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Abstract. We define and find a most specific generalization of a fuzzy
set of topics assigned to leaves of the rooted tree of a taxonomy. This gen-
eralization lifts the set to a “head subject” in the higher ranks of the tax-
onomy, that is supposed to “tightly” cover the query set, possibly bring-
ing in some errors, both “gaps” and “offshoots”. Our method involves two
more automated analysis techniques: a fuzzy clustering method, FAD-
DIS, involving both additive and spectral properties, and a purely struc-
tural string-to-text relevance measure based on suffix trees annotated by
frequencies. We apply this to extract research tendencies from two col-
lections of research papers: (a) about 18000 research papers published in
Springer journals on data science for 20 years, and (b) about 27000 re-
search papers retrieved from Springer and Elsevier journals in response
to data science related queries. We consider a taxonomy of Data Sci-
ence based on the Association for Computing Machinery Classification
of Computing System (ACM-CCS 2012). Our findings allow us to make
some comments on the tendencies of research that cannot be derived by
using more conventional techniques.

Keywords: Hybrid approach - Generalization - Fuzzy cluster - Anno-
tated suflix tree - Research tendency.

1 Introduction

The issue of automation of structurization and interpretation of digital text
collections is of ever-growing importance because of both practical needs and
theoretical necessity. There are many papers tackling various aspects of this.
In our view, however, the mainstream of all the efforts currently constitute ap-
proaches based on the analysis of structure and dynamics of graphs/networks
of interrelations between papers, or articles, (sometimes, between authors) or
between research concepts. Paper [5] exemplifies the former, more recent papers
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[3,9] — the latter. Arguably, the latter, analysis of concept networks is less com-
putationally intensive than the former, because the sizes of concept graphs are
much smaller than those of graphs of articles. Yet results of structural analyses
are frequently unstable, much dependent on the datasets involved, and, also,
difficult to use for knowledge engineering.

Consider, for illustration, a result from [9]: three sets of keywords returned by
three different methods as response to query “Economic growth” in Table 1. One
cannot help but noticing how different and, sometime, arbitrary are keywords
returned by algorithms. This type of return is difficult to interpret and automate.

Table 1. Three sets of keywords returned by three different topic modeling methods
in response to query “Economic growth” in [9], Table 3 on page 228.

Management information sys-|Economic adjustment Stages of growth model
tem

Tobacco Economic policy Growth policy

Internet Usage Growth policy Resource wealth
Eurobond Economic development Kuznets curve
Automobile engine Economic reform Export-led growth

The goal of this paper is developing a coherent methodology for conceptual
analysis of research paper collections that would lead to unified conceptual rep-
resentations more suitable for automated analysis. The very first provision is to
restrict the arbitrariness of keywords, be they supplied by authors, like in [3], or
extracted from texts, like in [9]. To achieve that, we use a domain taxonomy, so
that the set of keywords is a subset of the taxonomy leaf topics. A taxonomy,
in this paper, is a rooted tree whose nodes are annotated by domain concepts
in such a way that parental nodes are tagged by concepts more general than
concepts assigned to the children nodes. In spite of the recent surge in efforts
for automated taxonomy building (see, for a review, [15]), no sound automated
taxonomy making method has been developed so far. We definitely prefer us-
ing a manually developed taxonomy such as ACM Classification of Computing
Systems 2012 by the international Association for Computing Machinery [2].

Therefore, the set of keywords here is constant. This would shield us from
empirical biases which are immanent to the approaches that use keywords de-
rived from the texts under analysis. There is a negative side too: some of our
leaf-related keywords may appear little relevant or even irrelevant to this or
that article from the collection. Therefore, we need a method for assessment of
relevance between keywords and texts, which would provide us with robust rel-
evance scoring independently of the way at which keywords appear in the text.
Such a method has been proposed and substantiated, with our participation, to
evaluate similarity between texts and keywords considered as strings of symbols,
the so-called Annotated Suffix Tree approach (see in [6, 13]).

