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Abstract. Modelling biochemical systems has received considerable at-
tention over the last decade from scientists and engineers across a num-
ber of fields, including biochemistry, computer science, and mathematics.
Due to the complexity of biochemical systems, it is natural to construct
models of the biochemical systems incrementally in a piecewise manner.
This paper proposes a hybrid approach which applies an evolutionary al-
gorithm to select and compose pre-defined building blocks from a library
of atomic models, mutating their products, thus generating complex sys-
tems in terms of topology, and employs a global optimization algorithm
to fit the kinetic rates. Experiments using two signalling pathways show
that given target behaviours it is feasible to explore the model space by
this hybrid approach, generating a set of synthetic models with alterna-
tive structures and similar behaviours to the desired ones.

1 Introduction

Models of biochemical systems can be used in systems biology to predict and
explain behaviour, or as templates for designing novel biological systems in syn-
thetic biology. It is still an open question regarding how to build and verify
models of biochemical systems, involving intelligent methods and tractable com-
putational tools. Traditionally the structures of models are inferred from various
experimental observations, and the kinetic rates are estimated computationally
by considering kinetic laws [3, 9].

Much previous research has focused on how to fit the kinetic rates of an
existing biochemical model so that its behaviour coincides with the observa-
tions of a given physical system [7, 14, 13]. However, another research line is to
identify alternative topologies and optimize the topologies [8, 20]. Moreover, a
model of a biochemical system can be engineered by modifying and piecewise
constructing its network topology, using biological building blocks. As the kinetic
rates (parameters) associated with biochemical reactions (forming the structure)
are crucial for biochemical systems exhibiting observed behaviours, it is neces-
sary to model the systems in terms of both the topology and kinetic rates by a
hybrid method. The challenging aim of our research is the development of a ro-
bust method for the automated construction of models from descriptions of the
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Table 1: An enzymatic reaction and its components
Enzymatic Reaction Petri net Components

A + E

k1−→
←−
k2

A|E k3−→ B + E E5

BA|EA

4 k3

T3

k2
T2

k1
T1 A + E

k1−→ A|E
[A] = 4 A|E k2−→ A + E

[E] = 5 A|E k3−→ B + E
[A|E] = [B] = 0

observed or desired behaviours of the biochemical systems, by the manipulation
of both the topology and kinetic rates.

Some recent research applying evolutionary methodologies to model biolog-
ical systems can be found in [18, 19, 2]. Evolutionary computation and func-
tional Petri nets have been applied to infer metabolic pathways by Kitagawa
and Iba [10]; however their approach relies on starting with an existing network
model which is then modified, whereas our approach is to incrementally piece-
wise construct a network from a single node. Previously [21] we have developed a
method to piecewise construct the topology of networks using simulated anneal-
ing (SA); in the research reported here we use a hybrid approach which employs
evolution strategy (ES) to derive the topology and SA for the kinetic rates.

2 Components and Composition Rules

2.1 Pre-defined Components

Components are defined according to the semantics and syntax of the biological
building blocks in [21]. There are two patterns for generating the reusable com-

ponents in a library: (1) binding pattern P1 + P2
ki−→ P3; (2) unbinding pattern

P3
kj−→ P1 + P2. The parameters ki and kj are the kinetic rates of binding and

unbinding reactions, and usually ki � kj . The two patterns illustrate how a
complex can be synthesized from substrates or broken down into substrates. A
basic enzymatic reaction can be represented by one instantiation of the binding
pattern and two instantiations of the unbinding pattern, as shown in Table 1.
The concentrations of substrates in the enzymatic reaction are indicated with
labels within square brackets, such as ‘[A]’ and ‘[A|E]’, where the symbol ‘|’
means that the biochemical complex ‘A|E’ is made from two substrates A and
E.

2.2 Composition Rules

Given an existing biochemical network model BioN and a library of biological
components CompLib, the operation of piecewise composition can be the addi-
tion of one component Ca from CompLib to BioN, or the subtraction of one
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component Cs from BioN. We have further developed the original composition
rules proposed in [21] to permit component subtraction and greater flexibility
in composition. The rules developed are performed by comparing and replacing
parts of the labels of the added component. In this paper, Li (i = 1, 2, 3) is the
label of places Pi from the added component Ca, and LB is the label of a place
PB of a component CB in BioN. The details of composition rules are as follows.

1. Given a binding component P1 + P2
k1−→ P3 or an unbinding component

P3
k2−→ P1+P2, where L1, L2 and L3 are labels of P1, P2 and P3, respectively.

