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Stéphane Cambon SCAMBON@GMAIL.COM

Rachid Alami RACHID.ALAMI@LAAS.FR

CNRS; LAAS; 7, avenue du colonel Roche
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Abstract

We propose a representation and a planning algorithm able to deal with problems integrating task

planning as well as motion and manipulation planning knowledge involving several robots and

objects. Robot plans often include actions where the robot has to place itself in some position in

order to perform some other action or to “modify” the configuration of its environment by displacing

objects. Our approach aims at establishing a bridge between task planning and manipulation

planning that allows a rigorous treatment of geometric preconditions and effects of robot actions in

realistic environments. We show how links can be established between a symbolic description and

its geometric counterpart and how they can be used in an integrated planning process that is able

to deal with intricate symbolic and geometric constraints. Finally, we describe the main features of

an implemented planner and discuss several examples of its use.

Keywords: planning formalism, task planning, motion planning, manipulation planning.

1. Introduction

This paper aims at enriching the expressive power and the problem-resolution capabilities of sym-

bolic task planners to allow their effective use for realistic robotics problems.

While symbolic task planners have been drastically improved to solve more and more complex

symbolic problems (Hoffmann et al. (2006), the difficulty of successfully applying such planners

to robotics problems still remains. In such planners, actions such as “navigate” or “grasp” use

abstract notions of the reachability of goal configurations that might result in finding plans that

cannot be executed by the robots. This is due to the gap between the representation they are

based on and the physical environment (see Lozano-Perez et al. (1987)).

On the other hand, practical motion planning techniques (LaValle (2006)), and more precisely ma-

nipulation planners (Alami et al. (1990); Siméon et al. (2003)), have experienced very important
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progress. The goal of the work described in this paper is to devise a task planner that is aware

of the geometrical and topological constraints and consequences of its actions in the geometrical

environment. This feature might be crucial in robotics when we wish robots to be able to ma-

nipulate objects and/or to reach positions where specific actions can be performed in a relatively

constrained setting.

We propose to enrich the capabilities of task planners with those of manipulation planners, to

investigate the link between the two representations and to establish an architecture where the

search for a solution interestingly performs a parallel and coordinated search in the two schemes.

Real world robots never operate in environments with complete and exact knowledge of the system

state and perfect execution of planned actions(Alami et al. (1998)). Consequently, our motivation

here is of fundamental nature. Even though we place ourselves in an ideal situation where we

assume complete knowledge of the environment state with no consideration of uncertainty issues,

we think that still there are useful insights to obtain through a process in which we try to provide

a systematic way to link geometric and symbolic constraints. To make things concrete, we would

like to come up with a planner that not only produces a set of partially ordered high-level actions

but also a full instantiation that indicates the locations of robots and objects as well as the paths

for the robots and their synchronization.

1.1 The radio-switch example

In order to illustrate our approach, we will use a class of problems, that we have called radio-switch

as an example all over the paper. Figure 1 illustrates one problem belonging to this class. This

problem is intentionally very simple.

It involves two robots: forklift and armbot (a mobile robot with an arm) and one object: cbox (for

communication-box). cbox has a wireless modem. The mission is defined by the following goal

state: data has been received and cbox is placed in the other room. In order to receive the data,

cbox has to be placed in a specific area. The data are sent continuously after the switch has been

pushed. Only armbot is able to perform this push operation and only forklift can manipulate

cbox.

Variants of the radio-switch problem class are created by giving an initial and a final collision-free

configuration to each robot and object. Note that it is not necessary nor desirable to provide a

complete specification of the final state. Depending of these configurations, the valid plans may

be drastically different. For example, it might be necessary for forklift to perform re-grasping

operations in order to satisfy the cbox goal position and orientation (represented by an arrow on

figure 1). For some other initial states, as shown in figure 1, cbox might block the way to the switch:

in such a case a solution plan should be found that imposes to displace the object to a suitable

intermediate configuration.

1.2 Related works

Implementation decision at the so called “task-level” - selecting and scheduling robots actions - and

at the “geometric level” - motion, grasp configuration - has been identified and is still a challenge

in robotics.
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Figure 1: One radio-switch problem.

Experience with high-level planners in robotics have been tried and have given interesting results

and valuables insights with respect to architectural issues as well as links between deliberation

and on-line reactive planning. However this has been done only in contexts and situations where

there is no intricate dependencies between the “symbolic” considerations and the “geometric”

ones, leaving place to the use of independent resolution schemes that can run at different levels

of abstraction (Fink and Veloso (1996); Alami et al. (1998)).

Indeed, the task planners, based on a discrete sets of actions, cannot handle the complexity of a

realistic geometric world. This is due to the difficulty of representing by symbols the infinite number

(or, at least, the very large number of discretized choices) of the robots motions in a continuous

world or the infinite number of the objects intermediate configurations. A plan generated by the

task planner may turn out to be infeasible when developed at the motion planning level (Latombe

(1991)).

Several very interesting contributions consisted in systems that formally integrate high-level plan-

ning with continuous control primitives (Rugg-Gunn and Cameron (1994); Fainekos et al. (2005)).
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However, these approaches do not involve an interleaving between the two levels at the planning

phase.

There are also a number of interesting studies that have focused on planning for assembly. The set

of grasps, and more generally of objects configurations, are represented by constraints in Halperin

et al. (1998) or by a graph in Hutchinson and Kak (1990); Sanderson et al. (1990); Cao and

Sanderson (1994); Tung and Kak (1996). In such problems, the elementary arcs that constitute

the graph (i.e. the instantiated basic actions) are given to the problem solver.

On the other hand, motion planners do not deal with abstract notions. A key issue on which our

approach is built is the so-called manipulation planning formalisms and algorithms. This allows

one to draw a strong link between geometry and tasks. For instance, depending on how an object

is grasped, it can be put or not be put on a table. It is not easy to clearly separate the task “put

the object on the table” from the grasp configuration to choose. Several authors have discussed

this subject (Lozano-Perez et al. (1987), Laugier and Troccaz (1985), Mazon et al. (1990)). These

systems have been created for assembly problems in which the number of configurations and

grasps per object is generally small.

In our case we wish to deal with mobile manipulators problems and keep a continuous representa-

tion of the environment geometry. We do not require to identify or pre-compute all the constraints

before planning: this identification will be done incrementally during the planning process itself.

Several methods and algorithms have been proposed to address problems that involve discrete

(qualitative) changes and continuous motion primitives (Wilfong (1988); Alami et al. (1990); Chen

and Hwang (1991); Koga and Latombe (1994); Ahuactzin et al. (1998); Nielsen and Kavraki (2000);

Lingelbach (2004); Bretl (2006); Plaku et al. (2007); Saut et al. (2007)). However, all these meth-

ods address only motion or manipulation actions and conditions to link, or to switch between

motion commands.

Our concern here is to address in a coherent manner all types of actions, from actions that have

no geometric constraints to actions that have geometric and symbolic constraints and effects. The

ambition is a scheme to help tackle and solve problems that combine complexity at the geometric

level and complexity at the symbolic level (several types of actions, several objects, several robots).

Such a scheme should allow, for instance, to provide reasoning mechanisms that can guide the

overall search process so as to avoid or reduce combinatorial motion planning sub-problems.

1.3 Overview

In order to reason on geometric preconditions and consequences of actions, we rely on properties

expressed in the overall Configuration Space of the system. This space lets us express the geo-

metric constraints for mobile robots and movable objects in a 2D or a 3D1 world. The main idea

here is to relate in a principled manner the symbols representing places or relations of the world

with sub-manifolds of the Configuration Space. With this idea, we will be able to express formally

the preconditions needed to apply an action and the effects of this action not only at a symbolic

level but also with regard to the geometry of the environment where it will be applied. Thus, we

will describe a search space which can be explored by a task planner to synthesize a plan. One of

1. or more, Configuration Spaces definition are not limited to a given number of dimension of the workspace
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our ambitions in this paper is to link, when necessary, the task planning and the motion planning

definitions.

In section 2, we give a formal representation to express task planning problems that integrate geo-

metric and kinematic constraints. The model links symbols and relations to sets of configurations.

The approach is generic. We do not make any hypothesis on how the configuration space can

be partitioned in sets of configurations. This is the reason why, in the third section, we identify

specific subsets of the Configuration Space which play a role in the case of a multi-robot manipu-

lation problem. These results will help us to more precisely understand how to define the problem

introduced in section 2 as an instance of a manipulation problem involving several robots. This

is the topic of section 3. The two following sections deal with the resolution of such problem. In

section 4, we first introduce some adaptations of the Probabilistic Roadmaps Methods. The main

point is the use of several roadmaps and a two-step algorithm to break the complexity brought by

highly dimensional Configuration Spaces. In section 5, we present the task planner that we have

developed to solve the class of problems introduced. The core algorithms are detailed and an

empirical evaluation of the overall system is presented.

