed controller design, the current
practice is to estimate worst case end-to-end message de-
lays and design control laws that account for these delays.
Within the NCS domain, statistical properties of these de-
lays have also been taken into account while doing controller
design. The problem in such cases boil down to analyzing



the stability and performance of systems consisting of sev-
eral switching subsystems, each designed for specific mes-
sage delay values. Tools used within the control systems
community to analyze such switching behavior include Mul-
tiple Lyapunov Functions [6], the Average Dwell time [15]
approach, or common quadratic Lyapunov functions [9]. In
all of these cases, the switching between multiple subsystems
is assumed to be arbitrary and the behavior of the system
is characterized by the worst-case switching pattern.

Our contribution: In this paper we observe that often the
worst-case message delays occur very rarely. Further, in con-
trast to wireless networks, the architectures we study (mul-
tiple ECUs communicating over FlexRay or CAN networks
and scheduled using deterministic scheduling policies) offer
substantial structure to rule out certain delay (and hence
switching) patterns. In other words, we can bound the oc-
currences of messages with worst-case delays, or quantify
the interleavings between messages with worst-case delays
and those with smaller delays. In this paper we refer to
this as the delay-frequency interface between the underlying
architecture and the control applications implemented on
this architecture. We show that such delay-frequency inter-
faces may be used to verify much tighter control performance
properties in comparison to using the worst-case delay alone
(i.e., without the frequency with which the delay occurs).

Exploiting the above observation involves two technical
challenges. (i) How to compute the delay-frequency inter-
face for a distributed architecture? and (ii) How to use such
an interface to give tighter control performance guarantees?
Towards (i), we use a hybrid combination of (a) a func-
tional approach to analyzing the timing properties of an
architecture with (b) model checking. The functional ap-
proach is based on real-time calculus [12], where functions
over time interval lengths are used to provide upper and
lower bounds on the service provided by a resource (such
as an ECU or a bus) or bounds on the arrival patterns
of messages to be processed or transmitted by a resource.
These bounds are then analyzed to estimate worst-case de-
lays or backlogs suffered by message streams. For such anal-
ysis we have used the Matlab-based Modular Performance
Analysis toolbox (available from www.mpa.ethz.ch). While
the worst-case delays computed by this method consider
all possible service and message arrival patterns that are
specified by the upper and lower bounds/functions, we rule
out certain architecture-specific service and arrival patterns
through model checking (using UPPAAL [3]) and obtain our
required delay-frequency interface, which is a significantly
richer interface than the worst-case delay alone. Towards
(ii), we utilize an analysis technique based on the existence
of a common quadratic Lyapunov function [9]. As already
mentioned, the main design task from control side is to guar-
antee control stability and performance in the presence of
switching. Knowledge of the delay frequency metric essen-
tially restricts the set of possible switching patterns. We
address the stability and performance related aspects of the
control loops for this restricted set of switching behavior
(coming from the knowledge of delay frequency metric) by
showing the existence of common Lyapunov functions among
various switching subsystems as a proof of stability.

Related Works: Lately, there has been a considerable
amount of activity in the area of control/architecture co-
design. In particular, Alur et al. quantified the semantic gap
between the control models and their implementations in [2].
In [11], an integrated co-design of control and architecture
has been proposed. However, none of these and other efforts

utilized the delay properties of the underlying architecture
to bound control performance. Similarly, while stochastic
delay distributions have been used in the NCS domain, to
the best of our knowledge, this work is the first effort to use
a deterministic distribution on control message delay values
in order to give tighter control performance guarantees.

The rest of the paper is structured as follows. In Section
2, we discuss a motivating example that highlight the limi-
tation of the existing approaches. In Section 3, we describe
the delay-based feedback control strategy and we then in-
troduce the idea of delay frequency metric in light of the
proposed control strategy. Section 4 illustrates how a de-
lay frequency metric can be verified for a given architecture.
The delay frequency metric is richer timing interface that we
argue for. In Section 5, we demonstrate how we can apply
the knowledge of the proposed timing interface to tighten
the control design considering the example shown in Section
2. Several of the computations and explanations have been
included in Appendices A-F.

2. MOTIVATION
In this section, we describe a motivational example of a

control application that is implemented over a distributed
architecture, which is retained throughout this paper. The
fundamental objective of any control application is to regu-
late the behavior of dynamical systems (or plants) which are
more commonly referred to as plant dynamics. The behav-
ior of such dynamical systems (feedback signals) is measured
using sensors, and the control algorithm (running on a pro-
cessing unit) decides the necessary actuation signal which
is then realized by the actuator. Hence, the feedback loop
is closed over a set of spatially separated sensors and ac-
tuators communicating via a bus system and processors in
distributed cyber-physical systems. In this paper, we con-
sider an example architecture from the automotive domain.
However, the analysis presented is relevant to a variety of
other settings too.