(a) If LB = L1 or LB = L2 or LB = L1|L2, the component Ca is added to
the existing network BioN by adding its reaction equations directly;

(b) If LB 6= L1 or LB 6= L2, all L1 (L2) in Ca are replaced by LB in Ca and
the modified reaction equations are added to BioN ;

(c) If LB 6= L3 and PB is a complex, L3 in Ca is replaced by LB , L1 is
replaced by LB1, and L2 is replaced by LB2 where {LB1, LB2|LB1 ∩
LB2 = 0 and LB1 ∪ LB2 = LB}. The corresponding modified reaction
equations of Ca are added to BioN ;

(d) If LB 6= L3 and PB is not a complex, the reaction equations of Ca are
added into BioN, and a new component C ′

a is created by binding P3 with

PB to produce PB |P3 (P3 + PB
k1−→ PB |P3), and reaction equations of

C ′
a are added to BioN.

2. A component Cs is selected randomly from BioN for subtraction.

(a) If Cs is the only component in BioN, no subtraction is applied to BioN ;
(b) If Cs is not the only component in BioN, the transition and its incident

arcs in Cs are removed directly. The BioN is checked for connectivity.
Non-connected parts of BioN are linked by creating a binding component
with species selected randomly from the non-connected parts.

3 Hybrid Piecewise Modelling

Current research has focused on generating topologies [16] and fitting kinetic
rates [17], or both [5]. In this paper, we aim to solve a topology optimization
problem by iteratively piecewise assembling components represented by quanti-
tative Petri nets from a user pre-defined library, combined with optimizing the
kinetic rates.

A hybrid evolutionary and heuristic approach has been developed using a
two layer framework: firstly, this hybrid approach evolves the topology of the
model representing the target system by performing ES at the outer layer, and
then SA is applied at the inner layer to optimize the kinetic rates of the evolved
model. The piecewise modelling stops after a pre-defined number of generations
and returns a set of the best synthetic models, offering alternative topologies
with similar behaviours to the target system. The pseudo-code of the hybrid
framework between ES and SA is shown in Algorithm 1. The details of evolving
the topology by the ES layer and optimizing kinetic rates by the SA layer are
described in Section 3.1 and Section 3.2, respectively.
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Algorithm 1 A hybrid piecewise modelling framework

Require: CompLib, Composition Rules
Ensure: BioNbest

1: Initiate the population;
2: while Not reached maximum generation (ES layer) do
3: for Each individual in the population do
4: Mutate the topology of individual by Addition or Subtraction;
5: Check the mutated topology of the individual;
6: Evaluate the mutated individual;
7: if The kinetic rates are required to be optimized then
8: while Not reach minimum temperature (SA layer) do
9: Optimize the kinetic rates of individual by Gaussian distribution;

10: Evaluate the mutated kinetic rates;
11: end while
12: end if
13: end for
14: Crossover the individuals;
15: Select offspring for next generation;
16: end while
17: Return BioNbest

3.1 Evolution Strategy Based Topology Optimization

The (µ+λ)-ES is utilized to iteratively piecewise assemble the components for
the model construction, where µ and λ are the number of parents and children
respectively. The (µ+λ)-ES starts from an initial population of individuals and
each individual is a single component selected randomly from the library. The
individuals are mutated by genetic operators adapted from evolutionary algo-
rithms: Addition (⊕), Subtraction (	) and Crossover (⊗). The individuals with
the best fitness are selected to generate offspring for the next generation.

The three genetic operators are concepts taken from genetic algorithms, and
the implementation of these operators in this paper is inspired by nature. The
addition operator is used to integrate a component to an existing topology of
model. The subtraction operator is used to remove the transition with inci-
dent arcs in a component selected randomly from the model for a removal. The
crossover operator is used to apply a ‘cut and splice’ method to reproduce off-
spring from two models under construction. The set of composition rules has
been introduced in Section 2.2 for the components composition carried out by
the three genetic operators.

3.2 Simulated Annealing Based Kinetic Rates Fitting

SA is a heuristic optimization algorithm for searching a global optimum solu-
tion in a very large solutions space, avoiding local optimum solutions. In our
previous work [21] we have applied the SA to piecewise construct and explore
the topologies of the biological systems. In this paper, the SA layer is integrated



A Hybrid Approach to Piecewise Modelling of Biochemical Systems 5

within the ES layer to estimate the kinetic rates of the synthetic models. The
topologies of these models are fixed while in the SA layer, having been passed
down from the ES based outer layer after mutating their structures.

The rates of reactions in a given model are coded as follows: a vector K(M) =
(kt1, k

t
2, ..., k

t
l ) is used to record the rate values in a model, where l is the number

of reactions, t is the current cooling temperature, and kti is a constant rate of
the ith chemical reaction ri (i = 1, 2, ..., l). The vector K(M) is mutated by the
Gaussian distribution N(µ, σ) by N iteration times at each cooling temperature.
The mutated K(M) of the model is evaluated after each iteration, by comparing
the behaviour of the synthetic model and the target system.