2. Extension of Task Planning definitions

2.1 Formal problem statement

Besides the symbolic pre-conditions and effects of task-planning operators, we would like to also

take into account the geometric constraints and effects of actions in a realistic 3D environment.

We extend the definitions of the task planning state space. To do so, we rely on the definitions

used in Ghallab et al. (2004) and on the Configuration Space definitions (Lozano-Pérez (1983))

that have been extended in Alami et al. (1990); Siméon et al. (2003) to account for manipulation

problems.

In order to have a self contained set of definitions, the classical definitions are introduced when

needed. Note that we present here our definitions as an extension of the state space task planning

domains and problems, but it would also be possible to present them as an extension of the motion

planning problem.

We begin by introducing the definition of a symbolic planning domain.

Definition 1: the symbolic planning domain

• A symbolic planning domain is a state transition system Σsym on a propositional logic

language L. We have Σsym = (Ssym, A, γsym).

• A symbolic state syms ∈ Ssym is a conjunction of (positive) propositions. We assume here

with the Close World Assumption.

• An action a ∈ A, is a triplet {name(a), precond(a), effects(a)} where2

2. We adopt here a set-theoretic representation (Ghallab et al. (2004)) for task planning. Each state of the world is a

set of propositions, and each action is a syntactic expression specifying which propositions belong to the state in

order for the action to be applicable, and which propositions the action will add or remove in order to make a new

state of the world.
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– name(a) is the symbol used for this action.

– precond(a) is a conjunction of positive propositions precond+(a) and negative proposi-

tions precond−(a).

– effects(a) is a conjunction of positive propositions effects+(a) and negative proposi-

tions effects−(a). that should be added or deleted after the action has been applied.

• The transition function γsym is built as follows: An action a ∈ A can be applied on a

symbolic state syms ∈ Ssym if and only if:

(1-1) precond+(a) ⊂ syms

(1-2) precond−(a) ∩ syms = ∅

The application of an action a on the state syms results in a new state syms′ through the

γsym function. We have γsym(s, a) = s′ with:

(1-3) syms′ = (syms − effects−(a)) ∪ effect+(a)

It is this definition that we want to extend in order to integrate geometric constraints and con-

sequences of motions and manipulations in a representation of the geometry. Let us suppose

that, besides the state transition system Σsym we have a two-dimensional or three-dimensional

geometric and kinematic representation of the world: a set of robots, of “movable” objects and of

obstacles which define the system Configuration Space CS.

Definition 2: the Configuration Space

• In a two-dimensional or three-dimensional environment involving a static geometric environ-

ment and several movable mechanical systems, rigid or not, a configuration completely

specifies the position and orientation of all the components of the composite mechanical

system.

• We call composite mechanical system the geometric movable object that groups all the

distinct geometric movable objects (in our case, the set of robots and objects that can be

moved by robots).

• The composite Configuration Space CS is the set of all these configurations.

For instance, if our geometric world is three dimensional and if it involves a 9 dofs (i.e. degrees of

freedom) robot and a 6 dofs free-flying object, the dimension of the composite mechanical system

is 15.

Definition 3: the Free Configuration Space

The Free Configuration Space CSfree the subspace of CS which contains all the configurations

of the composite mechanical system which are not in collision with the static geometric environ-

ment.

Now we define the motions of the composite mechanical system. We introduce a reachability

function.
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Definition 4: the reachability function

We define the reachability function freach for the composite mechanical system. This function

defines the possible motions without collision of the mechanical system. A motion in the geometric

world corresponds to a path in CS. For each c ∈ CSfree we have freach(c) = csreach
c where csreach

c

is the subspace of CSfree grouping all the configurations that are reachable from c by a motion

without any collision along the path.

Now we want to construct a state space where the actions involving motion or manipulation, and

the potential paths in CS associated to them, have a geometric reality. The preconditions and

effects of such actions will take into account the reachability function. We link CS with Σsym

through propositions of L that will be associated to subsets of CS. To identify in L these symbols

we introduce a specific set of proposition: PLACE.

Definition 5: the PLACE set

Let the set PLACE be a subset of the set of the propositions of the world. Each proposition of

this set is named a place proposition. Each proposition p that belongs PLACE is linked through a

relation R to a subset of CS.

Now we formally define the R Relation.

Definition 6: the R Relation

The relation R is a relation between propositions p of the set PLACE and a subset of configura-

tions csp ⊂ CS.

Let us take an example of a R relation with one element. Let the world be a 3D static geometric

world, and let an object named leg be a free-flying (6 dofs) movable object. The geometric object

leg describes a 6-dimension Configuration Space CS. Now, let L be a propositional logic language

containing some place propositions. Let cson table be a set of configurations of CS as defined

in figure 2. We introduce a relation R = {leg on table, csleg on table}. The relation gives us a

geometric meaning of the proposition leg on table.

Now we introduce the definition of a state. For us a state has a symbolic and a geometric part.

Definition 7: the state

A state s is a couple (syms, css) where syms is a symbolic state as in definition 1, and css ∈ CS is

its geometric “counterpart”.

Now we introduce two definitions that we will use in the final planning domain definition. The first

definition concerns the set of configurations associated to a state s, csdef
s . This set defines in

what set of CS css has to be. The second definition introduces the set of reachable configurations

csreach
s of a state s.

Definition 8: the set of configurations associated to a state

If a symbolic part syms of a state s = (syms, css) contains n propositions pi (0 ≤ i < n) such that

pi belongs to the set PLACE then the set of configurations associated to s is:

csdef
s = (

n⋂

i=0

cspi
/(pi, cspi

) ∈ R)
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Figure 2: An example of R relation. Here csleg on table is a three-dimensional sub-manifold includ-

ing the configurations (positions and orientations) that correspond to a stable placement

of the leg on the table.

If the symbolic part syms of a state s = (syms, css) does not contain any proposition p that belongs

to the set PLACE then: csdef
s = CS, which is the neutral element of the intersection in CS.

In the same example of the leg and the table, if we have a state s = (syms, css) such that syms =

(leg on table) then the set of configurations csdef
s associated to s is csleg on table. This set is clearly

decomposable in two subsets corresponding to the leg lying on one face or on the other. We will

see later how this connected components will be detected and treated. Now let us imagine that

we have two objects leg1 and leg2 and a state s = (syms, css) such that syms = (leg1 on table)

∧ (leg2 on table) and with (leg1 on table) and (leg2 on table) belonging to the set PLACE, then

the set of configurations csdef
s associated to s is cs(leg1 on table) ∩ cs(leg1 on table). In other words, it

is the set of configurations where the two objects are on the table. Some of these configurations

(corresponding to collisions between the two legs) do not belong to CSfree. Note that if it does not

exist at least one configuration of csdef
s which belong to CSfree, the state s will be unreachable.

Definition 9: the set of reachable configurations of a state s

For a given state s = (syms, css) we define the set of reachable configurations csreach
s as the

set of all the configurations that are reachable (i.e. through their reachability function) from any

configuration of css.

We have now all the definitions needed to formulate a planning domain that is aware of the envi-

ronment geometry.

Definition 10: The planning domain
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• A planning domain is a state transition system Σ on the propositional logic language L, a

configuration space CS (induced by a geometrical and kinematic environment description)

and a relation R. We have Σ = (S, A, γ).

• A state s ∈ S is a couple (syms, css). syms is a conjunction of propositions. css is a subset

of CS.

• An action a ∈ A, is a triplet {name(a), precond(a), effect(a) as defined in definition 1.

• The transition function γ is built as follows:

An action a ∈ A can be applied on a state s ∈ S if and only if:

(10-1) precond+(a) ⊂ syms

(10-2) precond−(a) ∩ syms = ∅

(10-3) css 6= ∅ (s is valid)

The application of an action a ∈ A on the state s results in the state s′ through the γ function.

We have γ(s, a) = s′ with:

(10-4) syms′ = (syms − effects−(a)) ∪ effect+(a)

(10-5) css′ = csreach
s ∩ csdef

s′

One can observe that (10-1), (10-2) and (10-4) correspond to the classical definition of the task

planning (definition 1). (10-3) has been added to ensure that the state has a “geometric existence”.

(10-5) causes the creation of the subspace attached to s′. This new subspace must belong to

CSdef
s′ and must be reachable from the state s.

Definition 11: a planning problem

A planning problem is a triplet P = (Σ, s0, g) where:

• s0 is the initial state.

• g is a conjunction of propositions.

• the goal states are specified as

Sg = {s ∈ S/syms satisfies g and css 6= ∅}

Generally in our problems, we will choose the initial state s0 = (syms0, css0) such that css0 = {c},

a unique configuration.

Note that, following our definition, if s = (syms, css) is a state obtained by n applications of actions

from s0 = (syms0
, css0

) then

css ⊆ CSfree

This means that successive application of actions maintain the geometric system in the free space.

Important remark. Note that, with our definitions, we also have a more general formalization for

planning. We can easily express:
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• A classical motion planning problem. In such case, S = {s0, s1}, A = {a}, γ = (s0, a, s1).