The considered example is representative of three charac-
teristic properties of today’s cyber-physical systems, such as
those found in modern cars or in industrial automation ap-
plications. First, it depicts how the integrated nature of the
system brings together several applications, which have to
be analyzed simultaneously, even though the analysis chal-
lenges may be modular. Second, it highlights the distributed
nature of the system, whereby the control feedback loop goes
through several components: sensors, buses, ECUs and fi-
nally actuators. Third, it characterizes the heterogeneity of
the system architecture, wherein several components such
as specialized buses are used.

2.1 System architecture
As a representative system, we consider the example shown

in Figure 1. It consists of three sensors S1, S2 and S3 that are
connected to three Electronic Control Units (ECUs) (not ex-
plicitly shown in the figure). The sensor readings from these
ECUs are transmitted via a FlexRay bus to the ECU shown
in Figure 1. Subsequently, the sensor readings are computed
upon in the ECU and the generated output is transmitted
over a Controller Area Network (CAN) bus to actuators A1,
A2 and A3 (which are connected to three other ECUs). Each
sensor/actuator (Si, Ai) pair forms a control loop which reg-
ulates the behavior of an independent plant Pi. Thus, three
sensor/actuator pairs regulate three independent plants de-
noted as P1, P2 and P3. In this paper, we study various
aspects of stability and performance of the plant P2.

The timing properties of the above system are character-



Plant τFR τECU τCAN

1 40 50 30
2 20 15 10
3 20 15 20

Table 1: Worst-case execution times of different
tasks (in ms)

ized by three aspects: (a) how often the sensors are read,
(b) what is the time required to process the feedback in
the different components, and (c) what are the scheduling
parameters in the different components. We now describe
these three aspects.

We categorize the tasks in the above architecture into
three classes. First, the task τFR

i responsible for sending
the sensor reading from Si via the FlexRay bus. Second,
the task τECU

i responsible for processing the sensor signal
sent by τFR

i , computing the control signal and sending the
control signal via the CAN bus. Third, the task τCAN

i is
responsible to actuate Ai based on the control signal sent
by τECU

i . The worst-case execution times of these tasks on
their respective components are shown in Table 1.

Essentially, it is assumed that the sensor Si and the ac-
tuator Ai are attached to plant Pi. Based on the reading
from Si and the actuation from Ai, the plant Pi is regu-
lated. We assume that P2 and P3 are time-triggered with
period 100ms. That is, τFR

i , τECU
i and τCAN

i are triggered
periodically with periods 100ms for i = {2, 3}. For P1, τFR

1 ,
τECU
1 and τCAN

1 are triggered with a period of 100ms and
maximum jitter of 50ms.

The FlexRay bus is used by τFR
i to send the sensor reading

to the ECU. The FlexRay bus is divided into communica-
tion cycles which consists of the time-triggered static and
the event-triggered dynamic segments. The static segment
is divided into multiple slots of equal length. On the other
hand, the bus access in the dynamic segment is arbitrated
in a fixed-priority fashion. In this example, we consider the
FlexRay bus with static and dynamic segments of length 40
ms each, and a period or cycle length of 80ms. The task τFR

1

transmits message over the static segment. The messages
from τFR

2 and τFR
3 are transmitted over the dynamic segment

with increasing order of priority. On the ECU, a hierarchical
scheduler is used. τECU

1 is scheduled as a high-priority task.
The other two tasks are scheduled within a low-priority task
which executes two constant bandwidth servers [1] with uti-
lization 50% each, to serve τECU

2 and τECU
3 . Finally, the CAN

bus schedules the messages with priorities in decreasing or-
der, with messages from τCAN

1 and τCAN
3 having highest and

lowest priorities respectively.

2.2 Control applications
In the context of the architecture described in the previous

section, we focus on the feedback loop for plant P2. As
a plant dynamics P2, we consider a common discrete-time
linear time-invariant (LTI) system of the form,

x[k + 1] = Ax[k] +Bu[k] (1)

A =

[
0.0 1
0.9 0.2

]
, B =

[
0
1

]
. (2)

where x[k] is the vector of state variables and u[k] is the
control input to the system which needs to be designed. We
consider a regulation problem which essentially means the
design of u[k] such that x[k]→ 0 from any initial condition
with k. In this work, we consider static state-feedback con-
trol strategy for designing u[k]. In view of the above system,

we make the following observations:

• The sensor S2 reads all the states x[k], i.e., the states
are measurable. The measurement is done periodically
with constant period of p = 100ms. Similarly, the
actuation is periodical with p = 100ms using A2.

• The time when S2 reads feedback signal x[k] to the
point when A2 is actuated utilizing that signal is called
the sensor-to-actuator delay d. The delay d consists
of the transmission/waiting time of the sensor signal,
processing time of the sensor signal and the transmis-
sion/waiting time of the actuator signal. Clearly, d is
not constant across jobs.

