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A Hybrid Asynchronous Brain-Computer
Interface Combining SSVEP and EOG Signals
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Abstract—Objective: A challenging task for an electroen-
cephalography (EEG)-based asynchronous brain-computer
interface (BCI) is to effectively distinguish between the
idle state and the control state while maintaining a short
response time and a high accuracy when commands are
issued in the control state. This study proposes a novel hy-
brid asynchronous BCI system based on a combination of
steady-state visual evoked potentials (SSVEPs) in the EEG
signal and blink-related electrooculography (EOG) signals.
Methods: Twelve buttons corresponding to 12 characters
are included in the graphical user interface (GUI). These
buttons flicker at different fixed frequencies and phases
to evoke SSVEPs and are simultaneously highlighted by
changing their sizes. The user can select a character by
focusing on its frequency-phase stimulus and simultane-
ously blinking his/her eyes in accordance with its high-
lighting as his/her EEG and EOG signals are recorded. A
multifrequency band-based canonical correlation analysis
(CCA) method is applied to the EEG data to detect the
evoked SSVEPs, whereas the EOG data are analyzed to
identify the user’s blinks. Finally, the target character is
identified based on the SSVEP and blink detection results.
Results: Ten healthy subjects participated in our experi-
ments and achieved an average information transfer rate
(ITR) of 105.52 bits/min, an average accuracy of 95.42%,
an average response time of 1.34 s and an average false-
positive rate (FPR) of 0.8%. Conclusion: The proposed BCI
generates multiple commands with a high ITR and low
FPR. Significance: The hybrid asynchronous BCI has great
potential for practical applications in communication and
control.
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I. INTRODUCTION

I
N RECENT years, research on brain-computer interfaces

(BCIs), which enable the translation of neural activities into

control commands for external devices without the participation

of peripheral nerves and muscles [1], has witnessed tremendous

development. Electroencephalography (EEG) is commonly used

in noninvasive BCI systems due to its ease of data acquisition

and high temporal resolution [2], [3]. The typical EEG brain

activity patterns used in BCIs include motor imagery-related

synchronization/desynchronization (ERD/ERS) [4], [5], P300

potentials [6], [7] and steady-state visual evoked potentials

(SSVEPs) [8], [9]. An EEG-based BCI can be synchronous

or asynchronous. A BCI is synchronous if the time at which

a command is issued is controlled by the computer [10], [11],

whereas in an asynchronous BCI system, users choose to issue

a command at their discretion or to remain in the idle state for a

long period [10], [12].

An ideal asynchronous BCI must effectively distinguish be-

tween the idle and control states, which requires a low false-

positive rate (FPR) in the idle state and a low false-negative rate

(FNR) in the control state. Furthermore, a short response time

and a high accuracy must be maintained when control commands

are issued in the control state. A strict threshold criterion is

generally used to decrease the FPR in the idle state. However,

imposing this criterion will increase the response time when a

control command is issued and the FNR in the control state.

In contrast, a lax threshold condition potentially reduces the

response time; however, it will also lead to a high FPR in the

idle state, and thus, many control commands might be incorrectly

generated in the idle state. Therefore, a challenging task is to

establish an asynchronous BCI system with high performance

in effectively distinguishing between idle and control states.

Recently, various synchronous/asynchronous BCIs have been

proposed based on different brain signals. Among these systems,

SSVEP-based BCI systems have the advantage of a relatively

high information transfer rate (ITR). When a subject focuses on

a visual stimulus that is steadily flickering at a certain frequency,

a resonance will be elicited in the visual cortex at that specific

frequency and its harmonics, i.e., an SSVEP [13], [14]. Based on

this phenomenon, a flickering target can be selected based on the
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detection of the evoked SSVEP. In recent years, the canonical

correlation analysis (CCA)-based algorithm has been proven to

be an efficient tool for recognizing the target frequency [15].

For example, Chen et al. developed a synchronous system that

achieved a relatively high ITR of 5.32 bits per second in a

40-character spelling experiment [16]. Various threshold criteria

have been proposed, such as a feature model based on kernel

CCA coefficients [11], an approximate fractal entropy [17],

and a maximum evoked response spatial filter [18], to improve

the performance of SSVEP-based asynchronous BCIs in dis-

tinguishing between the idle and control states. Furthermore,

several specific paradigms have been developed, such as one

involving a flickering target key and several flickering pseu-

dokeys [19]. According to the existing results for SSVEP-based

BCI systems, the performance in the asynchronous mode is

much less satisfactory than the performance in the synchronous

mode.

Motor imagery (MI) [20], [21], which enables a self-paced

control approach for subjects, has also been used to develop

asynchronous BCIs, despite the limited number of commands

available (usually only two). Liu et al. [22] proposed an adaptive

threshold method based on a set stop time for a BCI using

left- and right-hand MI. The reported average accuracy and

response time were 83.4% and 2.77 s, respectively. A receiver

operating characteristic (ROC) curve is commonly used to

define the thresholds and evaluate the performance of asyn-

chronous MI systems [23]. Other researchers have developed

asynchronous BCIs based on P300 potentials evoked in the

“odd-ball” paradigm. For example, Martínez-Cagigal et al. [24]

reported a P300-based asynchronous web browser with a preset

threshold and a stepwise linear discriminant analysis model that

enabled several patients with sclerosis to communicate with

an average FPR of 4.61%. The authors of another study [25]

developed their P300-based asynchronous BCI by calculating

the likelihood of the control state based on a support vector

machine (SVM) regression model and reported an average ITR

and FPR of 20 bits/min and 1 event per minute, respectively.