Our next step will be for obtaining clusters of keywords so that those key-
words that tend to co-occur in the same texts would tend to belong to the
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same clusters. The clusters sought should be fuzzy to reflect semantic relations
between keywords. Therefore, the next stage of our approach is in using the
obtained keyword-to-text relevance scores for finding fuzzy clusters of keywords,
that tend to co-occur in the same texts.

Conventionally, obtaining such a cluster or set of clusters would be considered
“the end of the story”, like it is in popular methods for topic modeling [4,1].
We, however, consider it is imperative to use the knowledge embodied in the
domain taxonomy, of which the keywords are part, for further interpretation of
the clusters. Specifically, given a fuzzy cluster of taxonomy leaves, we propose to
find a most specific generalization of that in higher ranks of the taxonomy and use
thus obtained higher ranks concept(s) as a general description of the cluster. To
this end, we develop a method for finding the most parsimonious generalization
of fuzzy leaf clusters. Therefore, our method consists of the following stages:

1. Obtaining a domain taxonomy.

2. Obtaining a collection of research papers in the domain.

3. Obtaining a matrix of relevance scores between taxonomy leaf topics and
the papers.

4. Finding thematic fuzzy clusters of “co-relevant” taxonomy leaf topics.

5. Finding most parsimonious generalizations of (some of) the thematic fuzzy
clusters.

6. Making conclusions out of the generalizations.

We apply this strategy to two collections of research papers in Data Science
that we have downloaded using different criteria. We use a taxonomy of Data
Science derived by us [12, 7] from the most popular Computer Science taxonomy,
manually developed by the world-wide Association for Computing Machinery
in 2012 as the ACM Computing Classification System (ACM-CCS) [2]. Our
generalizations and interpretations of the two sources are mutually consistent.
Moreover, they cannot be found with the existing approaches because they are
based on different levels of conceptual granularity, whereas other approaches
involve the same granularity level.

The rest of the paper is organized accordingly. Section 2 presents a mathe-
matical formalization of the generalization problem as of parsimoniously lifting
of a given query fuzzy leaf set to higher ranks of the taxonomy and provides a re-
cursive algorithm leading to a globally optimal solution to the problem. Section
3 describes an application of this approach to deriving tendencies in development
of Data Science, that can be discerned from two sets of research papers: (a) about
18000 research papers published by the Springer Publishers in data science 17
journals for the past 20 years, and (b) about 27000 research papers published in
80 data science journals by Springer and Elsevier, and retrieved using 17 query
terms such as “clustering” and “artificial intelligence”. Its subsections describe
our approach to finding and generalizing fuzzy clusters of research topics. The
results are followed by our comments on the tendencies in the development of
the corresponding parts of Data Science drawn from the lifting results. Section
4 concludes the paper.
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2 Parsimoniously lifting a fuzzy thematic cluster: model
and method

Mathematically, a taxonomy is a rooted tree whose nodes are annotated by
taxonomy topics. The problem of our concern is this. Given a fuzzy set S of
taxonomy leaves, find a node h(S) of higher rank in the taxonomy, that covers
the set S as tightly as possible. Such a “lifting” problem is a mathematical ex-
plication of the human facility for generalization, that is, “the process of forming
a conceptual form” of a phenomenon represented, in this case, by a fuzzy leaf
subset.

The problem is not as simple as it may seem to be. Consider, for the sake of
simplicity, a hard set S shown with five black leaf boxes on a fragment of a tree
in Figure 1. Figure 2 illustrates the situation at which the set of black boxes is
lifted to the root, which is shown by blackening the root box, and its offspring,
too. If we accept that set S may be generalized by the root, this would lead to a
number, four, white boxes to be covered by the root and, thus, in this way, falling
in the same concept as S even as they do not belong in .S. Such a situation will be
referred to as a gap. Gaps at lifting should be penalized. Altogether, the number
of conceptual elements introduced to generalize S here is 1 head subject, that
is, the root to which we have assigned S, and the 4 gaps occurred just because
of the topology of the tree. Another lifting decision is illustrated in Figure 3:
here the set is lifted just to the root of the left branch of the tree. We can see
that the number of gaps has drastically decreased, to just 1. However, another
oddity emerged: a black box on the right, belonging to S but not covered by
the general concept at the root of the left branch at which the set S is mapped.
This type of error will be referred to as an offshoot. At this lifting, three new
items emerge: one head subject, one offshoot, and one gap. This is less than the
number of items emerged at lifting the set to the root (one head subject and four
gaps, that is, five), which would make it more preferable if the relative weight
of an offshoot is less than the total relative weight of three gaps.