• A classical task planning problem. In such case, PLACE = ∅.

2.2 Practical issue

In realistic problems, the construction of the exact topology of CS is out of reach. One possibility

(our choice) is to search for a plan without building an explicit representation of CS. Symbolic

plans that respect (10-1), (10-2) and (10-4) are first built. These symbolic plans are solutions to

a relaxed problem where the geometric preconditions and effects are ignored. Then a solution

is obtained if we find at least one configuration belonging to css for each state s = (syms, css)
traversed by one of these symbolic plans. The search will balance between the construction of

new symbolic plans and the search for configurations to validate the states.

The next section will give definitions on the topology of the CS where actions include motion and

manipulation involving several robots and several objects.

We will see how a R relation can be defined to comply with the manipulation context. Building an

adequate R relation is indeed the other big practical issue.

Moreover, these definitions will help us propose techniques to break the complexity induced by

the high dimensionality of CS by exploring separately the configuration spaces of each robot or

movable object.

3. Topology of the Configuration Space in the Multi-Robot Manipulation Problem
and consequences on the definition of problems

3.1 The Multi-Robot Manipulation Problem

The multi-robot manipulation planning problem involves robots and objects among fixed obstacles.

The objects cannot move by themselves; either they are carried by robots or they stay in some sta-

ble placement. It has been shown that the manipulation planning problem is a constrained instance

of the coordinated motion planning problem. We follow and extend the definitions presented by

Siméon et al. (2003) to the case of several robots and several objects.

Formally, in our three-dimensional workspace, we have r robots Ri which have ni degree of free-

dom respectively. We have also m movable rigid objects which have 6 degrees of freedom. We

assume that we are in the general case where, a priori, all robots can manipulate all objects. We

also assume that the robots cannot grasp more than one object at a time (but the scheme can

be extended). We name CSRi
(0 < i ≤ r) and CSMj

(0 < j ≤ m) the configuration spaces of the

robots and the objects respectively. The composite Configuration Space (i.e. the global space) is

CS = CSR1
× ... × CSRr

× CSM1
× ... × CSMm

.

Definition 12: the manipulation constraints.

The manipulation constraints are:

• Definition of sets of allowed stable configurations for objects. We define subsets for each

CSMj
(0 < j ≤ m) where the objects can be placed in stable position.
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• For each robot-object pair, we define a set of relative positions that correspond to valid

grasps.

• A grasp remains fixed when the robot transports the object.

These definition account for continuous grasps and placements (Siméon et al. (2003)). Note

that other means of object manipulation based on a similar formalism have been proposed such

as pushing (Stilman and Kuffner (2004, 2006), Lynch and Mason (1996)), dexterous multi-finger

manipulation (Saut et al. (2007)) or pivoting bulky objects (Yoshida et al. (2007)) introduce other

specific constraints that we do not use here. Besides, in order to simplify the discussion, we add

another constraint: only one robot moves at a time.

Definition 13: Subsets of CS

We consider the following subspaces of CS:

• CP (Ri)(0 < i ≤ r), the set of configurations where robot Ri is not attached to any object

and can move freely while all the objects are in stable positions or are grasped by another

robot.

• CP (Mj)(0 < i ≤ m), the set of configurations where the object Mi is in a stable position

while the other objects are in a stable position or are grasped by a robot.

• CG(Ri.Mj)(0 < i ≤ r)(0 < j ≤ m), the set of configurations where Ri grasps object Mj

following an allowed relative position (see Definition 12) and where the other objects are in

stable positions or grasped by another robot.

Theorem 14: Solution of a multi-robot manipulation problem

A solution for a multi-robot manipulation problem is a path in CSfree constrained by the ma-

nipulation constraints. It is a finite sequence of transit Ri paths and transfer Ri.Mj paths. Transit

paths and transfer paths involving the same robot Ri are separated by grasp/ungrasp operations.

A demonstration can be found in Siméon et al. (2003). We give hereafter the definition of transit

and transfer paths.

Definition 15: Transit and Transfer

A transit path for Ri is a path where the robot moves alone and where other objects and robots

remain static. This path belongs to CP (Ri). Note that any path in CP (Ri) is not necessarily

a transit path. Indeed, numerous paths in CP (Ri) involve other robots or objects motions. A

transfer path for Ri.Mj is a path where the robot Ri moves while maintaining a fixed grasp of the

object Mj . Transfer Ri.Mj paths belong to CG(Ri.Mj). Note that, as with transit paths, not any

path in CG(Ri.Mj) is a valid transfer path.

Note that CP(Ri) ∩ CG(Ri.Mj)(0 < i ≤ r)(0 < j ≤ m) are interesting subspaces. They cor-

respond to configurations where Ri transit paths and Ri.Mj transfer paths can be connected by

grasp/ungrasp operations. Indeed, a CG(Ri.Mj) configuration where Mj can be released in a

stable configuration is a CP(Ri) configuration where the robot and the object are not yet attached.
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These definitions are illustrated by figure 3, which represents a problem where an object named

cbox must be transferred by a robot named forklift. We represent the different subspaces

composing CSfree. One can see that CP (forklift) and CG(forklift.cbox) have several con-

nected components. CG(forklift.cbox) is composed of two connected components induced by

the two possible grasps illustrated in the bottom of the figure. CP (forklift) is composed of

three connected components. Only one of them (numbered 3) intersects both components of

CG(forklift.cbox). Consequently, a solution path must involve a re-grasping operation. forklift
must put cbox in an intermediate configuration where it can change from one grasp to the other

with a transit path included in the connected component 3 before bringing the object cbox to its

final configuration.

Figure 3: Illustrations of subspaces and the manipulation definitions in a little problem

The structure of CS for a multi-robot manipulation problem is going to guide us for the definition of

R relation for a given problem. We will see that in our problem definition, an action will involve a

set of transit paths, a set of transfer paths set, a grasp or ungrasp action or no motion.
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3.2 An example of the definition of a multi-robot manipulation problem with symbolic

constraints

Now we can present, through the radio-switch problem, how we precisely define a problem based

definition 11. The main point here is to show how to build a R relation (definition 6) by taking into

account the structure of CS previously discussed.

Note that the method is general. We will give in §5.1 some clues on how to partially automatize

the definition of a given problem.

For the radio-switch problem, the PLACE set is composed of the following propositions:

• P FORKLIFT this proposition means that forklift is not attached (i.e. not grasping) to any

object. The other robots and objects can be anywhere.

We define (P FORKLIFT, CP (forklift)) ∈ R

• P FORKLIFT CG CANGRASP CBOX this proposition means forklift can apply a grasp operation

on cbox. In other words, the relative positions and orientations of forklift and cbox corre-

spond to an allowed grasp.

We define (P FORKLIFT CG CANGRASP CBOX, CP (forklift) ∩ CG(forklift.cbox)) ∈ R

• P ARMBOT this proposition means armbot is not attached to any object.

We define (P ARMBOT, CP (armbot)) ∈ R

• P FORKLIFT.CBOX this proposition means that forklift and cbox are attached.

We define (P FORKLIFT.CBOX, CG(forklift.cbox)) ∈ R

• P FORKLIFT.CBOX CANUNGRASP this proposition means that the robot forklift.cbox can apply

an ungrasp operation to form again two independent entities: forklift and cbox. In other

words, cbox is attached to forklift and is in a stable placement.

We define (P FORKLIFT.CBOX CANUNGRASP, CP (forklift) ∩ CG(forklift.cbox)) ∈ R

• P CBOX This proposition means cbox is somewhere on a stable placement. It is not attached

to any robot.

We define (P CBOX, CP (cbox)) ∈ R

For a given problem, we add propositions that specify the initial geometric situation as well as the

goal situation.

• P FORKLIFT INIT means forklift is on its initial place. We define (P FORKLIFT INIT, c0) ∈ R
where c0 ∈ CP (forklift).

• P CBOX INIT and P CBOX GOAL are the propositions which specify initial and goal placements

for cbox. We define (P CBOX INIT, c1) ∈ R and (P CBOX GOAL, c2) ∈ R where c1 and c2 are

two configurations which belong to CP (cbox). Note that the goal placement can be specified

as a subset of CP (cbox).

There are also propositions that allow to specify the geometric pre-conditions that have to be

satisfied in order to apply symbolic actions i.e. actions that have no effect on the geometry.
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• P FORKLIFT.CBOX GOOD RECEPTION the place where the composed robot forklift.cbox is in a

good reception area. We define (PFORKLIFT.CBOX GOOD RECEPTION, CS0) ∈ R where CS0 is

a subset of configurations of CG(forklift.cbox). cbox is used as by the robot as an antenna.

In our implementation CS0 is delimited by two constraints on the position of cbox.

• P ARMBOT SWITCH the place where armbot should be placed in order to be able to push the

switch. We define (P ARMBOT SWITCH, CS1) ∈ R where CS1 ⊂ CP (armbot) and represents

a set of configurations where the end effector of armbot touches the switch.