Due to the probabilistic behaviour of the random procedure of SA [1], a
mutated vector K(M) could be generated which causes a bad estimated fitness
of the model. This is because there is a chance that the model with a fixed
topology and optimized kinetic rates returned from the SA layer to the ES layer
could be worse than the one passed into the SA layer.

3.3 Model Evaluation

A synthetic model is evaluated by comparing its behaviours with target be-
haviours of a biochemical system. The behaviours are represented by time series
data of the concentrations of species, e.g. enzymes, other proteins, and com-
plexes. The behaviours of the species in the target system can be obtained from
a reference model or by observations of a biochemical system from the wet-lab.

Given a set of reference data for the target system MT , there are N generated
time series XT = (X1, X2, ..., XN ) which represent the behaviours of N species,
N ≥ 1. There are P data points in each time series Xi = (x1i , x

2
i , ..., x

P
i )T ,

i = 1, ..., N . There are M time series XG = (X̂1, X̂2, ..., X̂M ) describing the
behaviours of M species in a constructed model MG, with P data points for each
time series X̂j = (x̂1j , x̂

2
j , ..., x̂

P
j )T , j = 1, ...,M . The intersection between MT

and MG of species is defined by XC = XT ∩XG = (X1, X2, ..., Xn), 1 ≤ n ≤ N .
The difference between the behaviours of MT and MG is calculated by averaging
the difference of behaviours of each species in XC by a paired comparison of the
P data points. As shown in Eq. (1), the difference of behaviours for one species
Xk ∈ XC is measured by the Euclidean distance function, where η is the total
number of compared substrates in XC :

dMT ,MG
(Xk) =

1

η

η∑
k=1

√√√√ P∑
t=1

(xtk − x̂tk)2. (1)

While evaluating the generated model, the species for behaviour comparison
can be specified by the user and are stored in X ′

C (|X ′
C | = n′). In this scenario,

there could be some synthetic substrates in MG which do not exist in MT .
Therefore, if a substrate is specified for comparison in MG but does not exist in
MT , then MG should be punished. If a species for comparison exists both in MT

and MG, a reward can be given to MG. A Reward and Penalty function Φ(Xk)
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is used to improve the objective function as a complement of the Euclidean
distance function: Φ(Xk) = −ε1 if Xk ∈ XG ∧ Xk /∈ XT , where ε1 is a non-
negative real value for the reward; Φ(Xk) = ε2 if Xk ∈ XG ∧Xk ∈ XT , where ε2
is a non-negative real value for the punishment. The reward and penalty can be
defined by the user at the initial stage. The return result of Φ(Xk) will partly
contribute to the fitness evaluation of a generated model MG by an objective
function f(MG) in Eq. (2):

f(MG) = dMT ,MG
(Xk) +

1

η

η∑
k=1

Φ(Xk) (2)

where η = n if the compared substrates are from the intersection XC , and η = n′

if the compared substrates are from the specific X ′
C . In this paper, modelling is

a minimization problem, therefore the smaller the fitness value, the better the
generated model.

4 Experimental Study

In this section, we present simulation results for the implementation of the hybrid
modelling approach on two signalling pathways: (1) the RKIP pathway, which
is a mathematical model taken from Cho et al [6] for representing the fragment
of the mitogen-activated protein kinase (MAPK) signal transduction pathway
concerned with the inhibition of the extracellular signal regulated kinase (ERK)
by the Raf1 kinase inhibitor protein (RKIP); (2) the Levchenko pathway [11]
for quantitatively analyzing the signal propagation regulated by the formation
of scaffold kinase complexes in the core MAPK cascade. ERK is one of the
MAP Kinases (mitogen activated protein kinases), and can also be referred to
as ‘MAPK’; it is a player in both the Cho et al model of the RKIP fragment of
the MAPK cascade as well as in the Levchenko model of the MAPK cascade.

4.1 Generation of Similar Behaviours

The main aim of our approach is to construct models with similar behaviours
to the target biochemical systems. The RKIP pathway transfers the mitogenic
signals from the cell membrane to the nucleus. The hypothesis is that RKIP can
inhibit activation of Raf1 by binding to it, disrupting the interaction between
Raf1 and MEK, thus playing a part in regulating the activity of the ERK.