Unlike EEG signals, electrooculography (EOG) signals are

induced by eye movements (blinking, fixating, and looking in

different directions). Because of their strong amplitudes, EOG

signals are usually easier to detect and more stable across

different subjects than EEG signals [26]. Several asynchronous

systems based on eye movement identification have been used

in various applications, such as text spelling [27] and robot

control [28].

A hybrid BCI is generally composed of one BCI and another

system (which might be another BCI) and can achieve specific

goals better than a conventional BCI [29]. For instance, several

hybrid BCIs were presented for MI training with SSVEP feed-

back [30], preventing unexpected spelling error using SSVEPs

and eye tracking [31], or improving ITR using EEG and near-

infrared spectroscopy (NIRS) [32], [33]. An asynchronous BCI

can also be implemented based on a hybrid approach integrating

multiple brain patterns, such as SSVEP combined with MI [34],

SSVEP combined with P300 potential [35], or P300 potential

combined with EOG data [36].

However, these existing systems have not been able to achieve

relatively rapid and accurate output decisions in the control state

Fig. 1. Channel configuration for EEG (blue solid circles) and EOG
(green dotted circle).

and a low FPR over a long period in the idle state (usually, the

FPR is greater than 3%).

In this paper, we propose a new method of improving the

performance of an asynchronous BCI by combining SSVEP and

EOG signals. Twelve buttons corresponding to 12 characters are

included in the graphical user interface (GUI) and flicker at dif-

ferent frequencies and phases to evoke SSVEPs. Simultaneously,

these buttons are highlighted by suddenly reducing their sizes to

provide cues (timestamps) for the user to blink his/her eyes. The

user must perform two tasks to issue a command: gazing at the

frequency-phase stimulus of the target character and blinking

his/her eyes in synchrony with its highlights. A CCA method

based on a subband combination is used to detect the SSVEPs,

and an EOG waveform analysis method is applied to identify

blinks. The combination of SSVEP and blink detection is used

not only for control/idle state differentiation but also for the

recognition of the target character in the control state. Ten

healthy subjects participated in our experiments. Based on the

results of the experiment, the proposed SSVEP- and EOG-based

asynchronous BCI system displays satisfactory performance,

with an average ITR of 105.52 bits/min, an average accuracy

of 95.42%, an average response time of 1.34 s when a command

is issued, and an average FPR of 0.8%.

The remainder of this paper is organized as described below.

Section II describes the methods, including the data acquisi-

tion, GUI, and signal processing algorithms for SSVEP and

blink detection. Section III presents the experimental results.

Section IV provides further discussion, and Section V describes

the conclusions of the paper.

II. MATERIALS AND METHODS

A. EEG and EOG Data Recording

EEG and EOG data were recorded using a Synamps2 system

(Neuroscan, Inc.) with a sampling rate of 250 Hz. The electrodes

placed on the forehead (GND) and right mastoid (A2) were

used as the ground and reference electrodes, respectively. Nine

channels in the occipital region, including CPz, P7, P3, Pz,

P4, P8, O1, Oz and O2 based on the standard positions in the

10–20 system, were chosen for acquiring EEG data [37], and

one channel on the forehead (Fp1) was used to record EOG data

(Fig. 1). The impedances of the electrodes were maintained at
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Fig. 2. Layout of the buttons displayed on the GUI for periodic sinusoidal visual stimulation, with their frequencies and phases indicated. The
frequencies range from 7.5 Hz to 13.0 Hz in intervals of 0.5 Hz. The phase difference between two neighboring buttons is 0.5π.

levels less than 10 kΩ. The EEG signals were filtered using an

11th-order Butterworth bandpass filter with a frequency band of

6–70 Hz before further analysis, whereas the EOG signals were

filtered to a range of 1–10 Hz with a 2nd-order Butterworth

bandpass filter.

During the experiments, the subjects were asked to sit in front

of a 23.6-inch liquid-crystal screen with a resolution of 1,920 ×
1,080 pixels and a refresh rate of 60 Hz. In the online experiment,

the EEG and EOG data were both recoded and analyzed using the

online data analysis program in real time, which was developed

in MATLAB.