Fig. 1. A crisp query set, shown by black boxes, to be conceptualized in the taxonomy.
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Head subject

Gaps

Fig. 2. Generalization of the query set from Figure 1 by mapping it to the root, with
the price of four gaps emerged at the lift.

Head subject

Gap Offshoot

Fig. 3. Generalization of the query set from Figure 1 by mapping it to the root of the
left branch, with the price of one gap and one offshoot emerged at this lift.

We are interested to see whether a fuzzy set S can be generalized by a
node h from higher ranks of the taxonomy, so that S can be thought of as falling
within the framework covered by the node h. The goal of finding an interpretable
pigeon-hole for S within the taxonomy can be formalized as that of finding one
or more “head subjects” h to cover S with the minimum number of all the ele-
ments introduced at the generalization: head subjects, gaps, and offshoots. This
goal realizes the principle of Maximum Parsimony (MP) in describing the phe-
nomenon in question. We give here a short introduction to the solution proposed
by the authors in [8].

Consider a rooted tree T representing a hierarchical taxonomy so that its
nodes are annotated with key phrases signifying various concepts. We denote the
set of its leaves by I. Each interior node t € T'— I is assumed to correspond to a
concept that generalizes the topics corresponding to the leaves I(t) descending
from ¢, viz. the leaves of the subtree T'(t) rooted at ¢, which is conventionally
referred to as the leaf cluster of t.

A fuzzy set on I is a mapping u of I to the non-negative real numbers that
assigns a membership value, or support, u(i) > 0 to each i € I. We refer to
the set S, C I, where S, = {i € I : u(i) > 0}, as the base of u. In general, no
other assumptions are made about the function u, other than, for convenience,
commonly limiting it to not exceed unity. Conventional, or crisp, sets correspond
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to binary membership functions w such that w(i) = 1 if ¢ € S, and u(i) = 0
otherwise.

Given a fuzzy query set u defined on the leaves I of the tree T', one can
consider u to be a (possibly noisy) projection of a higher rank concept, u’s
“head subject”, onto the corresponding leaf cluster. Under this assumption, there
should exist a head subject node h among the interior nodes of the tree T such
that its leaf cluster I(h) more or less coincides (up to small errors) with S,,. This
head subject is the generalization of u to be found. The two types of possible
errors associated with the head subject if it does not cover the base precisely, are
false positives and false negatives, referred to in this paper, as gaps and offshoots,
respectively, are illustrated in Figures 2 and 3. Altogether, the total number of
head subjects, gaps, and offshoots is to be as small as possible.

A node t € T is referred to as u-irrelevant if its leaf-cluster I(t) is disjoint
from the base S,. Consider a candidate node h in T and its meaning relative
to fuzzy set w. An h-gap is a node g of T'(h), other than h, at which a loss of
the meaning has occurred, that is, g is a maximal u-irrelevant node in the sense
that its parent is not u-irrelevant. Conversely, establishing a node h as a head
subject can be considered as a gain of the meaning of u at the node.

Given a fuzzy topic set u over I, a set of nodes H will be referred to as a
u-cover if: (a) H covers Sy, that is, S, € |J,c I(h), and (b) the nodes in H are
unrelated, i.e. I(h) NI(h') = 0 for all h,h’ € H such that h # h'. The interior
nodes of H will be referred to as head subjects and the leaf nodes as offshoots,
so the set of offshoots in H is H N I. The set of gaps in H is the union of G(h)
over all head subjects h € H — I.