• With u[k] = 0, the resulting plant is open-loop and the
behavior of the open-loop plant is dictated by proper-
ties of the system matrix A. In this case, the absolute
value of the maximum eigenvalue of A is outside the
unit circle, i.e., |λmax(A)| > 1. That is, the open-loop
plant is unstable.

• In the presence of a sensor-to-actuator delay d, the
task is to design static state-feedback u[k] = Kx[k −⌈

d
p

⌉
]) such that x[k]→ 0 with k →∞ where K is the

state-feedback gain.

• With above control input, we denote the closed-loop
system matrix by Acl. We measure the quality of con-
trol using the stability margin, i.e., Q = (1−|λmax(Acl)|).
A larger Q indicates a higher stability margin.

As a design criterion, we are required to guarantee a sta-
bility margin Q ≥ 0.15 in our example.

2.3 Design Motivation
Towards designing a regulator for the control loop under

consideration, the easiest way is to design the system us-
ing the worst-case sensor-to-actuator (or end-to-end) delay.
There are various well-known approaches in the real-time
systems literature for computing such end-to-end delays. As
mentioned before, we have chosen the Modular Performance
Analysis (MPA) toolbox because it provides several advan-
tages like compositionality. We modelled the timing proper-
ties and scheduling parameters within this tool and obtained
the worst-case sensor-to-actuator delay dmax = 320ms. The
detailed analysis is presented in Appendix A.

The above analysis implies that with periodic actuation of
A2 with p = 100ms, the worst-case sensor-to-actuator delay

is
⌈

dmax
p

⌉
= 4 samples. Then, the obvious design possibility

is to set u[k] = Kx[k − 4], where every feedback signal de-
layed by 4 samples. There are several standard approaches
in the control theory literature for designing K with such
delayed feedback signals. With static state-feedback con-
trol scheme [10], the best stability margin of Q = 0.1455 is
obtained with K = [−0.14 − 0.05].

The computed stability margin does not meet the design
criteria (Q ≥ 0.15), and hence a design revision is deemed
necessary. Such a design revision may need an upgrade of
the network or the processing architecture or the removal
or redesign of some of the other control applications in the
system. However, it may be possible that the existing system
itself can provide the required higher level of performance,
which is not exposed by our analysis technique. In other
words, the traditional approach to utilize worst-case end-to-
end delay as an interface can lead to an analysis gap. Indeed,
the existence of such a gap can be easily argued for. Not
every feedback sample will suffer the worst-case sensor-to-
actuator delay dmax. A large number of feedback messages



would suffer a delay no more than some smaller threshold
delay, say dth. This smaller delay can enable the guarantee
for a better stability margin. This is the motivation for
our work, i.e., deriving and demonstrating a richer interface
between of the cyber and physical aspects of the system to
enable tighter analysis.

To this end, we need to have (a) a controller design that
exploits a guaranteed interleaving between messages with
d > dth and those with d < dth, (b) a metric that formally
captures the delay variation, and (c) a computation tech-
nique to verify that this metric is indeed satisfied for the
considered architecture. In the remainder of this paper, we
will discuss these issues and indicate how they can be used
to tighten the results for the stability margin of P2.

3. DELAY-BASED FEEDBACK CONTROL
In this section, we will propose a controller feedback tech-

nique that will enable us to exploit the time-varying sensor-
to-actuator delays to compute tighter stability margins. In
addition, this will help us to define a richer interface between
the cyber and the physical aspects of the system.

As discussed, not all feedback messages will suffer the
largest delay dmax. There can exist a threshold delay, say
dth, such that most of the feedback messages suffer a delay
d ≤ dth. With this observation, we propose the following
control strategy: (a) we design a stabilizing controller with

u[k] = Kx[k−
⌈

dth
p

⌉
], (b) actuator A2 applies the control in-

put u[k] = Kx[k−
⌈

dth
p

⌉
] only when delay is dth or less and

we denote the resulting closed-loop system by Acl, and (c)
whenever sensor-to-actuator delay d > dth, we do not use
that feedback signal and let the system run in open-loop,
i.e., u[k] = 0 and the resulting system matrix is A. The
control scheme is thus given as

u[k] = Kx[k −
⌈
dth
p

⌉
], ∀ d ≤ dth

= 0, ∀ d > dth (3)

The above control scheme leads to a switched system with
two subsystems: (b) when feedback message suffers d ≤
dth and the corresponding system is represented by Acl, (a)
when feedback message suffers a delay dth < d ≤ dmax and
the corresponding system is represented by A. For brevity
of notation, we refer feedback messages of the first kind as
“valid” samples while the messages of the second kind are
called “invalid” samples.