B. GUI and Stimulation Paradigm

As illustrated in Fig. 2, this study employs a periodic sinu-

soidal visual stimulation paradigm that incorporates both fre-

quency and phase information to evoke SSVEPs, similar to the

joint frequency-phase modulation (JFPM) paradigm proposed

by Chen et al. [16]. The sinusoidal visual stimulation efficiently

mitigates the problem of frequency limitation due to the screen

refresh rate [38]. Furthermore, the phase information has been

proven to be a good supplement to enhance the differentiation

between SSVEPs at adjacent frequencies. Specifically, 12 but-

tons that are evenly distributed on the interface are flickering at

different frequencies (ranging from 7.5 Hz to 13.0 Hz in intervals

of 0.5 Hz) and phases (0, 0.5π, 1π, or 1.5π). Then, the periodic

sinusoidal signals used to construct the frequency stimuli are

modulated as follows:

xk(t) = sin{2π[f0 + (k − 1)∆f ]t

+ [φ0 + (k − 1)∆φ]}, k = 1, . . .,K (1)

where φ0 (0, in this study) represents the initial phase of the

target at f0 (7.5 Hz); k is the index of the target, and K is

the total number of targets; ∆f (0.5 Hz) and ∆φ (0.5π) are the

frequency interval and phase interval, respectively.

Simultaneously, these buttons are also highlighted for the user

to blink his/her eyes. A detailed description of the presentation of

highlights is provided below. First, the 12 buttons were randomly

divided into six groups of two buttons each, with the constraint

that the difference between the highlight index corresponding

to the two buttons in each group is no less than three, e.g.,

{[9, 4], [1, 7], [10, 3], [6, 12], [2, 8], and [5, 11]}. Using this ap-

proach, we ensured that the two buttons in each group were not

spatially adjacent to each other. Next, each of the six groups

of buttons were highlighted sequentially. Specifically, the two

buttons in the chosen group were simultaneously highlighted

by suddenly changing the size of each button from its original

size to approximate three-quarters of the size. Each highlight

was presented for 100 ms. Note that the highlighting form of

changing these buttons’ sizes rather than the flashing method

used in other EOG or P300 studies [7], [27] was applied to avoid

affecting the frequency-phase stimuli for SSVEP evocation.

Additionally, this period during which each group of buttons

are highlighted once with an interval of 500 ms after the onset

of final highlight is defined as a round. The duration of a round of

highlights may vary across subjects and was determined though

a calibration process (in this study, the durations ranged from

1 s to 1.4 s for different subjects). The time interval between two

adjacent rounds was 0.5 s, when a character was detected by the

algorithm and presented, or 0 s, when no character was detected.

Additionally, the first highlight was presented at 200 ms into the

round, and the time interval between two adjacent highlights

was determined in accordance with the length of the round. For

example, the interval was 100 ms for a round length of 1.2 s. In

this case, the highlight of the last button group occurred at 0.7 s

(=200 ms+5*100 ms), and the EOG data corresponding to the

last button group were collected in the remaining 500 ms (from

the onset of the sixth highlight to the end of this round).

Fig. 3 illustrates the paradigm for the procedure of the stimula-

tion, processing of EEG and EOG signals, and the final decision

making process during one representative trial of the online

experiments. Here, one trial is defined as the process from the

stimulation onset to the time that a decision result is generated.

Specifically, each trial consists of one or two stimulation rounds

and a trial shifting time of 0.5 s (i.e., the blank from the end of

stimulation in a trial to the beginning of the next trial). A detailed
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Fig. 3. Procedure used for spelling a target (e.g., the character “2” with 8.0 Hz, 0.5π) based on the proposed asynchronous system. The JFPM
paradigm with different initial phases (φ) for different frequencies is used to evoke SSVEPs. An EEG epoch of 1.2 s with a time delay (τ ) is collected
for SSVEP detection. Meanwhile, EOG segments from a single round after the highlight onset (at the time of tk, k ∈ [1, 2, . . ., S], S is six in this
study) are collected for blink detection. Finally, based on the results of SSVEP and blink detections, a decision is made. Specifically, if all criteria
are satisfied, a predicted target is obtained; otherwise, no output is generated.

description of signal processing and the decision process is

provided below.

C. EEG Signal Processing

In offline and online experiments, data epochs of SSVEPs

were extracted by the stimulus program and analyzed using a

CCA-based method (Fig. 3), which has been widely used to

detect SSVEPs in EEG signals. Given two multidimensional

variables X and Y and their linear combination x = XTU and

y = Y TV , the CCA attempts to identify the weight vectors U

andV that maximize the correlation betweenx andy by solving

the following optimization problem [39]:

max
U ,V

ρ(x,y) =
E
[

UTXY TV

]

√

E
[

UTXXTU

]

E
[

V TY Y TV

]

(2)

where the maximum value of ρ with respect to U and V is

defined as the maximum canonical correlation. For SSVEP

detection, X ∈ RC×D denotes a bandpass-filtered EEG data

epoch with a size of C samples per channel and D channels,

andY is the template data epoch for a frequency-phase stimulus

with the same sample length as X . A Y with a sinusoidal form

(denoted by Yf ) is presented below:

Y f =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

sin(2πft+ φ)

cos(2πft+ φ)
...

sin(2πNhft+ φ)

cos(2πNhft+ φ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

where f is the stimulation frequency, Nh is the number of

harmonics (i.e., 3 in this study) and φ is the initial phase.