We also define the following propositions which do no belong to PLACE:

• SWITCH PUSHED means that the switch has been pushed.

• DATA RECEIVED means that the data has been received by wireless connection.

Now we can build a set of planning operators - also called actions in STRIPS-like (Fikes and

Nilsson (1971)) vocabulary - that comply with the manipulation constraints. We will not define

here all the operators but only some examples.

The GOTO FORKLIFT CANGRASP CBOX operator means that forklift moves to reach a configuration

where it can grasp cbox.

(:action GOTO_FORKLIFT_CANGRASP_CBOX

:precondition

P_FORKLIFT

:effect

not P_FORKLIFT

P_FORKLIFT_CANGRASP_CBOX)

The GOTO ARMBOT SWITCH operator means that armbot moves in order to reach a configuration

where its end effector touches the switch.

(:action GOTO_ARMBOT_SWITCH

:precondition

P_ARMBOT

:effect

not P_ARMBOT

P_ARMBOT_SWITCH

SWITCH_PUSHED)

Each GOTO-XXX operator corresponds to a set3 of transit or a transfer paths in CS. In our problems,

we also need GOTO-XXX operators to define the motions from the initial configurations and from/to

3. can be infinite

14



specific places like P ARMBOT SWITCH to more general ones like P ARMBOT. This last aspect

lets the planner move the robot even if there is no “symbolic interest” to do it. This is the case

when it is necessary to find an intermediate position, for instance, to give room to another robot or

to perform a regrasp sequence.

GRASP FORKLIFT CBOX is the robot composition operator for forklift and cbox. UNGRASP FORKLIFT CBOX,

the decomposition operator, can be defined symmetrically.

(:action GRASP_FORKLIFT_CBOX

:precondition

P_FORKLIFT_CANGRASP_CBOX

P_CBOX

:effect

not P_FORKLIFT_CANGRASP_CBOX

not P_CBOX

P_FORKLIFT.CBOX_CANUNGRASP)

We also need to define GRASP-XXX and UNGRASP-XXX operators for the initial and goal configura-

tions of cbox. Note that these operators do not need any motion. In other words, the configuration

of the composite mechanical system is unchanged. Only the set of compositions of robots and

objects is changed.

Besides operators which have consequences on the geometric world, we define purely symbolic

operators. For instance:

(:action RECEIVE_DATA

:precondition

P_FORKLIFT.CBOX_GOOD_RECEPTION

:effect

DATA_RECEIVED)

This is typically an action that has a geometric placement constraint expressed by

the P FORKLIFT.CBOX GOOD RECEPTION proposition. It is of course possible to define operators that

have no link (no precondition and no effect) with the geometric environment.

We can also overload the GOTO-XXX, GRASP-XXX or UNGRASP-XXX operators. For instance, we can

add a predicate MOTOR LIFT OK as a precondition to GRASP operators involving a given robot.

To complete the description of the radio-switch we just need to give an initial state s0 and a goal g
expressed as a conjunction of propositions (definition 11). Here we have:

s0 = (P FORKLIFT INIT ∧ P ARMBOT INIT ∧ P CBOX INIT)

g = (DATA RECEIVED ∧ P CBOX GOAL)

s0 means forklift, armbot and cbox are in their initial positions, the data have not been received

and the switch has not been pushed (we work in the Close World Assumption). g means the

data have been received and cbox is in its final configuration. As one can see, the initial state is
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completely defined while the goal state is only partially specified. We do not care about the state

of the other robots and objects.

It is worth noting that this representation does not need to be changed for problems belonging to

the same class. Only the R relation and/or the geometry of the fixed environment (or of the robots

and objects) have to be modified to create new instances of a problem class.

4. Probabilistic approaches to explore CS and consequences

A strong link is now effective between the symbolic and the geometric world descriptions. More-

over, we have defined a search space for a task planner. To be able to navigate in this search

space, we should devise means to validate states (10-2), and to find configurations in specific

subsets of CSfree, i.e. the sets described in (10-5).

It has been shown that the best exact algorithm for the classical motion planning problem is ex-

ponential in the number of the degrees of freedom of the system. Probabilistic approaches (Bar-

raquand and Latombe (1991), Kavraki and Svestka (1996), LaValle (1998)) are well suited to deal

with motion planning in high dimensional spaces. For us, even apparently simple problems like

the radio-switch problem are highly dimensional: 19 dimensions in this case. Nevertheless, even

with a probabilistic approach the number of dimensions remains high. We introduce a two-steps

algorithm to break the complexity of the search in CS. The first step is based on the use of several

roadmaps which focus on a limited number of degrees of freedom without taking into account the

other dimensions of CS. The role of the second step is to validate the paths found in the first step,

but this time, by taking into account the other dimensions. As this second step can be very costly,

the method will develop a strategy that limits its use as much as possible.

4.1 The use of several roadmaps

Basically, probabilistic approaches capture the free configuration space topology by building graphs

called roadmaps. A roadmap node represents a configuration and an arc represents a collision-

free motion.

In our case, and in order to limit the complexity, we build several roadmaps corresponding to the

subspaces mentioned in section 3 (see Gravot et al. (2002) and Gravot and Alami (2003)).

In figure 4, we represent the roadmaps that have been developed for the radio-switch problem.

The forklift transit roadmap captures CP (forklift), the cbox placement roadmap captures

CP (cbox), The forklift.cbox transfer roadmap captures CG(forklift.cbox) and the armbot transit

roadmap captures CP (armbot).

As we will see below, the roadmaps can be constructed incrementally. The illustrated roadmaps

have a limited number of nodes but are however sufficient to solve the problem. The links be-

tween roadmaps are represented by dashed lines. They correspond to configurations where

grasp/ungrasp actions (and the associated composition/decomposition of robots and objects) can

be performed. These configurations are obtained by using direct or inverse kinematics.

Note that in order to reduce the dimensions of the search space, the roadmaps are built inde-

pendently, one for each robot, movable object or composed robot. In other words, we build the
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Figure 4: Roadmaps developed for the radio-switch problem. We also indicate the considered

place propositions.

roadmaps by taking into account only the static environment. Consequently, arcs or nodes will be

valid in some “geometric contexts” and invalid in other ones. With this method, a configuration of

CS is given by composing a set of nodes belonging to different roadmaps.

4.2 Advanced motion planning techniques

Continuous grasp and complex manipulations We can define not only a discrete set of grasp-

ing configurations but also continuous grasps. For example, the cylinders of the Geometric Hanoi

Tower Problem (§6.2) can be grasped all around them. In this case, it is interesting to explore

more intensively the CP (Ri)∩CG(Ri.Mj) spaces. Specific roadmaps can be used to capture the

topology of these spaces and to derive solutions to intricate manipulation problems with several

regrasping. These roadmaps can be naturally integrated in our “multi-roadmap” approach. The
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reader can refer to Alami et al. (1994) and to Siméon et al. (2003) for a detailed discussion on

manipulation problems in presence of continuous grasps and placements.

The Relative Roadmaps. We have introduced the notion of Relative Roadmap in order to avoid

to “solve” several times a very similar sub-problem consisting in studying the approach a given

object by a given robot until contact on near-contact, in several contexts. To build a Relative

Roadmap, we place the involved robot in an environment containing only one obstacle: the object

to grasp. The construction of the Relative Roadmaps consists in finding paths reaching the grasp

configurations from configurations where we assume that the robot is far enough from the object

(see figure 5). We build Relative Roadmaps with a RRT algorithm which has proved to be more

efficient for this kind of constrained motion (LaValle (1998)).

Figure 5: The Relative Roadmap that encodes several approach and contact paths of forklift
relatively to a cylindrical object.

Whenever we have to deal with the problem of the “docking” of one robot to one object, we use

a pre-computed relative roadmap by ”copying” its edges and nodes in the current environment.

“Copying” a configuration means to apply a geometric transformation (translation, rotation) on

some degree of freedom. This techniques is very close to the “kinematic roadmap” method pro-

posed in LaValle et al. (1999).
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4.2.1 The implemented R relation and actions applicability

The implemented R relation. With the roadmaps method, each place proposition relates to a set

of nodes of a specific roadmap. We associate to each place a method to generate such nodes.

For example:

• P FORKLIFT is in relation with all the nodes of the forklift transit roadmap. The method to

generate such nodes can be a general method to add nodes in standard motion roadmaps.

In our implementation we use the PRM visibility method described in Siméon et al. (2000).

• P FORKLIFT CANGRASP CBOX is in relation with the set of nodes in the forklift transit roadmap

where forklift can grasp cbox. A way to generate such nodes is to select one node from the

cbox placement roadmap and to build a node into the forklift transit roadmap by inverse

kinematics. Note that these nodes are also valid in the forklift.cbox transfer roadmap and

are added in it. They can be related to the P FORKLIFT.CBOX CANUNGRASP proposition.