We define the penalty function p(H) for a u-cover H as:

p(H)= Y ut)+ > > (g + Y qulh) (1)

heH—1I heH—1I geG(h) heHNI

The problem we address is to find a u-cover H that globally minimizes the
penalty p(H). Such a wu-cover will be the parsimonious generalization of the
query set u. Our algorithm ParGenFS [8] recursively computes H(t), L(t) and
p(t) from the corresponding values for the child nodes in x(t). To compute L(t)
and H(t) for any interior node ¢, we analyze two possible cases: (a) when the
head subject has been gained at ¢ and (b) when the head subject has not been
gained at t. To obtain a parsimonious lift, whichever case gives the smaller value
of p(t) is chosen. The output of the algorithm consists of the values at the root,
namely, H — the set of head subjects and offshoots, L — the set of gaps, and p
— the associated penalty. The algorithm ParGenFS leads to an optimal lifting
indeed [8].

3 Application to collections of research papers

This section describes application of the method described above.
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3.1 Scholarly text collection

We have downloaded two collections: (a) a collection of 17685 research papers to-
gether with their abstracts published in 17 Data Science journals by the Springer
Publisher in 1998-2017, see [8] (Collection A); (b) a collection of 26 799 research
papers published in 80 Data Science journals by the Springer and Elsevier Pub-
lishers and retrieved by using such keywords as clustering, machine learning,
deep learning, artificial intelligence, etc. as queries (Collection B). We use ab-
stracts to these papers.

3.2 DST Taxonomy

Taxonomy is a form of knowledge engineering which is getting more and more
popular. Mathematically, a taxonomy is a rooted tree, a hierarchy, whose all
nodes are labeled by main concepts of a domain. The hierarchy corresponds to a
relation of inclusion: the fact that node A is the parent of B means that B is part,
or a special case, of A. The domain of our choice is Data Science, comprising such
areas as machine learning, data mining, data analysis, big data, computational
intelligence, etc. We take that part of the ACM-CCS 2012 taxonomy, which is
related to Data Science, and add a few leaves related to more recent Data Science
developments. A major extract from the taxonomy of Data Science is published
n [12]. The higher ranks of the taxonomy are presented in Table 2 and its full
version in [7].

Table 2. ACM Computing Classification System (ACM-CCS) 2012 higher rank sub-
jects related to Data Science.

Subject index|Subject name

1. Theory of computation

1.1. Theory and algorithms for application domains
2. Mathematics of computing

2.1. Probability and statistics

3. Information systems

3.1. Data management systems

3.2. Information systems applications
3.3. World Wide Web

3.4. Information retrieval

4. Human-centered computing

4.1. Visualization

5. Computing methodologies

5.1. Artificial intelligence

5.2. Machine learning
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3.3 Evaluation of relevance between texts and key phrases

Most popular and well established approaches to scoring keyphrase-to-document
relevance include the so-called vector-space approach [14] and probabilistic text
model approach [4]. These, however, rely on individual words and text pre-
processing. We utilize an in-house method [6,13], which requires no manual
work.

An Annotated Suffix Tree (AST) is a weighted rooted tree used for storing
text fragments and their frequencies. To build an AST for a text string, all
suffixes from this string are extracted. A k-suffix of a string x = z122... 2N of
length NN is a continuous end fragment xy = TN _p+1ZN_k+2 - . . Tn. For example,
a 3-suffix of string INFORM ATION is substring ION, and a 5-suffix, ATION.
Each AST node is assigned a symbol and the so-called annotation (frequency of
the substring corresponding to the path from the root to the node including the
symbol at the node). The root node of AST has no symbol or annotation. We
use efficient versions of AST building algorithms (see, for example, [10]).

Having an AST T built, one can score the string-to-document relevance over
the AST as the average frequency of a symbol conditioned by the previous sub-
string coinciding in both the string nd document [8].