A combined CCA method has recently been reported that

considers not only template data but also individual calibration

data to improve the SSVEP detection performance [9], [16],

[40], [41]. In this study, N subbands of harmonic components

(i.e., N = 3 in this study) are first extracted from the test EEG

data epoch X using Butterworth infinite impulse response (IIR)

bandpass filters that share the same upper-bound frequency

(70 Hz) but have different lower-bound frequencies (i.e., for

the nth subband component Xn, the lower-bound frequency

is 6 + (n− 1)× 7 Hz). By decomposing SSVEPs into these

multiple subband components, the FBCCA method efficiently

extracts more harmonic components and thereby improves the

frequency detection of SSVEPs [42]. Next, three pairs of weight

vectors (U , V ) were obtained by solving Eq. (2): (i) UXnY fk
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andV XnY fk
were calculated using thenth subband component

of the test EEG data epochXn and the sine-cosine template data

epoch Y fk , where fk denotes the stimulation frequency of the

kth target. (ii) U
XnX̂n,k

and V
XnX̂n,k

were calculated using

Xn and thenth subband component of the individual calibration

data associated with the kth target, X̂n,k. The individual cali-

bration data X̂ and their subband components were obtained

through a calibration process (see the Calibration section for

details). (iii) U
X̂n,kY fk

and V
X̂n,kY fk

were calculated from

X̂n,k and Y fk .

Then, a vector of correlation coefficients was obtained using

these three pairs of weight vectors [16], [41], as shown below.

rn,k =

⎡

⎢

⎢

⎢

⎣

rn,k(1)

rn,k(2)

rn,k(3)

rn,k(4)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

ρ(XT
nUXnY fk

,Y T
fk
V XnY fk

)

ρ(XT
nUXnX̂n,k

, X̂
T

n,kV XnX̂n,k
)

ρ(XT
nUXnY fk

, X̂
T

n,kUXnY fk
)

ρ(XT
nU X̂n,kY fk

, X̂
T

n,kU X̂n,kY fk

)

⎤

⎥

⎥

⎥

⎥

⎦

(4)

where ρ(a, b) denotes the correlation coefficient between a and

b. Note that both Y fk and X̂n,k are previously determined data

epochs associated with the kth target. Thus, the feature of the

nth subband of the test data epoch Xn associated with the kth

target was defined in terms of rn,k:

pn,k =

4
∑

i=1

sign(rn,k(i)) · rn,k(i)
2 (5)

where sign() is used to preserve the discriminating information

because negative correlation coefficients might exist between the

two signals being compared. Furthermore, a weight coefficient

w(n) was applied to each pn,k because the signal-to-noise ratio

(SNR) of the SSVEP harmonic components decreases as the

evoked frequency increases. The weight coefficients are defined

as follows:

w(n) = n−a + b, n ∈
[

1 N
]

(6)

where a and b are constants determined using a grid-search

method during offline analysis (1 and 0, respectively, in this

study). Finally, the classification feature associated with the

test data epoch X and the kth target that is to be used for

target identification is defined as a weighted square sum of the

correlative features pn,k of all subbands [16], [41]:

pk =

N
∑

n=1

w(n) · p2n,k (7)

D. EOG Signal Processing

At the end of each round, six segments with a length of 500 ms

each (i.e., 125 sampling points) after the onset of highlights were

Fig. 4. Comparison of filtered waveforms with and without an eye blink.
The x-axis represents the time after the onset of a blinking highlight, d
is the distance between the peak and valley values, and tp is the time
delay from the onset of the cue to the peak.

obtained from the recorded EOG signals (Fig. 3), where each

EOG segment corresponded to two characters in a group. Next,

each segment corresponding to two characters in a group was

subjected to baseline drift correction and high-frequency noise

removal by applying a bandpass filter at 1–10 Hz [28] to obtain

the corresponding EOG feature. These extracted features were

then analyzed using the two processes described below.

1) Waveform detection: As shown in Fig. 4, an obvious peak

occurs in a waveform with a blink, whereas a clear peak is

not detected in a nonblink waveform. Here, we use d, which

is defined below, to denote the distance between the peak and

valley values of the waveform:

d = vvalley − vpeak (8)

where vvalley and vpeak are the minimum and maximum values,

respectively, of the EOG segment. Then, a pretrained SVM

model for blink detection was used as a regression method

to calculate the predicted value y. The model was trained for

each subject during his/her EOG calibration (see the Calibration

section for details). Finally, the following criterion was applied
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to each EOG feature vector to detect blinks:

rk =

{

1, if d > δd and y > δy
0, otherwise

(9)

where δd and δy are two predefined thresholds that vary among

subjects. rk = 1 means that the kth segment satisfies the blink

detection criterion; otherwise, it does not. Given the parameters

dΘ and yΘ of the control state (with a blink) and the parameters

dO and yO of the idle state (without a blink), the thresholds δd
and δy were calculated as follows:

{

δd = dO + α1(dΘ − dO)
δy = yΘ + α2(yΘ − yO)

(10)

where α1 and α2 are constant weights determined using a grid-

search method (0.8 and 0.6, respectively, in this study).

2) Candidate Selection: For a segment that satisfies the blink

detection criterion (i.e., rk = 1), an evaluation parameter was

then calculated using the following equation:

e = |tp − Tp| (11)

where tp is the time delay from the onset of the cue to the

occurrence of the peak in the waveform and Tp is the average

delay, which varies across subjects and is determined during

the calibration process described below. The segments for

which the values of the corresponding parameter e ranged from

−160 ms to 160 ms were selected as candidates.