Figure 1a shows that the behaviours of substrates in the generated models
are similar to the target behaviour in terms of Euclidean distance. Because the
behaviours of RKIP in the 50 synthetic models are similar both to each other
and also to the target behaviour, we only illustrate the behaviours of RKIP from
the five best generated models (obtained in a single run). The construction of the
models can be driven to approach to that of the target pathway by increasing the
fitness in terms of reducing the Euclidean distance between behaviours employed
to evaluate the models. As shown in Fig. 1b, the fitness of each model converges
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Fig. 1: (a) Behaviours of the RKIP from five best synthetic models and target
RKIP pathway; (b) Average fitness of all 50 synthetic models of RKIP pathway,
and fitness of the five best synthetic models.

to a minimum value with the increased number of generations in the simulation.
In our current implementation, the hybrid modelling process is set to call the
SA layer to optimize the kinetic rates of each model at every 250 generations;
different settings are under study in ongoing research. Due to the probabilistic
mechanism of accepting a worse solution by the SA, there is a jump of fitness
convergence for most models. These fitness values converge again after move
back to the ES layer, following a traditional evolutionary process, see Fig. 1b.

Our results for the Levchenko pathway given in Figure 2a show that models
can be generated with unexpected behaviours regarding ERK which are sim-
ilar in terms of Euclidean distance to the target in the MAPK cascade [11].
Although the target system does not exhibit oscillations, there is an oscillating
substrate behaviour from one of the synthetic models, as supported by Kholo-
denko’s model [12]. This suggests that feedbacks could exist in solution space,
and are indeed incorporated in many MAPK models, e.g. [4], although missing in
our target Levchenko model. Again, the fitness of constructed models converges
with the increased number of generations in the simulation as shown in Fig. 2b.

4.2 Exploration of Alternative Topologies

One of main aims of modelling biochemical systems is to explore alternative
topologies, for understanding the relationships among the compounds in wet-
lab. Our approach can search the model space and suggest a set of alternative
topologies with similar behaviours to the target. The results can be analysed in
terms of the structural difference between models, using Compression and Cov-
erage measures. Compression (adapted from [21]) is a metric which computes the
distance between two networks in terms of the proportion of matched (common)
arcs (between the generated and target model) with respect to the maximum
number of arcs in the generated or target model. Coverage computes inclusion in
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Fig. 2: (a) Behaviours of ERK from four best and interesting synthetic models
and target Levchenko pathway; (b) Average fitness of all 50 synthetic models of
Levchenko pathway, and fitness of four best and interesting synthetic models in
terms of ERK behaviours.
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Fig. 3: (a) Compression and coverage of RKIP and Levchenko pathways; (b) A
clustering of 50 synthetic models and target RKIP pathway (T).

terms of the ratio of arcs in the target model which are matched in the generated
model. Both measures vary from 0 (worst) to 1 (best). If either compression or
coverage is low for a particular model, then its topology is very different to the
target, even if their behaviours are similar.

Figure 3a illustrates the compression and coverage of two signalling path-
ways. Most coverage of synthetic models of RKIP and Levchenko pathways is in
the ranges of [0, 0.53] and [0, 0.27], respectively. Compression for both the RKIP
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and the Levchenko generated models is very poor, ranging over [0, 0.18], indi-
cating that the generated models are very different to the target ones in terms of
topologies. Figure 3b is a dendrogram of hierarchical pairwise clustering based
on similarity and complete linkage over compression among 50 generated models
and the target RKIP pathway, and illustrates the generation of a wide range of
alternative topologies by our hybrid approach; the closest 10 models in terms
of fitness are shown with a ‘+’. Although none of the generated topologies are
close to the target one, the nearest being individual 48 which is 10th closest re-
garding fitness, there are 9 other models which are closer in terms of behaviour
despite being poorly related to the target structurally, and are also fairly widely
scattered over structural space. Thus our approach is able to search model space
for networks which have similar behaviours to the target, even though they may
differ quite significantly in terms of structure.

5 Conclusions and Future Work

Our study addresses the evolution of quantitative Petri nets and could thus
be applied to stochastic and hybrid Petri nets as well as the continuous Petri
nets, which can benefit mathematical modelling. We have applied the proposed
approach to two signalling pathways. The experiments show that it is feasible
to iteratively piecewise model biochemical systems using our hybrid approach
and explore the solution space of alternative models with different topologies
but similar behaviours to the target ones.

One important issue to be investigated in our future research is to study the
switching policy between ES and SA layers, in order to obtain models with good
quality in terms of both topology and kinetic rates. Furthermore, implementa-
tion of the genetic operators can result in different model sizes, and thus one of
our future aims is to exploit the potential tradeoff of the combinatorial applica-
tion of the genetic operators. More biological constraints will be considered for
defining the components and the composition rules, thus improving the biologi-
cal relevance of the synthetic models. Finally, the generated models can be used
as design templates to guide the construction of synthetic biological systems
which may have quite different topologies from existing natural systems.
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