3.4 Defining and computing fuzzy clusters of taxonomy topics

Clusters of topics should reflect co-occurrence of topics: the greater the number
of texts to which both topics ¢ and ¢’ are relevant, the greater the interrelation
between t and t’, the greater the chance for topics ¢t and ¢’ to fall in the same
cluster. We have tried several popular clustering algorithms. Unfortunately, no
satisfactory results have been found. Therefore, we present here results obtained
with our FADDIS algorithm developed specifically for finding thematic clusters
[11]. This algorithm implements assumptions that are relevant to the task:

LN Laplacian Normalization: Similarity data transformation modeling — to an
extent — heat distribution and, in this way, making the cluster structure
sharper.

AA Additivity: Thematic clusters behind the texts are additive so that similarity
values are sums of contributions by different hidden themes.

AN Non-Completeness: Clusters do not necessarily cover all the key phrases
available as the text collection under consideration may be irrelevant to
some of them.

Co-relevance topic-to-topic similarity score Given a keyphrase-to-document
matrix R of relevance scores, it is converted to a keyphrase-to-keyphrase similar-
ity matrix A for scoring the “co-relevance” of keyphrases according to the text
collection structure. The similarity score a; between topics ¢t and ¢’ can be com-
puted as the inner product of vectors of scores ry = (r4,) and ry = (ry,,) where
v=12...,V =17685 or V = 26799 at Collection A or B, respectfully. The
inner product is moderated by a natural weighting factor assigned to texts in
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the collection. The weight of text v is defined as the ratio of the number of topics
n, relevant to it and n,,4,, the maximum n, over all v = 1,2,..., V. A topic
is considered relevant to v if its relevance score is greater than 0.2 (a threshold
found experimentally, see [6]). Our algorithm, FADDIS, [11] finds fuzzy clusters
one by one under the assumption that each of the clusters is represented by its
fuzzy membership vector u = (u¢), t € T, where T is the leaf set of our taxon-
omy so that the product (pu)(puy) = pusuy approximates ay as closely as
possible. Here p stands for the cluster’s intensity value determined according
to the approximation task [11].

FADDIS thematic clusters After computing the 317 x 317 topic-to-topic
co-relevance matrix, converting in to a topic-to-topic Lapin transformed simi-
larity matrix, and applying FADDIS clustering, at Collection A, we sequentially
obtained 6 clusters, of which three clusters seem especially homogeneous. We
denote them using letters L, for 'Learning’; R, for 'Retrieval’; and C, for 'Clus-
tering’. These clusters are presented in Table 3.

Table 3. Clusters L, R, C: topics with largest membership values.

Cluster L Cluster R Cluster C

u(t) |Topic u(t) |Topic u(t) |Topic

0.300(rule learning 0.211|query representation |0.327|biclustering

0.282|batch learning 0.207|image representations|0.286|fuzzy clustering

0.276|learning to rank 0.194|shape representations |0.248|consensus clustering

0.217|query learning 0.194|tensor representation |0.220|conceptual clustering

0.216|apprenticeship learn-|0.191|fuzzy representation |0.192|spectral clustering

ing

0.213|models of learning 0.187|data provenance 0.187|massive data cluster-
ing

0.203|adversarial learning |0.173|equational models 0.159|graph based concep-
tual clustering

3.5 Results of lifting clusters L, R, and C within DST

All obtained clusters are lifted in the DST taxonomy using ParGenF'S algorithm
with the gap penalty A = 0.1 and off-shoot penalty v = 0.9.

Lifting Cluster L gave three head subjects: machine learning, machine learn-
ing theory, and learning to rank. These represent the structure of the general
concept “Learning” according to text Collection A.

Similar comments can be made with respect to results of lifting of Cluster
R: Retrieval. The obtained head subjects: Information Systems and Computer
Vision show the structure of “Retrieval” in the set of publications under consid-
eration. Lifting of Cluster C leads to 16 (!) head subjects/offshoots at which the
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core clustering subjects are supplemented by methods and environments in the
cluster — demonstrating in this way that the ever increasing role of clustering
activities should be better reflected in the taxonomy.