E. EEG- and EOG-Based Decision

As shown in Fig. 3, the EEG and EOG data were analyzed

independently for SSVEP and blink detection, and the two

corresponding candidates were further selected together. In this

study, the following three criteria were used to make a decision

after these two candidate sets were obtained:

1) Criterion I: [r1, r2, . . ., rm] ∩ [s1, s2] �= ∅, where

[r1, r2, . . ., rm] are the candidates identified based

on blink detection, and [s1, s2] are the candidates with

top two values for pk.

2) Criterion II: the maximum pk > the preset threshold δ1.

3) Criterion III: the ratio of the largest to the second largest

value of pk > the preset threshold δ2.

The detailed decision procedure for one trial is depicted in

Fig. 5. Once criterion I is satisfied based on the EOG and SSVEP

detection results, the system will output the candidate with the

largest value of pk from [r1, r2, . . ., rm] as the target at the end

of the current round or next round. Otherwise, no character will

be output.

Generally, in the control state, most trials generate the target

within one round. However, in a few cases where an eye blink

is detected but the user did not sufficiently pay attention to the

flickering button to evoke an SSVEP, the correct result for that

round might be difficult to obtain due to an inability to satisfy the

necessary criteria (i.e., criterion II and criterion III). Therefore,

we output the current result until the EEG data from the next

round are collected and concatenated with the data from the

first round to form an integrated epoch. The user is not required

to blink his/her eyes during the second round. Finally, when

a character is selected as the result, visual feedback will be

Fig. 5. Schematic of the decision procedure for one trial.

presented for 0.5 s, during which time the text color of the

corresponding button turns green and the selected character is

typed in the output field.

F. Calibration

Because the EOG and EEG signals vary across subjects, the

specific parameters for blink detection (the average delay Tp and

the thresholds δd and δy) and SSVEP detection (the thresholds

δp1 and δp2) were determined individually for each subject. The

training datasets for these two signals were collected using the

GUI shown in Fig. 2.

The SSVEP training dataset consisted of 48 trials in the

control state (4 trials for each character) and 12 trials in the

idle state. Prior to each trial, a red visual cue was presented for

0.5 s to indicate a target stimulus, followed by a blank screen for

0.5 s. Each trial lasted for 3 s. During the stimulation period, the

subject was asked to fix his/her attention on the target character

and avoid eye blinks. In the idle state, the subject was required to

avoid highly strenuous events but was allowed to freely blink as

usual, close his/her eyes, and perform some basic physiological

activities.

Based on the collected EEG data, the epoch length of one

detection round for online testing was also set individually

for each subject (the results obtained in the current study are

presented in Table I). First, a valid range was determined based

on the overall offline performance of the subjects. In this study,

this range was set to [1 s, 1.6 s], corresponding to an increasing

trend in the average accuracy from 91.46% to 98.33%. The

accuracy obtained in the present study was estimated using a

leave-one-out paradigm [9]. Then, the epoch length for online

test was considered to balance both the accuracy and response

time. Basically, we chose the shortest epoch length for each

subject as possible with the condition that the corresponding

offline accuracy was greater than 92%. Considering the appar-

ent latency of the visual transfer from the eye to the visual
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TABLE I
RESULTS OF AN ONLINE SPELLING TEST WITH THE SSVEP- AND EOG-BASED ASYNCHRONOUS SYSTEM

cortex [43], a delay τ of 140 ms (see Fig. 3) was selected based

on the highest achieved classification accuracy.

Furthermore, as described in the EEG Signal Processing

section, we extracted the subband features and calculated all final

weighted values pk in both the control state (pkΘ
) and the idle

state (pkO
). Then, we defined the thresholds for online SSVEP

detection as follows:

{

δp1
= β1 · (pkO

)mean

δp2
= ηmin + β2 · (ηmean − ηmin)

(12)

where β1 and β2 are constant weights with values in the range

of 0 to 1, (pkO
)mean represents the mean value of pk in the idle

state, and ηmean and ηmin represent the mean and minimum

values, respectively, of η = pkΘ
/pkO

.

The EOG training dataset consisted of 10 trials in the control

state and 10 trials in the idle state. In the control state, the user

was required to blink his/her eyes in synchrony with the cues

presented by the system. The requirements for the idle state were

the same as in the SSVEP calibration procedure.

The collected EOG signals were used to extract the waveform

feature vectors. The average time to reach the maximum value

among the 10 blink segments was selected as the average delay

Tp. The average distances between the peak and valley values

with a blink (dΘ) and without a blink (dO) were calculated

separately. Subsequently, a linear SVM model was trained based

on the 10 control state vectors (labeled 1) and 10 idle state vectors

(labeled 0) using the LIBSVM toolbox. Hence, the regression

values with a blink (yΘ) and without a blink (yO) were obtained.

Then, the EOG thresholds δd and δy were calculated using

Eq. (10).

III. EXPERIMENTS AND RESULTS

We recruited ten healthy subjects with normal vision (all

males, 21 to 27 years of age) to participate in the experiments.