There are standard techniques in the control theory liter-
ature to analyze the stability of the switched systems. How-
ever, most of these approaches assume worst-case or arbi-
trary switching behaviors. In our case, using our improved
real-time systems analysis, we can rule out certain switching
patterns. In other words, we can identify a restricted sub-
set of switching possibilities, which can be finite for many
practical design purposes. The switched system with such
known switching possibilities are then analyzed using stan-
dard tools such as Average Dwell Time (ADT) [15] or Com-
mon Quadratic Lyapunov Function (CQLF) [9]. For this
purpose, we propose the following metric as a richer class of
interface.

Definition 1 (Delay frequency metric (dth, n)). If
every feedback message with delay larger than dth is followed
by at least n feedback messages with delay no more than dth,
the delay frequency metric is said to be (dth, n).

Using the notion of valid and invalid samples, the above
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Figure 2: Service curve provided by ECU to τECU
2

definition says that, every invalid sample is followed by at
least n valid samples.

In the above context, the paper has two contributions
– (a) From the real-time systems perspective, we quantify
the interleaving between the number of messages with delay
d ≤ dth and dth < d ≤ dmax. (b) From the control system
perspective, we utilize this more expressive delay frequency
metric to obtain tighter bounds on the control system de-
sign. As already mentioned before, in the control systems
literature such rich interfaces between the architecture and
the controller has not been explored before.

In Section 4, we illustrated how a certain delay frequency
metric can be verified for a given architecture. Next, we uti-
lize the knowledge of the delay frequency metric in analyzing
control stability and performance for a given architecture.
We demonstrated the control theoretic analysis in Section 5
with the control loop P2 in Figure 1.

4. VERIFYING DELAY-FREQUENCY
sIn the earlier section, we used the MPA toolbox to com-

pute the worst-case sensor-to-actuator delay suffered by the
feedback messages of P2. However, this interface does not
tightly interface the cyber and physical aspects of the sys-
tem. We proposed the delay frequency metric along with
a delay-based feedback system to allow for a tighter cou-
pling. This section is devoted to computational techniques
that can verify a given delay frequency metric for a given
architectural setup. To this end, we use a hybrid approach
combining analytical techniques of Real-Time Calculus [12]
and state-based methods of the model checker UPPAAL [3].

4.1 Service curves
Service curves are used in Network Calculus [5] and Real-

Time Calculus [12] to specify bounds on the available re-
source to a stream of tasks, in the interval domain. More
concretely, β(∆) denotes the minimum amount of execution
time available to a stream of tasks within any busy window
of length ∆. Techniques are known to compute the ser-
vice curve for a wide class of resource arbitration policies.
Examples include TDMA, fixed priority, EDF, round robin
and servers. Within the scope of this paper, we consider
the service curve as a given quantity and do not discuss its
computation. As an example, the service curve available to
τECU
2 on the ECU can be shown to be as in Figure 2.
When dealing exclusively with end-to-end timing proper-

ties, the service curves of multiple components in series can
be convolved into a single service curve. For instance, in our
example, the feedback message must go through the FlexRay
bus, the ECU and the CAN bus. Each of these components
is characterized by its own service curve. We can represent
the timing properties of these components with a single ser-
vice curve given as

βend-to-end = βFR ⊗ βECU ⊗ βCAN, (4)

where⊗ is the convolution operation as defined in Real-Time
Calculus [12]. For the scope of this work, we may abstract



the timing properties of the system, with respect to feedback
messages of P2, with a single service curve βend-to-end.

4.2 Modelling a resource with UPPAAL
As discussed above, a service curve bounds the timing be-

havior exhibited by a resource. In other words, it character-
izes a set, say S, of possible timed behaviors of the resource.
If this set can be translated into the set of possible behaviors
of a timed automata, we can model the service curve as a
component in a model checking tool such as UPPAAL. Such
modelling can enable us to verify richer timing properties on
the system such as the delay frequency metric.

A generic service curve represents a very large set of con-
straints: for every interval of a busy interval, a constraint
must be satisfied. Translating such constraints into an UP-
PAAL component can lead to a complicated automaton,
with intractable verification time. We therefore propose a
conservative approximation of the service curve, whereby it
is represented using a series of periodic service curves.

Consider an approximate service curve β̃ satisfying

β̃(∆) ≤ β(∆), ∀ ∆ ≥ 0. (5)

Let the set of possible timing properties exhibited by a re-
source with a service curve β̃ be denoted as S̃. Then it
follows that

S ⊆ S̃ (6)

The above relation implies that, if we verify some property
to be always true with the service curve β̃, then the property
is also always true for the service curve β. In this sense, the
approximation β̃ is said to be conservative. Now consider a
specific approximation β̃ given as

β̃ = max(0, β1(o1, P1, Q1), β2(o2, P2, Q2), . . .) (7)

where βi(oi, Pi, Qi) is a periodic service curve defined as

βi(∆) =

(⌊
∆− oi
Pi

⌋
+ 1

)
×Qi (8)

As an illustration, the service curve available to τECU
2 (Fig-

ure 2) is approximated using periodic curves in Figure 4) in
Appendix B. Periodic service curves can be easily modelled
in separate UPPAAL components. These components can
then be interfaced together to model a resource with ser-
vice curve β̃ following (7). Such an interfaced component is
shown in Appendix C.

