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Brain-computer interface (BCI) for robotic arm control has been studied to improve the life

quality of people with severe motor disabilities. There are still challenges for robotic arm

control in accomplishing a complex task with a series of actions. An efficient switch and a

timely cancel command are helpful in the application of robotic arm. Based on the above,

we proposed an asynchronous hybrid BCI in this study. The basic control of a robotic arm

with six degrees of freedom was a steady-state visual evoked potential (SSVEP) based

BCI with fifteen target classes. We designed an EOG-based switch which used a triple

blink to either activate or deactivate the flash of SSVEP-based BCI. Stopping flash in the

idle state can help to reduce visual fatigue and false activation rate (FAR). Additionally,

users were allowed to cancel the current command simply by a wink in the feedback

phase to avoid executing the incorrect command. Fifteen subjects participated and

completed the experiments. The cue-based experiment obtained an average accuracy

of 92.09%, and the information transfer rates (ITR) resulted in 35.98 bits/min. The mean

FAR of the switch was 0.01/min. Furthermore, all subjects succeeded in asynchronously

operating the robotic arm to grasp, lift, and move a target object from the initial position

to a specific location. The results indicated the feasibility of the combination of EOG and

SSVEP signals and the flexibility of EOG signal in BCI to complete a complicated task of

robotic arm control.

Keywords: hybrid brain-computer interface (BCI), electrooculography (EOG), robotic arm control, steady-state

visual evoked potential (SSVEP), information transfer rates (ITR)

INTRODUCTION

Brain-computer interfaces (BCIs) are designed as a bridge to construct direct communication
between the brain and external devices without relying on normal peripheral nerves and muscle
tissue (Wolpaw et al., 2000). BCIs aim to provide people with severe motor disabilities an
alternative to communicate and control external devices. Robotic arm control is one of the popular
applications of BCI. Many studies have attempted to realize BCI for robotic arm control to improve
the life quality of people with motor impairment (Pfurtscheller et al., 2010b; Gao et al., 2017; Khan
and Hong, 2017). Considering the practical use of people with motor disabilities, the system design
should focus more on the accuracy of command execution and the convenience of operation.

Electroencephalography (EEG) is one of the most widely used non-invasive BCI for its low
cost, portability and high temporal resolution. Several types of physiological activation are usually
chosen to generate the output commands of the EEG-based BCI, such as motor imagery (MI)
(Wolpaw et al., 1991), P300 (Farwell and Donchin, 1988), and steady-state visual evoked potential
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(SSVEP) (Cheng et al., 2002). Single modality which uses only
one type of input signal usually has its own limitation in
the number of commands and the classification accuracy. To
promote the application of BCIs, several researches employed
multiple modalities to improve the performance of the system by
combing the advantages of different modalities, which is named
as hybrid BCI (Pfurtscheller et al., 2010a).

As for the convenience of the system operation,
electrooculography (EOG) is a good choice for its easy to execute
and detect. EOG is the depolarization and hyperpolarization
between retina and cornea caused by different eye movements,
forming a potential difference between retina and cornea
whose amplitude is larger than that of EEG and background
physiological signals. Therefore, EOG can be easily and
accurately detected using a few of electrodes around eyes.
Compared to the conventional hybrid BCI most of which
utilized the multiple types of EEG signals, the combination of
EEG and EOG signals to construct a hybrid BCI can reduce the
workload of users and makes the operation more convenient.
The eye movements often used are blinking, winking, frowning,
and gazing. Several studies used EOG in BCI to reflect the
intention of subjects and to transmit commands to external
devices. Nakanishi and Mitsukura proposed a wheelchair
control system by using the voluntary eye blink (Nakanishi
and Mitsukura, 2013). Ma et al. introduced a multithreshold
EOG detection method and combined the EOG and P300 for
robot control which used different eye movements to obtain
the control commands and turn the stimulus on and off to
enhance the performance of the system (Ma et al., 2015). He et al.
proposed a hybrid BCI based on MI and EOG signals to operate
a web browser (He et al., 2017). Wang et al. combined MI, P300,
and EOG signals to asynchronously control a wheelchair (Wang
et al., 2014). Huang et al. used EOG for button selection, MI
for directional control, and combined computer vision for the
control of an integrated wheelchair robotic arm system (Huang
et al., 2019). Tan et al. applied autoencoder-based transfer
learning in hybrid BCI for rehabilitation robot which composed
of MI-based rehabilitation action, SSVEP-based menu selection,
and EOG-based operation confirmation of cancellation (Tan
et al., 2019).