• P FORKLIFT.CBOX GOOD RECEPTION is in relation with a subset of nodes in forklift.cbox
transfer roadmap. We build those nodes by sampling them in a specific region represented

by a rectangular area in figure 1.

Action application.

Here we explain how we use the roadmaps to solve problems from definition 11. The main point is

to find at least one configuration belonging to css′ = csreach
s ∩ csdef

s′ (10-5) where s′ is a new state

obtained through an application of action a.

We once again rely on the radio-switch problem example. Let us imagine that the initial state

s0 = (syms0, css0) such that

• syms0 = (P FORKLIFT INIT ∧ P ARMBOT INIT ∧ P CBOX INIT)

• css0 = {((ti0), (p0), (a0))}.

Let us imagine now that we want to apply the action:

(:action GOTO_FORKLIFT_INIT_CANGRASP_CBOX

:precondition

P_FORKLIFT_INIT

:effect

not P_FORKLIFT_INIT

P_FORKLIFT_CANGRASP_CBOX)

This action can be applied because it satisfies the conditions of action application (10-1) and

(10-2). This action results in a new state s1 = (syms1, css1) with, by application of (10-3):

• syms1 = (P FORKLIFT CANGRASP CBOX ∧ P ARMBOT INIT ∧ P CBOX INIT)
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csdef
s1 is the set of valid configuration included in the intersection of the subspaces defined by the

places of the state. The use of roadmaps gives us a finite set of configurations belonging to this

intersection. The proposition

P FORKLIFT CANGRASP CBOX denotes all the configurations where forklift is in contact with cbox
such that that they can form a composed robot forklift.cbox. Moreover, the proposition P CBOX INIT

and P ARMBOT INIT indicate that the object cbox and the robot armbot is in their initial configura-

tions. p0 and a0. In the current state of the computation, the configurations of csdef
s1 are:

((f2),(p0),(a0)) and ((f3),(p0),(a0)).

csreach
s0 are the reachable configurations from css0. For the implemented reachability function,

these configurations belong to the connected components in the roadmaps corresponding to robot

motions. The connected components of (f0) and (a0) contains respectively 4 nodes 3 nodes.

Consequently, we obtain 12 configurations for csreach
s0 .

The intersection of csdef
s1 and csreach

s0 gives us two candidates ((f2), (p0), (a0)) and ((f3), (p0), (a0)).
Please note that at this step of the computation, these configurations are just candidates. We have

to ensure that they are effectively reachable without collision from the initial configuration. It may

be possible, for example, that the local path from (f0) to (f2) is in collision with (p0)4.

As already mentioned, we need a second computation step to select configurations candidates for

css1. This second step is called validation. If we succeed in validating at least a configuration, we

obtain css1 6= ∅ which means that s1 becomes a valid state that can be selected to explore more

deeply the search space.

The validation algorithms, explained in the next section, can be costly. Indeed, we work on combi-

nations of nodes, which is exponential in the number of robots and movable objects. As we explore

CS hierarchically, the possible collisions with the static obstacles have already been checked by

the roadmaps construction. It remains to consider all the possible interactions between robots and

movable objects in the environment.

5. Interweaving task planning process and motion planning process

Our planner is based on a hybrid planning process in which a fast heuristic forward planner for

“high-level” plans is used in close interaction with a manipulation planning subsystem for instanti-

ating and validating actions in the 3D environment.

5.1 About the implemented problem formulation

For simplicity, we have introduced our definitions on the basis of a set-theoretic representation

for task planning. In our implemented planner, we employ a more elaborate task planning rep-

resentation based on PDDL 2.1 language (Fox and Long (2003)). It allows us mainly to use

first-order literals and logical connectives instead of propositions, and consequently to write more

concise planning problems descriptions. For instance, in our problem we need to define only one

parametrized GOTO operator.

4. The use of the Relative Roadmaps should help, as mentioned earlier, to solve this sub-problem.
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Another important remark relates to the fact that it is possible to define a systematic way to build

hybrid - symbolic and geometric - planning problems. Indeed, we have greatly automatized the

production. All the symbols and the implemented R relation can be automatically generated based

on a compact description of the robots, the objects, and of the allowed compositions together with

the specific places needed by the problem class. For instance, in the radio-switch problem we

declare:

SYMBOLS:

ROBOTS:{FORKLIFT; ARMBOT}

OBJECTS:{CBOX}

COMPOSITION:{FORKLIFT.CBOX: FORKLIFT + CBOX}

SUBSPACES:{FORKLIFT CP ;ARMBOT CP ;

CBOX CP ; FORKLIFT.CBOX CG}

LINK:{FORKLIFT CP / FORKLIFT.CBOX CG ;

CBOX CP / FORKLIFT.CBOX CG}

ZONES:{FORKLIFT.CBOX CG: GOOD_RECEPTION

ARMBOT CP: SWITCH}

INIT:{FORKLIFT CP ;CBOX CP; ARMBOT CP}

GOAL:{CBOX CP}

METHODS:

(FORKLIFT, CP, ‘‘forklift transit’’)

(ARMBOT, CP, ‘‘armbot transit’’)

(CBOX, CP, ‘‘cbox placement’’)

(FORKLIFT.CBOX, CG, ‘‘forklift.cbox transfer’’)

(ARMBOT, SWITCH, ‘‘method_1’’)

(FORKLIFT.CBOX, GOOD_RECEPTION, ‘‘method_2’’)

We also provide a geometric description of the named robots and movable objects and of the fixed

obstacles.

Based on this description, PDDL files are generated that contain all the needed symbols as well

as GRASP, GOTO, and UNGRASP operators. A file describing the R relation is also gener-

ated. Some methods to generate nodes for place propositions can be inferred. The user has

to define the other operators (ex: RECEIVE DATA) as well as the specific methods that will be

used by the planner to generate relevant configuration nodes (e.g. the nodes corresponding to

GOOD RECEPTION).

5.2 Software Architecture

Our planner, named aSyMov5, integrates and extends (see Cambon et al. (2004)) a task planner

called Metric-FF (Hoffmann (2003)) and a set of motion and manipulation planning functions based

on Move3D (Siméon et al. (2001)). Figure 6 presents aSyMov software architecture.

The input of the planner consists in:

5. aSyMov: a Symbolic Move3D
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Figure 6: The aSyMov software architecture.

• a symbolic data file including a PDDL description of the symbolic domain and problem.

• a geometric data file containing geometric representations of the static obstacles, robots

and objects as well as the robots kinematics and the associated roadmap expansion meth-

ods.

• a semantic data file that encodes the R relation.

5.3 The planner algorithms

A state s in aSyMov is represented by a data structure composed of:

• the symbolic state syms (the state as it can be used a purely symbolic task planner).

• a set of configurations proven to belong to css (if this set in not empty, the state s is valid).

• a set of configurations that are candidate to belong to css. We name this set ccs. An example

of computation of this set is given in §4.2.1. These configurations are not validated by the

second step of validation.

The aSyMov overall procedure is illustrated in figure 7.

The loading consists in the creation of the data structures for Metric-FF and Move3D. The prepro-

cessing consists in a symbolic domain analysis for Metric-FF. It also instantiates all the potential

actions. On the other side, Move3D creates bounding boxes to speedup the collision checker

computation. aSyMov then relates the structures created by the two planners on the basis of the

semantic file. It checks the coherence of the data, the correspondence between the symbols and
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Figure 7: The aSyMov overall algorithm.

the roadmaps, the validity of the initial state or the non-triviality of the associated task planning

problem, etc. Finally the initial state is created and added to the front search.

When a plan is found, aSyMov performs a set of improvement processes. They involve standard

optimization of the planned trajectories and parallelization of the plan in case this one involves

more than one robot. The parallelization is a two steps algorithm that first parallelizes the symbolic

plan, using a technique described in Regnier and Fade (1991), and coordinates the trajectories

with a method close to the one described in O’Donnell and Lozano-Perez (1989).

Note that, after initialization, all the needed roadmaps are created but are just filled with the initial

and final configurations. So at each step of the search process, aSyMov will try to arbitrate be-

tween finding a plan with the level of knowledge already acquired, or “investing more” in a deeper

knowledge of the topology of the different configuration subspaces it manipulates. Indeed, we

have decided to represent the expansion of the roadmaps at the same level as the actions.

The core algorithm is the “Extend State” procedure illustrated in figure 8. This algorithm tries to

add a new state s′ = (syms′ , css′) by the application of actions on a state s = (syms, css). After

this tentative, an update of the front search is performed by changing the cost of the front search

elements or/and by adding the new state. Then the “best” state of the front search is selected and

the process continue until a state is found that satisfies the goal.

Hereafter, we give details on the Extend State procedure.
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Figure 8: The Extend State algorithm.