4.3 Other components
Along, with the automaton that represents the behavior of

the resource, we need an automaton to represent the gener-
ation of a stream of tasks (e.g., corresponding to the control
task that needs to be executed for each sampled sensor in-
put). Computing automatons to represent generation of a
wide variety of streams has been discussed in [8].

Additionally, we need an observer automaton to encode
the verification of the delay frequency metric. Let the delay
frequency metric that we want to verify be given as (davg, n).
Recall that this means that every invalid sample is followed
by at least n valid samples. This can be easily verified using
a UPPAAL observer component that (a) tracks the delay
suffered by the feedback messages, (b) classifies messages
as valid and invalid samples, and (c) verifies the delay fre-
quency metric.

To conclude this section, recall that we were interested in
verifying timing properties which are richer than the worst-
case delay. To this end, we used the analytical formulation

of service curves to represent the architecture in a modu-
lar fashion, used conservative approximation techniques to
enable its efficient representation using the model checking
tool, and then used an automata for the generation of the
stream of tasks and an observer to verify properties such as
the delay frequency metric. The observer automaton dis-
cussed here is illustrated in Appendix C.

5. THE CASE STUDY: REVISITED
In this section, we will revisit the example discussed in

Section 2 (see Figure 1). Equipped with techniques from the
previous two sections, we aim to demonstrate that we can
tighten the computation of the stability margin for the con-
sidered architecture and the control loop P2. In the follow-
ing, we illustrate: (a) computation of delay frequency met-
ric for the given architecture, (b) the control performance
bound that we obtain without the knowledge of the delay
frequency metric, and (c) the control performance bound
that we obtain utilizing the knowledge of the delay frequency
metric.

(a) Computing the delay frequency metric: With the

worst-case delay of dmax = 320ms ,
⌈

dmax
p

⌉
= 4. That

is, working with the worst-case delay means setting dth =
400ms. As demonstrated in Section 2, the control loop fails
to meet design criterion (Q ≥ 0.15). To improve upon this
design, we set dth to 300ms. For this value of dth, we verify
the delay frequency metrics for different values of n, using
the UPPAAL model checker as described in the previous
section. The largest value of n, in our example, for which
the delay frequency metric is guaranteed by the considered
architecture is 2. In other words, the architecture guaran-
tees a delay frequency metric of (300 ms, 2). Note that this
is a richer timing interface than specifying only the worst-
case delay.

Coming back to the example of control loop P2,
⌈

dth
p

⌉
= 3

(dth = 300ms, p = 100ms). Hence, we choose u[k] =
Kx[k − 3] and K = [0 − 0.28]. We apply the control
scheme described in Section 3. When d ≤ 3p, we apply
u[k] = Kx[k− 3] with K = [0 − 0.28]. The resulting closed-
loop system Acl is shown in Appendix D. With d > 3p,
we run the system in open-loop and the resulting system
matrix is A. The stability of this switched system depends
on the interleaving between valid and invalid samples. The
tighter design of the architecture needs to allow more fre-
quent invalid samples. On the other hand, the occurrence of
invalid samples causes degradation in stability margin and
can potentially destabilize the system. The frequency of per-
missible invalid samples can be computed utilizing the tra-
ditional analysis tools such as Average Dwell Time (ADT)
and Common Quadratic Lyapunov Function (CQLF).
(b) Design without the knowledge of delay frequency
metric: In this case, we rely on ADT-based analysis. For
ADT-based analysis, we consider switching between two sub-
systems Acl when the delay is no more than dth = 300ms
and A when the delay exceeds 300ms. We illustrated the
analysis in Appendix E. It clearly shows that only 1 invalid
sample is allowed in any window of 25 samples for stability
(i.e., for ensuring Q > 0). Hence, this does not meet the
delay frequency metric computed earlier. Thus, this analy-
sis which does not utilize the knowledge of delay frequency
metric fails to guarantee desired stability margin. It should
be noted that the CQLF-based analysis is not applicable to
the systems with unstable subsystems. Hence, CQLF-based
analysis is not suitable in this case as the open-loop system
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(c) Design exploiting the knowledge of delay fre-
quency metric: For the delay frequency metric with n = 2,
every invalid sample is followed by at least two valid samples
when P2 is implemented over the architecture under consid-
eration. Hence, the overall system can be represented as
follows,

x[k + 2 + ni + nj ] = AAni
cl ⇥ AA

nj

cl x[k], (9)

where ni 6= nj and ni,j � 2. Hence, the resulting system
has switching subsystems of the form AAni

cl with ni � 2. For
such a switched system, the stability could not be shown
utilizing ADT-based analysis for the subsystems given by
AAni

cl with ni � 2. Now, we reply on Common Quadratic
Lyapunov Function (CQLF) approach [9] for the stability
analysis. The analysis presented in Appendix F shows that
the above switched system is stable. The stability margin
that we obtain for the given delay frequency metric ranges
from Q = 0.1812 (when every two valid samples are followed
by one invalid sample) to Q = 0.2462 (when no invalid sam-
ple occurs). Therefore, we could guarantee to provide a
desired stability margin of Q � 0.15.