3.6 Fuzzy clusters at Collection B

Among many fuzzy clusters found by FADDIS algorithm among the DTS tax-
onomy over the Collection B, there are seven interpretable clusters. These are
described in Table 4.

Table 4. Generalizations of interpretable clusters found at the Collection B. Symbol
(® denotes an offshoot.

Interpretation

Head subjects and offshoots

Gaps

Leaves

“Learning”

1.1.1. — Machine learning theory
5.2. — Machine learning
(® 3.4.4.5. — Learning to rank

38

32

“Clustering”

3.2.1.4. — Clustering
and 8 offshoots

17

“Probabilistic
representations”

2.1.1. — Probabilistic representations

5.2.1.2. — Unsupervised learning

5.2.3.5. — Learning in probabilistic graphical models
and 8 offshoots

11

31

“Retrieval”

3.1.4. — Query languages
3.4. — Information retrieval
(© 5.1.1.9. — Language resources

27

28

“Structuring”

3.1.1.5. — Data model extensions

5.1.3. — Computer vision

(® 1.1.1.12. — Structured prediction

@ 3.1.4.1.1. — Structured Query Language
(® 3.4.1.1. - Document structure

@ 3.4.2.1. — Query representation

@ 3.4.7.1.1. — Structured text search

(@ 5.2.1.1.5. — Structured outputs

and 11 other offshoots

11

34

“Computer vision
representations”

5.1.3.2. — Computer vision representations
(® 4.1.4.1. - Visualization toolkits
and 3 more offshoots

13

“Querying”

3.1.3.2. — Database query processing
3.4.2. — Information retrieval query processing
and 5 offshoots more

15

The first two of them one-to-one correspond to clusters L and C over collec-
tion A, whereas the third cluster over A, R (Retrieval), corresponds to five other
clusters over Collection B. These five are not incompatible with Cluster R, but
rather appear to be its facets. The “Computer vision” head subject over A, has
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received now two complementary aspects: “Structuring” and “Computer vision
representations”.

3.7 Making conclusions

One can see that the topic clusters found with the text collections do high-
light areas of soon-to-be developments. One cannot help but relate them to the
following processes:

— theoretical and methodical research in learning, as well as merging the sub-
ject of learning to rank within the mainstream;

— representation of various types of data for information retrieval, and merging
that with visual data and their semantics; and

— various types of clustering in different branches of the taxonomy related to
various applications and instruments.

Most impressive here is the information retrieval cluster R. Rather than con-
ventionally relating the term “information” to texts only, visuals are becoming
parts of the concept of information. However, unlike the multilevel granularity of
meanings in texts, developed during millennia of the process of communication
via languages in the humankind, there is no comparable hierarchy of meanings
for images. One may only guess that the elements of the R-related five clusters
linked to data representation and management systems, are those that are going
to be put in the base of a future multilevel system of meanings for images and
videos.

Regarding the “clustering” cluster C with its many head subjects, one may
conclude that, perhaps, a time moment has come or is to come real soon, when
the subject of clustering must be raised to a higher level in the taxonomy to
embrace all these “heads”. At the dawn of the Data Science era clustering was
usually considered a more-or-less auxiliary part of machine learning. Perhaps,
soon we are going to see a new taxonomy of Data Science, in which clustering is
not just an auxiliary instrument but rather a model of empirical classification,
a big part of the knowledge engineering.

4 Conclusion

The paper describes a hybrid method for the analysis of a collection of research
papers based on a domain taxonomy. The method involves the following original
developments by the authors:

i A taxonomy of Data Science derived from ACM-CCS 2012;

ii A method for scoring relevance between taxonomy leaf topics and texts which
requires no manually texts pre-processing;

iii. A spectral method for one-by-one deriving fuzzy clusters of taxonomy leaf
topics;

iv. A method for parsimoniously generalization of fuzzy leaf clusters in the tax-
onomy;

v Consistent conclusions of tendencies of research in Data Science.
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