5.4 Actions, cost of actions and cost of states

5.4.1 Determining applicable actions

A valid (i.e. css 6= ∅) state s is chosen . The applicable actions are those which satisfy (10-1),

i.e. actions which can be applied to the symbolic state syms. We define a second type of actions,

the roadmaps expansion actions, which consist in spending some computation time trying to

expand the current roadmaps. Each applicable action has an associated roadmaps expansion

action. For example, in the radio-switch problem, from the state s0 defined in §4.2.1, we can

choose between the following actions:

• GOTO FORKLIFT INIT CANGRASP CBOX: the action where forklift goes from its initial configu-

ration to a place where it can grasp cbox.

• GOTO FORKLIFT INIT ANYWHERE: the action where forklift goes from its initial configuration

to another place. This kind of action can be useful to position a robot on an intermediate

configuration (for example, to leave room for another robot to pass).

• GOTO ARMBOT INIT SWITCH: the action where armbot goes from its initial configuration to a

place where it can push the switch.
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• GOTO ARMBOT INIT ANYWHERE: the action where armbot goes from its initial configuration to

another place.

• EXPAND GOTO FORKLIFT INIT CANGRASP CBOX: the action which adds nodes to the cbox place-

ment roadmap and then constructs nodes by inverse kinematics in the forklift.cbox transfer

roadmap. These last nodes are also added in the forklift transit roadmap to create links

between roadmaps.

• EXPAND GOTO FORKLIFT INIT ANYWHERE: the action which adds nodes to the forklift transit

roadmap.

• EXPAND GOTO ARMBOT INIT SWITCH: the action which generates configurations by inverse kine-

matic to obtain nodes in the armbot transit roadmaps where the armbot gripper touches the

switch.

• EXPAND GOTO ARMBOT INIT ANYWHERE: the action which adds nodes to the armbot transit

roadmap.

5.4.2 Selecting an action

Action selection is based on a cost estimation process. We recall that the symbolic formulation of

the problem, i.e. the problem without taking into account (10-2) and (10-5) is a relaxed instance of

the overall problem.

For each applicable action a the process is:

• 1st step. The planner computes the set of candidate configurations ccs for the resulting

state. If ccs = ∅, a is removed from the selection. This action has no chance of being valid.

• 2nd step. The planner calls the symbolic task planner to compute a symbolic plan where

the initial state is syms′
6. If a symbolic plan is found, its length gives us a first heuristic cost

value for a. Note that if we choose an optimal task planner, this heuristic is admissible. Note

that it is only here that we use the symbolic task planner. In fact, it is used only to compute

the heuristic.

• 3rd step. The planner propagates the set of candidate configurations through the symbolic

plan found in the 2nd step. If there are candidate configurations for each symbolic state

traversed, the heuristic cost keeps the value given by the second step. If this is not the

case, we increase the cost. This lets us make the heuristic cost take into account the current

knowledge of the geometry of the environment.

The total cost of an action is: total cost = Heuristic cost + Cost of number of failures

The heuristic costs are those computed in the 3rd step. For the roadmaps expansion actions, this

cost is the same as for their associated applicable action.

The Cost of the number of failures allows us to avoid trying to validate the same action too often.

It is possible that there are no motions corresponding to an action. This cost is computed as a

6. In our implementation, a lazy evaluation mechanism allows to compute only once a symbolic plan starting at syms′
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linear function of the number of failures in the attempts to validate this action. For the roadmaps

expansion action, this cost limits the number of nodes added for a given place. This cost is then a

linear function of the number of selections of this action.

Finally, the planner selects the action with the lowest cost.

Important remark. It is mainly through the selection of the next action that the link between the

symbolic world and its geometric counterpart is exploited. A symbolic plan is computed and serves

as a first basis to our heuristic. Then, the propagation of roadmaps nodes through the candidate

configurations propagation gives an idea about how the geometry is explored: this is the second

basis of our heuristic. Finally the failures cost give us an idea about the feasibility of an action: this

is the third basis of our heuristic. It is also at the selection of an action that we decide if a roadmap

expansion is worth to be performed.

5.4.3 Selecting states

Each search step begins by a state selection (see figure 7). At each step we update the front

search by giving costs to states. Thus we can compare them and choose the cheapest. The cost

of a state is:

State cost = Accumulated cost + Heuristic cost + Cost of the Number of failures

where:

• The Accumulated cost is the cost to reach the state from the initial state expressed in terms

of number of actions.

• The heuristic cost is the sum of the non-validated applicable actions costs of this state.

• The Cost of the Number of failures is obtained with a linear function of the number of failures

of the Extend State algorithm for this state.

We select states from the front search with a probabilistic weighted selection.

Remark. Our algorithm for the exploration of the state space is similar the A* algorithm. The main

difference is that we can never delete simply an action or a state from the front search. Indeed,

the use of probabilistic methods cannot ensure that there is no solution to a motion planning sub-

problem. To limit the undesirable effects of a constantly growing front search, we introduced the

failure costs.

5.5 Applying an action

Applying an action means trying to validate an applicable action or enriching the roadmaps in the

case of the roadmaps expansion actions.

5.5.1 Validate an applicable action

Validating an action a : (syms, css) → (syms′ , css′) means finding at least one configuration c ∈
css′ . This is performed through a constraint propagation mechanism along the current plan - i.e.
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the sequence of actions from the initial state to (syms, css). This mechanism is allowed to change

the geometric instantiations of the preceding actions. The process is lazy, it stops at the first

configuration found and the resulting state becomes valid. However, if the action is not validated,

it is not deleted it from the front search. Indeed, later on, a roadmaps expansion action may

add nodes which will allow the planner to try again to validate the action. This is an important

feature of the planner, with a risk of inefficiency, but it is crucial since it “provides” a certain level of

completeness. More interestingly, it opens the possibility to arbitrate between finding a new plan

with the level of knowledge already acquired, or exploring more deeply different sub-manifolds of

CSfree.

The question here is the management of the set of the candidate configurations ccs for each state.

When a state is s′ created, ccs′ is initialized not only on the basis of the precedent css but also the

precedent ccs. Each configuration c ∈ ccs maintains a tree that represents the explanation from

where it comes. Figure 9 illustrates the explanation of a candidate configuration C4 ∈ ccs4 the 4th

state of a plan under construction. Some of the configurations which belong to the explanation of

C4 are valid and others are just candidates. For a candidate configuration c, we call level of a

candidate configuration the number of states that have to be traversed backward its explanation

tree before reaching at least one valid configuration. In our example figure 9, the level of C4 is 1

and the level of C2-0 is 2.

Figure 9: Example of an explanation tree for a candidate configuration C4. The valid configura-

tions are emphasized by grey rectangles.

The Validation algorithm has two arguments: the state s and the length (n) of the plan to reach

s,

Validate(s,n)
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1 CC_s = ComputeCandidate(s);

2 current_level = 1;

3 valid = false;

4 while (current_level <= n)

5 CandidateOfLevel = ConfigurationsOfLevel(CC_s, current_level)

6 for each C in CandidateOfLevel do

7 Exp = ComputeExplanation(c);

8 valid = TestAllPathsExplanation(Exp);

9 if (valid = true) then

10 CS_S = CS_S + C;

11 return true

12 end if;

13 end for;

14 current_level = current_level + 1;

15 end while

16 return false;

The procedure ComputeCandidate has been explained in §4.2.1. This computation is done not

only on the basis css and the ccs of the preceding state. The procedure ConfigurationsOfLevel

builds a set containing all the configurations of ccs of a given level. The planner tries to validate

the higher level candidates first. They need less computation.

The procedure ComputeExplanation extracts the explanation (see figure 9) of a configuration C. In

our implementation, this procedure is done during the ComputeCandidate algorithm by maintain-

ing lists. The procedure TestAllPathsExplanation tests iteratively the paths of an explanation.

When it finds a valid path, the procedure returns the boolean value true. The procedure checks

whether the list of paths between two configurations is collision-free. We recall that with our multi-

roadmaps approach, this test is done taking into account all the other robots and objects. A

more graphical explanation of this algorithm can be found in Gravot et al. (2003). The strategy of

TestAllPathsExplanation first tries to validate configuration C by the simplest way. In our exam-

ple the procedure will try first to validate the path between C3-1 and C4. If this path is not valid,

it will try to validate the path between C2-1 and C3-0 and then between C3-0 and C4, etc. Dur-

ing this procedure, the css part of a preceding state can be updated. For example, if the planner

validates the path between C2-1 and C3-0 then C3-0 is added in the css3 set.

The Validation algorithm is stopped when a configuration found and added to the css part of the

state. If no configuration is found, the state s′ is not validated with the level of information that the

system has currently on the topology of CS. Action a is not removed from the front search, further

roadmaps expansion actions may make s′ valid. The explanations are updated whenever a node

is added in the roadmaps.

The Validation algorithm is intrinsically costly. In the worst case, it is exponential in the number of

robots and objects, since it inherits the complexity of the underlying multi-robot motion planning

problem. Nevertheless, we claim the hybrid problem representation and the heuristic can, in

numerous realistic situations, guide the system such that its explores only a small part of the

search space.
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5.5.2 Applying a roadmap expansion action

Applying a roadmap expansion action is adding nodes7 in some roadmaps. A roadmaps expansion

action is linked to an applicable action. The target parts of roadmap are automatically computed by

analyzing the preconditions and the effects of the correspondent applicable action (see §5.4.1 for

an example). The insertion of nodes is shared probabilistically between all the roadmaps involved.