Fig. 3 shows the plot of state x1(k) of the control applica-
tion (2) of control loop P2 with the proposed control strat-
egy. In this experiment, we have randomly dropped samples
such that one invalid sample is followed by minimum two
valid sample, i.e., according to the results coming from the
above analysis. We have considered a tracking problem, i.e.,
ensuring that the state x1[k] follows the trajectory indicated
by the red line. Towards this, we used an additional feed-
forward component (for changing the reference from zero to
some other value) in the control input keeping the feedback
component as described above. Fig. 3 shows that tracking
can be done with the derived control scheme.

Hence, the system does indeed meet the design criterion
on the stability margin of P2. We have thus, highlighted how
we can combine the delay-based feedback technique with the
delay frequency metric to provide a tighter analysis of the
cyber and physical aspects of the system.

6. CONCLUDING REMARKS
In this paper we quantify the interleavings between con-

trol messages experiencing di↵erent delay values. Further,
we use this information to provide tight bounds on control
performance. This a significant improvement over the case
where controllers are designed only on the basis on worst-
case delay values. Our proposed approach involves a com-
putationally expensive model checking procedure and an ex-
haustive search over a parameter space in order to compute
the delay frequency interface. As a part of future work, we
will study the scalability of this procedure and make this
process more e�cient.
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A is unstable.

(c) Design exploiting the knowledge of delay fre-
quency metric: For the delay frequency metric with n = 2,
every invalid sample is followed by at least two valid samples
when P2 is implemented over the architecture under consid-
eration. Hence, the overall system can be represented as
follows,

x[k + 2 + ni + nj ] = AAni
cl ×AA

nj

cl x[k], (9)

where ni 6= nj and ni,j ≥ 2. Hence, the resulting system
has switching subsystems of the form AAni

cl with ni ≥ 2. For
such a switched system, the stability could not be shown
utilizing ADT-based analysis for the subsystems given by
AAni

cl with ni ≥ 2. Now, we reply on Common Quadratic
Lyapunov Function (CQLF) approach [9] for the stability
analysis. The analysis presented in Appendix F shows that
the above switched system is stable. The stability margin
that we obtain for the given delay frequency metric ranges
from Q = 0.1812 (when every two valid samples are followed
by one invalid sample) to Q = 0.2462 (when no invalid sam-
ple occurs). Therefore, we could guarantee to provide a
desired stability margin of Q ≥ 0.15.

Fig. 3 shows the plot of state x1(k) of the control applica-
tion (2) of control loop P2 with the proposed control strat-
egy. In this experiment, we have randomly dropped samples
such that one invalid sample is followed by minimum two
valid sample, i.e., according to the results coming from the
above analysis. We have considered a tracking problem, i.e.,
ensuring that the state x1[k] follows the trajectory indicated
by the red line. Towards this, we used an additional feed-
forward component (for changing the reference from zero to
some other value) in the control input keeping the feedback
component as described above. Fig. 3 shows that tracking
can be done with the derived control scheme.

Hence, the system does indeed meet the design criterion
on the stability margin of P2. We have thus, highlighted how
we can combine the delay-based feedback technique with the
delay frequency metric to provide a tighter analysis of the
cyber and physical aspects of the system.

6. CONCLUDING REMARKS
In this paper we quantify the interleavings between con-

trol messages experiencing different delay values. Further,
we use this information to provide tight bounds on control
performance. This a significant improvement over the case
where controllers are designed only on the basis on worst-
case delay values. Our proposed approach involves a com-
putationally expensive model checking procedure and an ex-
haustive search over a parameter space in order to compute
the delay frequency interface. As a part of future work, we
will study the scalability of this procedure and make this
process more efficient.
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APPENDIX
A. WORST-CASE DELAY
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Figure 4: Approximation of a service curve using
periodic service curves

Here, we will describe computation of the worst-case sensor-
to-actuator delay for the feedback messages of plant P2 on
the architecture shown in Figure 1. We use the MPA toolbox
to model the architectural units and the other tasks. Using
this we compute the service curves provided by respective
units to tasks τFR

2 , τECU
2 and τCAN

2 . These are shown in
Figure 5. Then we use the toolbox to compute the con-
volution of the service curves. The worst-case end-to-end
delay is then given by the horizontal distance between the
convolved service curve and the periodic curve of the sensor
input. This is also shown in Figure 5. The worst-case delay
is obtained to be 320ms.
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Figure 5: Computation of the worst-case end-to-end
delay. Note that the y-axis shows service curve in
units of messages, while the x-axis shows time in ms