To achieve asynchronous SSVEP-based BCI system, several
studies distinguished the control state from idle state by using
threshold criteria during the stimulus flashing (Ortner et al.,
2011; Pan et al., 2013; Zhou et al., 2020). When the stimuli
kept flashing since the start of experiments including control
and idle states, asynchronous BCI used threshold criteria were
susceptible to be incorrect activated due to the implicit attention
to the flicker stimuli. Considering the effect of stimulus flicker on
asynchronous detection, other studies applied a switch to activate
or deactivate the stimulus flicker (Pfurtscheller et al., 2010b; Gao
et al., 2017; Li et al., 2018). Pfurtscheller et al. used sequential
MI-based brain switch to turn on or off the SSVEP-based BCI
(Pfurtscheller et al., 2010b). The low classification performance
of MI lead to a FAR with 1.46 per minute. Given the high signal-
to-noise ratio (SNR) of EOG signals, Li et al. applied a single
blink synchronized with a random flashing button as the switch
of wheel chair control (Li et al., 2018). They used two consecutive

intended blinks as a start command with no false option occurred
in static state and an intended blink as a stop command with a
FAR of 0.18 per minute in the motion state. Due to the switch
detection based on the synchronization of the flicker button and
a single blink, the button was required to flash in the idle state.

In present study, to further decrease the FAR of asynchronous
SSVEP-based BCI, we designed an EOG-based switch with no
need for stimulus in idle state and combined the switch with
a timely cancel command to effectively control a robotic arm.
Through using the EOG-based switch to activate and deactivate
the flicker stimuli, there was no need for extern stimulus in
idle state which decreased visual fatigue caused by flashing
and was more in line with perception of idle state. The FAR
of the proposed asynchronous SSVEP-based BCI related only
to the detection accuracy of EOG signals. Due to the high
SNR of EOG signals, the detection of EOG is more accurately.
We selected the triple blink as the EOG-based switch due to
its ease of completion and low probability of occurrence in
normal physiological situation. Moreover, we designed a cancel
command based on a wink to make the subject be able to cancel
the execution of a current command as needed. The control
commands of the robotic arm were obtained by a SSVEP-based
BCI, considering that SSVEP has gained a lot of attention in BCI
for the reason of less training, high classification accuracy and
information transfer rates (ITR). Fifteen buttons consist of the
graphical user interface (GUI) of the SSVEP-based BCI, subjects
were asked to focus on one of the fifteen buttons in a flash cycle
to transmit corresponding control commands to the robotic arm.
Given the relatively large number of stimuli, the default setting
is to execute the feedback command, which was only canceled
when the feedback stage recognized a wink from subject to helped
control the robotic arm to complete the action more effectively.
The algorithm of detecting SSVEP used was filter bank canonical
correlation analysis (FBCCA) method (Chen et al., 2015a) which
made use of the information in harmonic frequencies to improve
classification accuracy. A multi-threshold method (Ma et al.,
2015) was adopted to detect different eye movement waveforms.
The experimental results showed the feasibility of the proposed
system and the ability to complete a complicated task with a series
of actions through the combination of EOG and SSVEP signals
for robotic arm control.

MATERIALS AND METHODS

Subjects
Fifteen healthy volunteers (8 female; age 24.9 ± 2.5 years)
with normal or corrected-to-normal vision participated in the
experiments. Eleven subjects conducted two online experiments
to evaluate the performance of the proposed hybrid EOG-SSVEP-
based BCI. Six subjects conducted comparable experiments
to evaluate the effectiveness of using EOG for command
cancellation. All subjects are undergraduate and graduate
students, and three of them have some experience with MI-based
BCI experiments, while others are naive to BCI experiments.
Before the experiments, each subject read and signed an
informed consent form approved by the Human Subjects
Institutional Review Board of Huazhong University of Science
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and Technology. Subjects obtained a small compensation for
participating in the experiments.

Data Acquisition System
In this study, EEG and EOG signals were recorded at sampling
rate of 250Hz with high-pass and low-pass filters of 0.1 and
250Hz using a multichannel EEG system from Brain Products
(BrainAmp, Germany). A total of nine electrodes, HEOR, Fp1,
Pz, PO3, POz, PO4, O1, Oz, and O2 were placed according to the
International 10–20 system (see Figure 1). Electrodes Pz, PO3,
POz, PO4, O1, Oz, and O2 were used to collect SSVEP-based
EEG raw signal, and the electrodes HEOR and Fp1 were selected
to record the EOG signal. The electrode on the forehead (AFz)
was used as ground and the reference electrode was positioned
on the vertex (Cz). All electrodes impedances were maintained
below 10 K�.