All subjects provided informed consent for their data to be pub-

lished. This study was approved by Ethics Committee of Sichuan

Provincial Rehabilitation Hospital (approval number: CKLL-

2018008), which is our cooperating institution. All subjects

were first instructed to perform the calibration data collection

procedure, as described in Section II-F: Calibration. Next, two

online experiments were conducted, as described below.

A. Experiment I: Free Spelling Test

In this experiment, we first tested the online performance of

the participants on a free spelling task in asynchronous mode

using the proposed SSVEP- and EOG-based system. All subjects

were asked to first select 48 predesignated characters (i.e., each

of the 12 characters on the screen were required to be selected

four times) in asynchronous mode and then to remain in the idle

state for 10 minutes to assess the FPR. When a subject was ready

to select a character, he/she was required to gaze at the correct

flickering button, blink his/her eyes rapidly after the button was

highlighted (size change in this study), and then focus his/her

visual attention back on the flickering button. If no character was

output at the end of the current round, the subject was required to

continue to gaze at the button without blinking in the next round.

The start time for the subject to select next target character was

determined by himself/herself (self-paced). The procedures are

described in more detail in Section II-E.

The accuracy, mean response time (abbreviation: RT; unit:

s) for selecting a single target, and ITR (unit: bits/min) in

the control state and FPR in the idle state were calculated to

quantitatively evaluate the online performance of the subjects.

Additionally, the mean value and standard deviation (SD) among

all subjects were also calculated. The results are shown in Table I.

The FPR in the idle state [18], [44] was defined using the

following equation:

FPR =
FP

TN + FP
(13)

where FP and TN were the numbers of false-positive decisions

and true-negative decisions in the idle state (10 minutes in this

study), respectively. Specifically, the idle period was partitioned

into several time intervals, where the length of each time interval

was the same as the epoch length of one detection round in

the control state. Furthermore, a detection was performed at

the end of each time interval, and a TN was counted by the

system if there was no character output, otherwise, an FP would

be counted. Moreover, the ITR is widely used to evaluate BCI
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TABLE II
RESULTS OF AN ONLINE SPELLING TEST WITH THE SSVEP-BASED ASYNCHRONOUS SYSTEM

performance [45]:

ITR = 60

(

log2 M + P log2 P + (1− P ) log2

(

1− P

M − 1

))/

T

(14)

where M is the number of characters, P is the accuracy and T
is the mean response time for one selection. Note that the trial

shifting time (0.5 s) was included in the actual response time

when calculating the ITR in this experiment.

On average, satisfactory performance was achieved by all

subjects, with a high accuracy (95.42%± 2.15%), a relatively

high ITR (105.53 bits/min ± 11.06 bits/min), and a short re-

sponse time (1.34 s ± 0.16 s) in the control state and a low FPR

(0.80%± 0.75%) in the idle state.

Next, a conventional SSVEP-based asynchronous system was

designed and tested as a control for comparison with the hybrid

asynchronous BCI system. Based on the previous calibration

analysis, we first determined the thresholds of the system. Again,

48 free spelling trials were performed, followed by a task

of maintaining the idle state for 10 minutes. In addition, the

same trial shifting time and epoch length were used as in the

hybrid-mode test. Although the self-paced mode was provided,

the subjects often chose not to rest for long periods (e.g., for no

more than 10 s or even just for the trial shifting time of 0.5 s)

before selecting the next character to save time during the free

spelling task.

Based on the data collected in each trial, the program decided

whether to output a particular character in accordance with

the same decision procedure described in Section II-E. The

only difference was that all criteria related to EOG data were

ignored. During the experiment, if no result was output within

five consecutive epochs, the subject was instructed to switch to

the next target, and an unsuccessful selection was recorded.

Table II lists the detailed results achieved by the subjects,

including the epoch length, response time, accuracy, and ITR in

the control state and FPR in the idle state. Using the same trial

shifting time of 0.5 s, the average response times ranged from

1.06 to 2.22 s, and an average accuracy of 94.58%± 7.16%
was achieved, leading to an average ITR of 93.72 bits/min ±
22.18 bits/min. The minimal and maximal ITRs for all subjects

were 42.16 bits/min and 119.66 bits/min, which were achieved

Fig. 6. Diagram of the SSVEP- and EOG-based asynchronous system
for phone calls.

by S1 and S9, respectively. However, an average FPR of 12.77%

was also recorded.

B. Experiment II: Phone-Dialing Test With the Hybrid
Asynchronous BCI System

We developed a simple phone call platform based on the

spelling paradigm to further investigate the effectiveness of our

hybrid asynchronous system in a practical application, as de-

picted in Fig. 6. The computer was connected to a mobile phone

through the telecommunication software application Skype with

the application programming interface (API) provided for de-

velopers. The 3× 4 stimulus button matrix constituted a virtual

telephone keypad, including ten digits (0–9), BACKSPACE (left

arrow), and CALL. The user was able to input a set of characters

corresponding to a phone number into the text display field,

delete an incorrect input by choosing the BACKSPACE button,

and dial the number by selecting the CALL button. In this

experiment, the subjects were asked to dial their own phone

number (eleven-digit numbers) two or three times while taking

rests of several seconds when needed. The epoch length of a

round for each subject was identical to Experiment I. Finally, the

total number of characters required to be input, the entire time

required to select characters and rest, the number of incorrect

selections, and the number of false positives while resting (where
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TABLE III
RESULTS OF THE PHONE NUMBER INPUT TEST

The characters for one call consist of eleven digits and one dial button.