B. APPROXIMATION OF SERVICE CURVES
We will describe how we can use the approximation step

of (7) to conservatively and compactly represent a generic
service curve. Consider the service curve of the ECU as
provided to task τECU

2 , as shown in Figure 2. Clearly, the
service curve is not a periodic service curve and representing
it in a UPPAAL component can be very complicated. We
can however, conservatively, represent the service curve by

Figure 6: UPPAAL component for the periodic ser-
vice curve

the following approximate service curve

β̃ECU
2 = max(0, β(130, 80, 15), β(170, 60, 15)) (10)

where β is defined as in (8). This approximation is graphi-
cally illustrated in Figure 4. As can be noted, the approx-
imation closely follows the original service curve while be-
ing much more amenable to representation using a model
checker.

C. UPPAAL MODELS
In this section, we will illustrate the UPPAAL models of

the components used in the verification of delay frequency
metric.

C.1 Service curve automaton
Recall that we proposed the approximation of a generic

service curve by a set of periodic service curves. The au-
tomaton shown in Figure 6 represents the working of a peri-
odic service curve β(oi, Pi, Qi). It maintains a variable filli
which logs how the resource can be used. The initial value

of filli is set to
−oi
Pi

Qi. The resource should serve any

pending task if the variable filli is positive. If the task is
indeed served, the filli level is decreased by the amount
of execution provided to the task. During busy intervals,
the fill level is periodically increased by Qi every Pi units of
time. When the task queue is empty, the fill level is reset to
the initial value.

Several such periodic service curves can be easily com-
bined to represent a single service defined as in (5). This is
done by implicitly maintaining a single fill given as

fill = max
i

(filli). (11)

The resource serves any pending task if any of the fill values
is positive. Executing a task will decrease each filli value,
independently. This is abstractly depicted in the resource
automaton shown in Figure 7. Here the automaton, in the
location check decides if pending tasks are to be served at
all. If any of the filli values is positive, the pending task is
served for one time unit and the filli values are all decre-
mented by 1.

Note two aspects of this system. Firstly, the resource is
allowed to execute a task even if the all filli values are neg-
ative. This demonstrates the non-determinism in the defi-
nition of the service curve. Secondly, note that the above
automatons actually represent constraints on every interval
of time, but has a very efficient and compact UPPAAL com-
ponent. This enables verification of properties such as the
delay frequency metric.



Figure 7: UPPAAL component for the resource
obtained as the combination of multiple periodic
curves

Figure 8: UPPAAL component for the observer

C.2 Observer automaton
The observer automaton is shown in Figure 8. The au-

tomaton depends on two synchronization channels arrival
and out which denote the arrival of a new task and the com-
pletion of a task, respectively. The observer chooses to ob-
serve from some particular task arrival, non-deterministically.
It first waits for already buffered tasks to be completed
(while cnt is negative). Then, it begins to check whether
tasks have a delay larger or smaller than dth. For every in-
valid sample it decrements stat by penalty and for every
valid sample it increments stat by reward. The variable
stat is initialized to penalty. Then, the query asserting
if stat is always non-negative, asserts whether the system

guarantees a delay frequency metric (dth,
penalty

reward
).

D. COMPUTATION OF ACL

In this section, we show the computation of closed-loop
system matrix Acl with u[k] = Kx[k − 3] for the control

loop P2 with
⌈

dth
p

⌉
= 3. We define the new system states,

z1[k] = x[k − 3],

z2[k] = x[k − 2],

z3[k] = x[k − 1],

z4[k] = x[k]. (12)

Hence, we have the following system with u[k] = Kx[k−3] =

Kz1[k],

z1[k + 1] = z2[k],

z2[k + 1] = z3[k],

z3[k + 1] = z4[k],

z4[k + 1] = Az4[k] +BKz1[k]. (13)

The new system states are z[k] = [z1[k] z3[k] z3[k] z4[k]]T

and closed-loop system is,

z[k + 1] = Aclz[k], (14)

where

Acl =

 02×2 I2×2 02×2 02×2

02×2 02×2 I2×2 02×2

02×2 02×2 02×2 I2×2

BK 02×2 02×2 A

 . (15)

To maintain equal dimensionality for later matrix opera-
tions, the open-loop matrix A is computed by putting K = 0
in (15).

E. ADT APPROACH
We have two subsystems: Acl and A. Acl is the stabi-

lizing subsystem using control input u[k] = Kx[k −
⌈

dth
p

⌉
]

(computation of Acl is shown in Appendix D) whereas A is
the open-loop system with u[k] = 0. The switching between
Acl and A depends on the occurrence of valid and invalid
samples. With arbitrary oder of valid and invalid samples,
we get,

x[k] = An1
cl A

n2An3
cl A

n4An5
cl A

n6 ...x[0], (16)

where ni are integers such that
∑

i ni = k (integer). Using
the analysis coming from Average Dwell Time (ADT) [15],
one can answer questions like what combination of ni guar-
antees stability of system (16). We follow similar technique
to estimate how frequently invalid samples are allowed to
occur in the context of our setting.