The visual stimuli were presented on a 23.8-inch LCD screen
with a resolution of 1,650 × 1,080 pixels. The refresh rate of
the screen was 60Hz. All subjects were arranged to seat in a
comfortable chair in front of the visual stimulus computer at a
distance of∼70 cm in a quiet room. The visual angle between the
robotic arm and the monitor was 45◦. This arrangement allowed
subjects to look at both the monitor and the movement of the
robotic arm.

GUI
The GUI was designed to ensure the effective and accurate
control and operation of the robotic arm. As illustrated in
Figure 2, the GUI was composed of two sessions: the switch
interface which displayed “Please blink three times rapidly to
open/close the SSVEP-based interface” in the center of the
screen to prompt the subjects to use the EOG-based switch,
and the SSVEP-based interface consisted of a 3 × 5 flashing
stimulus matrix representing 15 commands which were designed
to control the robotic arm for the grasp and move actions. Visual
flashing buttons of the SSVEP-based interface were presented
using a sampled sinusoidal stimulation method (Manyakov
et al., 2013; Chen et al., 2014). The size of each button was
150 × 150 pixels. All buttons flashed between green and blue
under black background to reduce visual fatigue (Takano et al.,
2009; Chen et al., 2017; Floriano et al., 2018). The horizontal
and vertical distance of each adjacent buttons was 150 pixels.
The range of the stimulus frequency for the fifteen visual
flashing buttons in the proposed study was chosen from 8 to
15Hz with an interval of 0.5Hz because of its relatively high
response in their corresponding SSVEP signal (Chen et al., 2018).
The stimulus paradigm of the BCI was realized by using the
Psychophysics Toolbox Version 3 (Brainard, 1997) on MATLAB
(MathWork, Inc).

As shown in Figure 2B, there were two lines of text at the top
of the SSVEP-based interface to assist the subjects in getting the
real-time status of the robotic arm. The first line of text indicated
the current programmed moving step of the robotic arm, and
the second line of text displayed the corresponding configured
position of each axis of the robotic arm. The left four columns of
buttons corresponded to different directions of themovements of
the robotic arm. And the robotic arm had a total of six axis (S1,

S2, S3, S4, S5, and S6). For a specific direction, “S1” represented
the rotation of the robotic arm in the x-y plane, and “S2,” “S3,”
and “S4” allowed the robotic arm to move to different degrees
along the z-axis. “S5” was used to rotate the claws. “S6” drove
the robotic arm to clamp or loosen. Among them, “S1+” and
“S1–” indicated the opposite direction, respectively, and others
were the same. In order to make an effective operation, two
buttons (“step+” and “step–”) were added to change the moving
step of the robotic arm movements in different direction. “R”
was utilized to return the robotic arm to its original position.
Figure 2C showed the stimulation frequency of each target.

System Configuration Description
For practical use, the design of multitask makes the control
and operation of the BCI more flexible and versatile. This
study combined the eye movements and SSVEP to realize
an asynchronous hybrid BCI. As illustrated in Figure 3, the
proposed asynchronous EOG-SSVEP-based robotic arm control
system mainly consisted of four hardware components: an EEG
acquisition device, a visual stimulus computer, a robotic arm,
and a host computer used as data online processor. The EEG
signals were recorded and transmitted to the host computer
with synchronous event triggers sent from the visual stimulation
computer for real-time preprocessing and classification. The
visual stimulation computer was not only utilized to present
the stimulus paradigms and online visual feedback but also for
translating relevant commands to the robotic arm via serial
communication protocol. Six axis (ZX-361S) and an open source
STM32 control board composed of the robotic arm which was
able to be directly and easily controlled by the SSVEP-based
interface through serial port. The manipulating angle of each axis
was configured in the range of 0◦ to 180◦, and the rotation speed
of each axis could be adjusted according to themoving step which
was set by the subjects.

The system flowchart can be seen in Figure 4. After the start
of the experiment, EEG data recorded from the subject are
first preprocessed to remove the baseline drift and the influence
of the environment. And then the SSVEP interface can be
activated only when a triple blink from the subject is detected
by the system. Otherwise the system will maintain in the switch
interface. To effectively detect EOG signal when subjects blink
three times rapidly, a calibration process was conducted before
online experiment to determine the appropriate online threshold
for each subject. When the SSVEP-based interface is activated,
the SSVEP signal and the triple blink are detected in parallel.
Subjects are allowed to blink three times rapidly when they hope
to switch off the flash of the buttons and return to the EOG-based
switch interface. If no triple blink is detected, the classification
of the SSVEP signal will be transmitted to the visual stimulus
computer as a feedback to the subject. And a robotic control
command corresponds to the specific classification result. Once
the subject wants to cancel the command sending to the robotic
arm, he or she is asked to execute a wink after the occurrence
of the feedback. If no wink is detected at the feedback phase, the
robotic arm will execute the relevant command and then another
flashing cycle begin to generate another new command.
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FIGURE 1 | Location of nine electrodes for EEG recording.