Fig. 7. Group-averaged scalp distribution of 2-s bandpass-filtered
SSVEPs. The signals for each channel were filtered to a range of
6–70 Hz with an 11th-order Butterworth bandpass filter and then av-
eraged over all flickering frequencies and all subjects.

the resting duration was not fixed for each subject) were recorded

(see Table III).

Generally, all subjects accomplished this task successfully,

with almost no false-positive outputs recorded during their rest-

ing times (ranging from 10 s to 30 s). The average accuracy

calculated during this dialing test was 93.22%, and a signifi-

cant difference was not observed compared with the accuracy

achieved in the hybrid-mode test in Experiment I.

C. EEG Topography and Time-Frequency Analysis

We plotted the topography of the power distribution on the

scalp to obtain an intuitive visualization and investigate the

physiological plausibility of the SSVEP signals, as shown in

Fig. 7. The areas near the occipital and parietal lobes (e.g., CPz,

P7, P3, Pz, P4, P8, O1, Oz and O2) displayed the SSVEP signals

with the highest energy.

Moreover, Fig. 8 illustrates the impact of eye blink actions on

SSVEPs, where a representative example including waveforms

(left panel), power spectra (middle panel), and a time-frequency

analysis (right panel) of SSVEP signals with and without the

blinking task is presented. The eye blink action occurred at

160 ms (indicated with a red dotted line) after the onset of

SSVEP stimulation. The left panel shows that no apparent EOG

waveforms similar to the waveforms depicted in the top panel of

Fig. 4 were observed under the condition of eye blinking, while

the middle and right panels revealed comparable responses at

the fundamental frequency (8.5 Hz) under both conditions.

IV. DISCUSSION

In this study, a hybrid asynchronous BCI system combining

SSVEP and EOG signals was proposed to enable users to per-

form self-paced character input. The buttons in the GUI flicker

at different fixed frequencies and phases to evoke SSVEPs and

are simultaneously highlighted by changing their sizes. SSVEPs

are evoked through the JFPM paradigm [16], in which the phase

coding is incorporated into the frequency coding, as shown

in Eq. (1). Specifically, different initial phases (denoted by

φ0 + (k − 1)∆φ) are manifested in the sinusoidal stimulation

by modulating the luminance of these flickering buttons, thereby

could be included in the different SSVEP signals. These differ-

ent initial phases are introduced to enhance the differentiation

between frequency-coded targets [9], [16], [18]. Note that we

add phase information into the template data of Y f in this study

such that the templates have formal consistence with the stimulus

functions. In fact, we can also use the template data of sinusoidal

and cosinoidal signals without phase information as in [16].

It could be confirmed that the same results would be obtained

by CCA when two sets of different templates of Y f with the

same frequency and different initial phases are used. The user

is able to select a character to issue a corresponding command

by focusing on its frequency-phase stimulus and simultaneously

blinking his/her eyes in accordance with its highlight. The target

character is identified through SSVEP and blink detection. Two

experiments involving character input and phone dialing were

conducted with ten healthy subjects, and the results of the

experiment confirm the effectiveness and potential application

of the hybrid BCI system (average ITR: 105.52 bits/min; average

accuracy: 95.42%; average response time when a command is

issued: 1.34 s; and average FPR: 0.8%).

For EEG-based asynchronous BCI systems, the main chal-

lenge is to determine appropriate thresholds that quickly and

accurately identify a subject’s intent to issue a command [18],

[23], [25]. Generally, in traditional synchronous scenarios, such

as spelling, the character with the highest probability value

(e.g., the maximum value of pk in this study) is chosen as the

target class, regardless of the variability among trials. However,

in asynchronous applications, the most likely character is an

inappropriate output at any period because the starting time

for the user’s commands has not been determined. Further-

more, the simple preset thresholds are unable to effectively

distinguish the control state or idle state due to the intertrial

fluctuations in the continuously recorded EEG data. Therefore,

additional time-threshold criteria should typically be considered

to decrease the FPR in the idle state [18], [46], such as using

strict user-dependent thresholds or prolonging the decision time,

which may cause fatigue in the subjects.

In this hybrid asynchronous BCI system, discrimination be-

tween the control and idle states is mainly achieved through blink
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TABLE IV
COMPARISON BETWEEN OUR SYSTEM AND SEVERAL STATE-OF-THE-ART EEG-/EOG-BASED ASYNCHRONOUS SYSTEMS

− denotes not reported * The value was calculated from the results reported by the authors.