It is also at this level that the planner can expand the Relative Roadmaps.

An important feature here, is that the insertion of nodes is done by taking into account the geo-

metric context in which the roadmaps expansion action is achieved. This is to avoid to add nodes

in collision with the other robots or objects at the moment where we would use them to find a path.

More precisely, when we add new nodes, we select randomly one configuration belonging to css

of the previous state to become the collision context. As the search is forward, the previous state

has at least one configuration belonging to css. In almost all our problems, this feature improves

drastically the efficiency of the planner.

Adding nodes during the search process is a key feature of our planner. It gives it the ability to

adapt the addition of nodes to the real needs of the problem resolution.

5.6 Completeness and discussion

Completeness. In the worst case, all the symbolic plans can be explored. At the symbolic level,

the planner is complete. The Validation algorithm is also complete. So if we work with precom-

puted roadmaps, the aSyMov planner is complete with the level of geometric planning knowledge

available in the roadmaps. Consequently, if the planner does not find an existing solution, this is

due to the fact that roadmaps are not sufficient.

The roadmaps methods are known to be complete in probability. If we take into account the

expansion of the roadmaps during the search, aSyMov keeps this property. This is due to the fact

that:

• The actions that are not yet validated have always a chance to be selected and validated

• When the roadmaps are expanded, the new nodes are associated to previously explored

states.

• The roadmap expansion actions stay in the front search.

When the planner faces to solve problem that has no solution, it alternates indefinitely between

adding nodes and trying to validate actions.

Search heuristic. The planner is first encouraged to find a plan close to the shortest in terms of

number of actions. The farther a solution plan is from this first solution, the greater the effort will

be to find it. We also use costs based on previous failures: the more an action fails to be validated,

the less often it will be chosen. In this case the planner estimates that the validation of the action

faces a geometric impossibility or a very constrained sub-problem. This last method provides an

informative link between the symbolic representation and the geometric environment.

7. In the current implementation we have fixed arbitrarily the number of nodes to add at 5.
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Limitation of the Configuration Space explored. One of the main points of the interweaving

of the task planning process and the motion planning one is the limitation of the Configuration

Space explored on the basis of the symbolic constraints. First, aSyMov explores only the parts

of CS involved by the propositions belonging to PLACE in the symbolic plans. If a proposition is

not present in any symbolic plan, the corresponding set of configurations will not be considered.

For example, if in a given problem, a robot is not useful for solving a problem, the transit and

transfer roadmaps of this robot will not be expanded. Secondly, the symbolic constraints also

give an order of exploration which limits the Configuration Space. For example, if the symbolic

constraints indicate that a motion of a robot 1 must be achieved before a motion of a robot 2, the

space where robot 2 moves first is not explored. Our planner is able to take advantage of strong

symbolic constraints as discussed above. On the other hand, our planner has the same limitations

as a motion planner when faced to in highly dimensional CS without symbolic constraints, even

with the proposed two-step (multi-roadmaps, then validation) exploration algorithm.

5.7 Example

We give here below an a sketch of the overall procedure for the first steps of the radio-switch

problem resolution. Let us assume that we have the pre-computed roadmaps (figure 4)8. The

initial state is s0 = (syms0, CSs0). CSs0 is linked to the configuration (f0, p0, a0) (see figure 10).

Let us imagine that the first action selected is:

• GOTO ARMBOT INIT SWITCH

At the beginning of the resolution, this action seems to have the greatest interest. To validate

this action, we need to find a node that is reachable from a0 and which belongs to the set of

configurations where the end effector of armbot touches the switch (this set was previously named

CS1 in §3.2). The unique possible node is a2. Unfortunately, paths do not exist to reach this node

in the geometric context of the initial state. cbox blocks the path. The action is not validated. The

planner has the choice now between:

• four roadmaps expansion actions:

– EXPAND GOTO FORKLIFT INIT CANGRASP CBOX

– EXPAND GOTO ARMBOT INIT SWITCH

– EXPAND GOTO ARMBOT INIT ANYWHERE

– EXPAND GOTO FORKLIFT INIT ANYWHERE

• and three applicable actions:

– GOTO FORKLIFT INIT CANGRASP CBOX

– GOTO FORKLIFT INIT ANYWHERE

– GOTO ARMBOT INIT ANYWHERE

8. aSyMov can be called with precomputed roadmaps
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Figure 10: The set of candidate configurations during the resolution of the radio-switch problem

For the sake of simplicity, we suppose that the planner does not choose a roadmaps expansion

action. It tries to validate the applicable action GOTO FORKLIFT INIT CANGRASP CBOX. The other

actions do not have symbolic interest. In other words, they do produce a symbolic state which is

closer to the symbolic goal. However, they might be used later to find intermediate configurations.

We have already shown in §4.2.1 that the computation of the set of candidate configuration for s1
gives ccs1 = {((f3), (p0), (a0)), ((f2), (p0), (a0))}. Let us suppose that the validation algorithm has

proven that ((f3), (p0), (a0)) ∈ css1. The state s1 is valid.

Then let us imagine that the planner remains on the same branch of the search space and now, it

tries to validate the action:

(:action GRASP_FORKLIFT_CBOX_INIT

:precondition

P_FORKLIFT_CANGRASP_CBOX

P_CBOX_INIT

:effect

not P_CBOX_INIT

not P_FORKLIFT_CANGRASP_CBOX

P_FORKLIFT.CBOX_CANUNGRASP)
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Problem type CPU (seconds) success rate

1 forklift 1 box 12.87 100%

1 forklift 2 boxes 49.94 45%

2 forklifts 2 boxes 148.82 15%

Table 1: Average results on 20 tests for 3 kinds of “Forklifts and boxes” problems.

This action leads state s2; the set of candidate configuration is ccs2 = {((t3), (a0)), ((t2), (a0))}.

The validation algorithm, which is a lazy process, uses the last geometric instantiation to provide

((t3), (a0)) ∈ css2.

Still, if we imagine that the planner remains in the same branch of the search space, it will then try

to validate:

(:action GOTO_FORKLIFT.CBOX_CANUNGRASP_GOOD_RECEPTION

:precondition

P_FORKLIFT.CBOX_CANUNGRASP

:effect

not P_FORKLIFT.CBOX_CANUNGRASP

P_FORKLIFT.CBOX_GOOD_RECEPTION)

This action leads to s3. After computing the candidate configurations, the planner realizes there

is no path between the previous validated configurations ((t3), (a0)) and the only one candidate

configuration ((t1), (a0)) (see figure 10-1). Consequently, it tries to explore the other candidate

configuration levels. Let us imagine that in the first action the second candidate can be validated,

now css1 = {((f3), (p0), (a0)), ((f2), (p0), (a0))}. We propagate it to the second action. Now

css2 = {((t3), (a0)), ((t2), (a0))}. Let us suppose that we now can reach ((t1), (a0)) from (t2, a0)
without collision (see figure 10-2). The new state s3 is validated (figure 10-2)...

6. Empirical evaluation of the system

We have run the test 20 times with randomly generated problem instances of the radio-switch

class on a 3.2 GHz Pentium 4 HT. All runs were successful, with an average computation time of

18.6 seconds.

In order to highlight the variety of problems that aSyMov can solve, we present below three other

problem classes and the results obtained. We will also analyse the limitations of the current

system.

6.1 Forklifts and boxes

In this problem class, forklifts must move boxes. We have tested various cases by changing the

initial and final configurations and by choosing the number of robots and boxes involved. Figure 11

illustrates two of these problems.
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Figure 11: Examples of “forklifts and boxes” problems

Table 1 summarizes the obtained results. Theoretically, the success should be 100% for each type

of problems if we give enough time to the planner. All computations have been given a maximum

time of 500 seconds.

The number of geometric interactions grows exponentially with the number of robots or objects.

This is not a surprise regarding the dimensions of the corresponding CS and the fact that the

planner cannot take advantage of a symbolic constraints. It is in fact a pure geometric manipulation

planning problem with a branching factor that increases when several robots can achieve the same

tasks.

On the contrary to this extreme case, the following problems exhibit strong symbolic constraints

and intricate links with geometry.
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success rate CPU(seconds) nb actions of the plan nb actions optimal

1 100 % 9.97 28.8 28

2 78 % 78.2 16.3 ?

3 100 % 298.9 40.16 28

4 100 % 271.6 44 44

Table 2: Average results on 50 runs for the 4 instances of the Geometric Hanoi Tower problem.

6.2 The Geometric Hanoi Tower problem

This class of problems is directly derived from the well-known task planning problem. Our planner

can solve a three-cylinders problem respecting motion and manipulation constraints. We obtain

different instances of this class of problems by tuning the dimensions of the central obstacle. One

or two robots can be used to solve the problem. Figure 12 illustrates four problems of this class.