Data Processing and Detection Algorithm
In this study, the EEG and EOG data were processed and fed
back in real time. The recording data were firstly preprocessed
to minimize the impact of external environment and motion
artifacts. The 50Hz interference of power supply was eliminated
by a notch filter. The EEG signals were then re-referenced to the
arithmetic average across all recording channels. The detection
algorithm was mainly composed of two parallel parts: EOG data
analysis and SSVEP data analysis.

EOG Data Analysis
The proposed asynchronous hybrid BCI allowed subjects to
decide when to start and stop the control of the system by an
EOG-based switch which was designed by the detection of a
triple blink from the Fp1 channel. The detection is conducted
every 100ms from the beginning of the experiment. For real-time
analysis, we use a sliding window with a length of 1,200ms with
an interval of 100ms. Furthermore, a wink was used to cancel the
command in feedback phase, and the detection for wink is based
on a segment data with a length of 2000ms which contained
the feedback and remind phase from the HEOR channel. The
length of data is set in consideration of the reaction time of
subjects. The detection method for the triple blink and wink is
based on a multithreshold method descripted in Ma et al. (2015).
For each detection, first, a segment data is extracted according
to the window set for different eye movements. Then, on the
purpose of removing physiological and environmental noise, the
extracted data are bandpass filtered within the range of 0.1 to
15Hz, after that the first-order difference operation is employed
to get features of the eye movements as follows:

f ′ (n) = f (n) − f (n− 1)

Where n is the sampled points, f(n) is the relevant original
value, and f ′(n) refers to the differential value of the original

data at point n. There are several features abstracted from the
differentiated waveform for later analysis, e.g., the maximum
peak value, the minimum peak value, the maximum amplitude,
and the duration of the eye blink. Figure 5 showed the raw
and differential EOG data from channel HEOR in a trial that
prompted the subject to wink during the calibration session. The
differential EOG data of a wink contained a positive and negative
wave, and its amplitude was much larger than the fluctuation of
the EOG when no wink is performed. In order to extract the
signal from a wink, we need to set a minimum value (Vp) for
a positive wave. The signal is considered to be a positive wave
when its voltage is greater than the Vp. Likewise, we need to
set a maximum value (Vn) for the negative wave. The signal is
considered to be a negative wave when its voltage is less than the
Vn.When a positive wave followed by a negative wave is satisfied,
to avoid recognizing the rest period signal as a wink, it is also
necessary to satisfy that the amplitude of the original EOG (A) in
the time period (D) from the beginning of the positive wave to
the end of the negative wave is greater than the amplitude (Amp)
of the initial setting, and the length of the time period (D) needs
to be greater than the limitedminimum duration (Dmin) and less
than the limited maximum duration (Dmax) of the initial setting,
then it is considered as a wink. The principle of a successful eye
blink detection are as follows:

i=

{

1, if A ≥ Amp, Dmin ≤ D ≤ Dmax

0, otherwise

Where i represents the detection result of a wink. If the features
of the EOG waveform satisfy all condition, i is equal to 1
which means a successful wink detection, otherwise i is equal
to 0 manifests no intentional wink was detected. Thus, the
recognition of a wink requires the initial setting of five thresholds,
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FIGURE 2 | The GUI of EOG-based switch (A) and SSVEP-based BCI (B). In (C), a 3 × 5 flashing stimulus matrixes labeled with different stimulus frequency

represents a total of 15 commands for the robotic arm control.
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FIGURE 3 | Schematic configuration of the proposed hybrid BCI for robotic arm control.

including Vp, Vn, Amp, Dmin, and Dmax. Since the duration of
a wink does not vary much between subjects, Dmin and Dmax
were set to 0.1 and 0.6 s for all subjects, respectively. The other
three thresholds are influenced by the way each subject winks, so
it is necessary to set specific thresholds for each subject in order
to accurately identify the wink of each subject.

The basic algorithm for identifying triple blink is the same
as the detection of a wink, except that it is considered as the
triple blink only when three consecutive blinks are recognized
within a limited time window length which is set to 1,200ms.
The Figure 6 showed the raw and differential EOG data from
channel Fp1 in a trial that prompted the subject to conduct
triple blink during the calibration session. Therefore, to effective
identify the intentional eye movements in online experiments,

a calibration process was asked to conduct for each subject first
to obtain the thresholds required in the detection algorithm
mentioned above.