Fig. 8. A representative example including waveforms, power spectra and spectrograms of an SSVEP (1 s of data length) evoked at 8.5 Hz with
(a) and without (b) blinking is shown. The amplitude spectra were calculated using a fast Fourier transform, and the red circle indicates the
fundamental frequency of 8.5 Hz. The data collected under both conditions were filtered to a range of 6–70 Hz with an 11th-order Butterworth
bandpass filter and averaged over all selected 9 channels.

detection because EOG signals are more consistent and easier to

detect than EEG signals. Consequently, a relatively lax threshold

condition has been used for EEG recognition while maintaining

both a low FPR and a short response time. Based on the results

of the online spelling tests performed in Experiment I, compared

with the conventional SSVEP-based system, our hybrid system

achieved a much lower FPR (0.80 ± 0.75% vs. 12.77 ± 8.55%

on average, p = 0.0020, Wilcoxon signed-rank test) and shorter

response time (1.34 ± 0.19 s vs. 1.57 ± 0.33 s on average, p =
0.0020, Wilcoxon signed-rank test).

Moreover, the hybrid asynchronous BCI system achieved a

high ITR with satisfactory accuracy in the control state using the

output strategy that considers both the results of EEG and EOG

signal processing. Once the control intention has been detected,

approximately 6 EOG candidates among all 12 characters are

able to be further selected via EEG signal processing. On the

one hand, the use of multiple EOG candidates helps ensure that

the target is not generally missed by the user since he/she is not

required to react to the visual highlight extremely quickly and

precisely, as in some EOG-only-based spelling systems [27],

[47]. In a few cases where blinks occurred too late or too

early, the target characters were not selected into the group

of candidates for EOG. The characters selected according to

EOG data are less likely to be selected as the candidates for

SSVEPs because they are not visually attended. Therefore,

no character output might occur for the current trial, as we

applied the criterion I that the candidates for EOG and top 2

candidates for SSVEP must intersect before the final output

is generated. On the other hand, this approach also assists in

the process of SSVEP classification by enabling the choice

of the final target from among the reduced set of candidates.

Comparable accuracy in the control state was achieved for the

proposed hybrid asynchronous BCI system, and no significant

difference in accuracy was observed between this system and

the conventional SSVEP-based asynchronous system (95.42 ±
2.15% vs. 94.58 ± 7.16%, p = 0.7813, Wilcoxon signed-rank
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test). However, a significant difference was observed in the

ITR between the proposed system and the conventional system

(105.53±11.06 bits/min vs. 93.72±22.18 bits/min, p=0.0488,

Wilcoxon signed-rank test). Therefore, we concluded that our

system outperformed the SSVEP-based asynchronous system

when the RT, ITR and FPR were considered together.

Recently, many EOG or EEG patterns, including P300 poten-

tials, N200 potentials, and SSVEPs, have been widely used to

develop asynchronous BCI systems. For example, He et al. [27]

proposed a single-channel EOG-based speller, whereas Panicker

et al. [48], Zhang et al. [25], Zhang et al. [49], Xia et al. [44],

and Townsend et al. [23] reported several different asynchronous

BCI systems based on EEG signals. Compared with these sys-

tems, the proposed hybrid asynchronous system achieves the

highest ITR, the shortest response time, and the highest accuracy.

Furthermore, regarding the FPR, another important indicator

used to assess an asynchronous system, our method achieves

one of the lowest values, second only to the system reported

in the study by He and colleagues [27], which achieves its low

FPR at the cost of a longer response time (4.14 s) because three

rounds of EOG are used for output detection. Finally, in our

study, the data were analyzed based on real-time online tests

rather than in the simulated online tests described by Zhang and

colleagues [18], in which the reported average offline FPR was

11.2%.

Notably, the blinking action will not exert a substantial effect

on the SSVEP performance for three reasons. First, the EOG

cues are presented by changing the size of the button while

maintaining the flicker rate. Second, the eye blink component

is concentrated in the forehead (e.g., Fp1 and Fp2), which are

located far from the areas (e.g., CPz, P7, P3, Pz, P4, P8, O1,

Oz and O2) with the SSVEP signals presenting the greatest

energy (Fig. 7). Third, EOG signals appear at low frequencies,

while SSVEPs appear in moderate- and high-frequency bands,

according to the settings used in this study. This finding was

also shown in Fig. 8 indicating that comparable SSVEPs were

evoked with or without eye blinking.

Our hybrid system exhibited an acceptable level of comfort

for all subjects, although it involved multiple tasks. This comfort

level was primarily achieved because the system operated in

a self-paced mode, and the subjects were able to rest at any

time. Furthermore, the task requiring the subjects to blink their

eyes according to the corresponding highlights of buttons is

not difficult. Finally, during the idle period, the subjects were

able to look at the buttons or screen, which is not allowed in a

conventional SSVEP asynchronous mode to avoid false-positive

outputs.

V. CONCLUSION

In summary, this study presents a novel hybrid asynchronous

BCI system based on SSVEP and EOG signals. Increased

discrimination between the control state and the idle state is

mainly achieved through blink detection, with SSVEP detection

playing an assisting role. Meanwhile, a high accuracy and a short

response time are achieved when a command is issued in the con-

trol state mainly through SSVEP detection, with blink detection

playing an assisting role. The results of the experiments confirm

the satisfactory performance of our hybrid asynchronous BCI

system. In a future study, we will introduce transfer learning

into our system to simplify or even eliminate the calibration

process and will expand the applications of our system to provide

assistance for patients with severe paralysis.
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