Figure 12: Four problems from the “Geometric” Hanoi Tower problem class
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Figure 13: A plan found for Problem 4 of the Geometric Hanoi Tower class: actions and associated

paths. This is the shortest possible plan (in terms of number of actions) because

there is no possible path for the robot to transfer the Big Disk directly from stack-1 to

stack-3 if a disk is placed on stack-2.

This class of problems permits to show how geometric constraints can influence qualitatively the

overall solution. Indeed for Problem 4 (see figure 13), the high level plan is completely different

from the plan that solves Problem 1, for which we obtain the classical solution where the big

disk can be directly transferred from stack 1 to stack 3. In Problem 4, because of the geometric

constraints, it is impossible to achieve this operation.

In Problem 3, even if the central obstacle is big, it does not create the same constraints as for

Problem 4. We can find solutions close to those of Problem 1 or to those of Problem 4. This came

as a surprise for us.

Note also that it is more difficult to find solutions for Problem 2 than for Problem 1. At task level,

this problem can appear as easier: the second robot can be seen as a fourth stack. Unfortunately,

there is a geometric complexity brought with the second robot as mentioned above. Note however

that the planner solves the complete problem: its gives not only a symbolic plan but also the robot

paths.

The Geometric Hanoi Tower problem allows to exhibit how the method tries to reduce the number

of studied motions. Table 3 compares the number of studied motions in the validation process

to the number of possible motions in the problem (counted “by hand”). Obviously, one motion is

considered as different from another if the geometric contexts (i.e. the current configurations of

the objects or the robots) are different.

Another interesting issue concerns the number of nodes developed in the roadmaps and how it can

be limited and adapted to the effective intricacy of the situation when it is encountered. Indeed, the
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number of studied number of needed motions number of possible motions

motions for an optimal plan

1 25.4 14 151

4 71.2 22 151

2 74.4 ? 16148

Table 3: Number of studied motions in several instances of the Geometric Hanoi Tower problem

class.

roadmap transit transfert transfert transfert

Small Medium Big

Cylinder Cylinder Cylinder

nb motions 7.04 4.02 2.16 1.0

in the plan

nb of nodes 194.9 43.86 23.52 15.68

Table 4: Average number of nodes developed in the roadmaps compared to the number of motions

needed for Problem 1 of the Geometric Hanoi Tower problem class.

roadmaps expansion is mainly controlled by the symbolic reasoning process. Table 4 illustrates

the number of nodes created for each roadmap involved in Geometric Hanoi Tower Problem 1.

The table presents average values computed on the basis of 50 runs. —-

6.3 An “extreme” case: the “IKEA” problem

Two robots, Assembler and Gluer, must assemble a kit table. Only Gluer can apply glue. Both

robots can assemble and transfer objects. Two legs, a board and a glue dispenser are available.

Before assembling a leg with the board, Gluer must put two points of glue on the board. It has

a glue tank with a capacity limited to two points of glue. It may refill itself at the glue dispenser.

It starts with an empty glue tank. Another constraint: the board and the assembled table have to

be transported by the two robots. The grasping configurations are continuously defined along the

objects.

This problem is too complex to be fully solved by aSymov in its current implementation (it involves

about 40 different roadmaps including roadmaps where both robot transport the table with various

grasps). Here we have 2 robots and 3 objects and the two robots share almost the same skills,

which augments the number of applicable actions. The use of continuous grasps is also an addi-

tional source of difficulty. However, the planner is able to find and instantiate plans using a mixed

initiative procedure: the programmer gives a hint (best applicable action) at a some critical instant

of the resolution. Thus, we essentially illustrate here the ability of aSymov to “digest” substantially

complex problems.
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Figure 14: The “IKEA” problem.

6.4 Final comments

From the examples, we can confirm that the planner solves problems that have never been solved

by other planners and that cannot be solved by a hierarchical system that simply uses the “best”

task planner on top of the “best” motion planner.

We have also, voluntarily placed it in front of situation that it cannot solve completely in its current

implementation in order to get some insights on the necessary improvements.

Two issues have clearly to be improved: the task planner heuristic search in order to take full

advantage of the knowledge acquired incrementally through the roadmaps exploration, and the

adaptation of more elaborate motion planning techniques.

The main reason why we used FF instance, was the fact that it is a very fast for classical task

planning problems. The system would certainly take advantage of a more specific task planner

that integrates the possibility to add new symbols (when new connected components appear in the

roadmaps) or to merge symbols (when the roadmap expansion action finds a way to connect two

components). Another key issue would be to use or implement cost based task planner algorithms

that would be fed by cost estimations based on trajectory lengths.

Several improvements can be also be made at motion planning level. For instance, by integrat-

ing several techniques proposed in the literature for more oriented search in the C-space sub-

manifolds, using techniques that provide more flexible roadmaps (Jaillet and Siméon (2006)) or

that allow to efficiently synchronize multi-robot paths (Svestka and Overmars (1998); Qutub et al.

(1998); Siméon et al. (2002); Clark et al. (2003); LaValle (2006)).
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7. Conclusion

In this paper, we propose an original and systematic approach towards integrating symbolic task

planning, and geometric motion and manipulation planning.

We introduced a new extension to classical action planning formalisms based on STRIPS-like

description where manipulation and rearrangement planning problems in 3D environments are

rigorously introduced and where reachability conditions must not be asserted by a programmer

but are automatically inferred by checking for the existence of feasible paths using motion planning

mechanisms. Our formalisms are independent from the exploration methods of the symbolic state

space as well as from the exploration methods for the Configuration Space or the representation

of the geometry (2D, 3D). Moreover, this formalism can express a pure task planning problem as

well as a pure motion/manipulation planning problem.

On this formal basis, we have built a planner that is able to solve intricate geometric and symbolic

constraints. We relied on an original exploration method of the Configuration Space which let us

deal with complex problems of multi-robot manipulation planning. To cope with the complexity of

the problems we have adopted a two-step method where we first takes into account the static

geometric environment and then the interactions between the movable artifacts of the world.

The search process is guided by a symbolic level that solves a relaxed version of the problem in

which all paths are considered as valid. The planner, at each step, tries to balance between (1)

trying to find a plan with the level of knowledge it already has, or (2) “investing” more in a deeper

knowledge of the topology of the different configuration spaces it manipulates.

We have evaluated the planner with very different instances of intricate problems. We illustrated,

through experiments, the relevance of our approach which tends to limit the number of motions

studied and the number of nodes in the roadmaps and to adapt dynamically to the intricacy of the

situations. Nevertheless, the planner is more efficient when the problem is well constrained at the

symbolic level. Indeed, it is able to exploit the symbolic constraints to reduce the exploration of high

dimensional Configuration Spaces. Finally we have pointed out several potential improvements to

the scheme based or more elaborate task and motion planning algorithms.
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T. Lozano-Pérez. Spatial planning: A configuration space approach. In IEEE Transaction on

Computers Volume 32 , Issue 2, pages 108-120, 1983.

T. Lozano-Perez, J.L. Jones, and E. Mazer. Handey: A robot system that recognizes, plans and

manipulates. In IEEE International Conference on Robotics and Automation, pages 843- 849,

1987.

K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning. Interna-

tional Journal of Robotics Research, vol. 15: pp. 533 - 556, 1996.

I. Mazon, R. Alami, and P. Violero. Automatic planning of pick and place operations in presence

of uncertainties. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

IROS’90, 1990.

Ch. Nielsen and L. Kavraki. A two-level fuzzy prm for manipulation planning. In IEEE Int. Conf. on

Intelligent Robots and Systems, 2000.

40



P.A. O’Donnell and T. Lozano-Perez. Deadlock-free and collision-free coordination of two robot

manipulators. In IEEE Robotics and Automation Conference 1989, 1989.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. A motion planner for a hybrid robotic system with kinody-

namic constraints. pages 692–697, IEEE International Conference on Robotics and Automation

2007, Rome, Italy, 2007.

S. Qutub, R. Alami, and F. Ingrand. A scheme for coordinating multi-robot planning activities and

plans execution. In 13th European Conference on Artificial Intelligence, 1998.

P. Regnier and B. Fade. Complete determination of parallel actions and temporal optimization in

linear plans of action. In Proc. European Workshop on Planning, 1991.

N. Rugg-Gunn and S. Cameron. A formal semantics for multiple vehicle task and motion planning.

In IEEE International Conference on Robotics and Automation, San Diego, CA, USA, Vol 3,

pages 2564-2469, 1994.

A.C. Sanderson, H. Zhang, and L.S. Homem de Mello. Assembly sequence planning. In AI

Magazine, Volume 11, Issue 1, 1990.

J.P. Saut, A. Sahbani, S. El-Khoury, and V. Perdereau. Dexterous manipulation planning using

probabilistic roadmaps in continuous grasp subspaces. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2007.
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