Considering the example control loop P2,
⌈

dth
p

⌉
= 3,

u[k] = Kx[k − 3] and K = [0 − 0.28], we know that the
following inequality holds true,∥∥∥Ak

cl

∥∥∥ ≤ 23.5× 0.7538k. (17)

Similar property can be derived for the open-loop system,∥∥∥Ak
∥∥∥ ≤ 1.6× 1.0539k. (18)

To find how many valid samples must occur for every occur-
rence of invalid sample, system (16) becomes,

x[k] = An1
cl AA

n2
cl x[0]. (19)

For the stability of the system, we need to make sure that
‖x[k]‖ < ‖x[0]‖ for any k and n = n1 + n2. That is, the
following must be true for assuring stability of (19),

‖An1
cl AA

n2
cl ‖ ≤ 1,

23.52 × 1.6× 0.7538n × 1.0539 < 1,

n > 24.2. (20)

Hence, we conclude that ADT approach allows a 1 invalid
sample within a window of any 25 samples.



F. CQLF APPROACH
We illustrate the stability analysis of the system (9). We

perform the analysis considering that the control loop P2 is
implemented over an architecture described in Section 2.1
and the delay frequency metric to be (300 ms, 2). At the
valid samples, the closed-loop system is Acl as shown in
Appendix D whereas the corresponding system for invalid
samples is A as per eq. (2). From (9), we have a system
which switches among various subsystems Aj ,

Aj = AAni
cl , ∀ni ≥ 2. (21)

We resort to the concept of strong CQLF [9] to investi-
gate the stability of the switched system (9). Towards this,
we present the following standard theorems of LTI systems
which are utilized in our analysis.

Theorem F.1. (discrete-time Lyapunov equation [10]) Let
A ∈ Rn×n. If there exists P = PT > 0, Q = QT > 0 satis-
fying ATPA−P = −Q, then all eigenvalues of matrix A are
inside the unit circle (or the system is stable in our context).

Theorem F.2. (continuous-time Lyapunov equation [10])
Let A ∈ Rn×n. If there exists P = PT > 0, Q = QT > 0
satisfying ATP + PA = −Q, then matrix A is Hurwitz (or
the system is stable in our context).

Lemma F.1. (Cayley transform [9]) Let A ∈ Rn×n, P =
PT > 0, Q = QT > 0. Let P be the solution of ATPA−P =
−Q. Consider the matrix,

C(A) = (A− I)(A+ I)−1. (22)

Then P is also a solution of the continuous-time Lyapunov
equation C(A)TP+PC(A) = −Q′ with Q′ = 2(A+I)−TQ(A+
I)−1.

Lemma F.2. ([9]) Let A1, A2 be the system matrices of
two stable discrete-time LTI systems with strong CQLF given
by V (z) = zTPz, i.e.,

AT
1 PA1 − P = −Q1 < 0,

AT
2 PA2 − P = −Q2 < 0.

Then the two matrices C(A1)C(A2) and C(A1)C(A2)−1 have
no real negative eigenvalues.

Lemma F.3. Let A1, A2 be the system matrices of two
stable discrete-time LTI systems with strong CQLF given by
V (z) = zTPz, i.e.,

AT
1 PA1 − P = −Q1 < 0,

AT
2 PA2 − P = −Q2 < 0.

Then the switching between the two LTI systems is asymp-
totically stable.

Proof. We have two discrete-time LTI systems (23) and
(24). The switching between them is modeled as a new LTI
system shown in (25).

z[k + 1] = A1z[k], (23)

z[k + 1] = A2z[k], (24)

z[k + 2] = A2A1z[k]. (25)

For the stability of (25), A2A1 should have all eigenvalues
inside the unit circle, i.e., AT

1 A
T
2 PA2A1 − P < 0 (utilizing

Theorem F.1). Towards this,

AT
1 A

T
2 PA2A1 − P

= AT
1 (P −Q2)A1 − P

= AT
1 PA1 − P −AT

1 Q2A1

= −Q1 −AT
1 Q2A1 < 0

Hence, the switching between (23) and (24) is stable and the
proof is complete.

Hence, there exists a strong CQLF between any two given
subsystemsAi andAj (hence, switching is stable) if C(Ai)C(Aj)
and C(Ai)C(Aj)

−1 do not have any real negative eigenvalue.
Thus, it is possible to verify switching stability of (9) for the
class of subsystems of form (21) for up to any ni of design
interest. For the control loop P2 under consideration, the
delay frequency metric (300 ms, 2) results in stable switch-
ing for all ni ≥ 2.