SSVEP Data Analysis
In this study, the flash of the SSVEP-based interface was activated
by the EOG-based switch. Once activated, the data epochs
were extracted according to the event triggers for subsequent
classification and the control of the robotic arm. Previous
studies have shown that SSVEP induced by periodic visual
stimulus contains brain response at the stimulus frequency and
its harmonic and sub-harmonic frequencies (Herrmann, 2001).
This study adopted the filter bank canonical correlation analysis
(FBCCA) method (Chen et al., 2015a,b) which can effectively
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FIGURE 4 | Flowchart of the proposed system which consists of an SSVEP-based BCI with EOG-based switch.

utilize information in harmonic frequencies to enhance the
detection of SSVEP. FBCCAmethod is mainly composed of three
steps. First, a filter bank which consists of several bandpass filters
decomposes the SSVEP data epochs into sub-band components.
Second, an canonical correlation analysis (CCA) approach which
has been widely adopted in BCI for SSVEP detection (Bin
et al., 2009) is applied to get the correlation between sub-
band components and predefined sinusoidal reference signals.
Last, appropriate feature vectors are calculated for the target
identification. In this study, we used CCA and FBCCA methods
for the classification of SSVEP signals, and applied paired t-test
for statistical analysis to evaluate the performance of CCA and
FBCCA methods.

Classification accuracy and ITR were used to evaluate the
performance of the proposed system. ITR was calculated
according to the follow equation (Wolpaw et al., 2002):

ITR=
60

T

(

log2N + Plog2P+ (1-P) log2[
1− P

N − 1
]

)

Where T is the time it takes to output a command, including
the time of the gaze shift, stimulus flicker, and feedback phase,

N is the total number of targets (N = 15), and P is the
classification accuracy.

Calibration Process
For the purpose of effectively detecting the eye movements in real
time, a calibration process is acquired to determine thresholds
of different eye movements for each subject before online
experiments. Appropriate detection thresholds allow the system
to have short response time and high accuracy which make the
system more reliable and flexible. During the calibration process,
the paradigm of a trial consists of three parts. First, a fixation
cross appears in the center of the visual stimulation screen for
1 s to prompt the subject to get ready for the task, and then the
screen shows a text of “triple blink” or “wink” for 4 s to remind
the subject to blink three times rapidly or wink in task period,
after that 1 s black screen is displayed as a rest period. A total of
20 trials for triple blink and 20 trials for wink were designed for
each subject to collect the datasets for the calculation of respective
detection thresholds and to train subjects to be familiar with the
eye movements simultaneously.

For offline processing, the recording data for triple blink and
wink were extracted from all trials for thresholds calculation. We
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FIGURE 5 | The raw and differential EOG data of a wink.

used the detection algorithm described in the EOG data analysis
to get the specific thresholds of triple blink and wink for each
subject. Specifically, we calculated the first-order difference of
the bandpass filtered data. In order to identify eye movements
in task period, a predefined experiential threshold was used for
the sampled data. The features of the eye movement waveforms
were then computed. We removed the features of unqualified
samples which only contained themotion artifacts but did not eye
movements. The thresholds of online experiments was decided
by the remaining features. The main thresholds to be obtained
were Vp, Vn, and Amp.

Experiments
Before the online experiments, a calibration session mentioned
above was carried out to determine appropriate online thresholds
for each subject. Then two online experiments were performed
using our asynchronous hybrid BCI system. One was a cue-
based experiment, and the other was a self-paced operation of the
robotic arm to conduct with a complicated task.

The Cue-Based Experiment
This experiment contained eight blocks which was designed to
assess the performance of the proposed system and train subjects

to be familiar with the procedures of the system control. Each
block consisted of two parts: the operation of the EOG-based
switch and the gaze of the cue-based SSVEP interface for robotic
arm control. Besides, in order to evaluate the capability of the use
of winking to cancel the command in feedback phase, before the
flicker of SSVEP-based interface, the clue given in GUI requested

the subjects to wink or not to wink in the feedback phase of
the current block. The clue indicating the request of a wink
appeared every 2 blocks. A total of 4 blocks contained the data
of winks. At the beginning of each block, the screen displayed

the switch interface to prompt subjects to blink three times
rapidly to activate the flash of the cue-based SSVEP interface.
And then a cue with a red triangle appeared under one of the

fifteen buttons with a pseudo-random order. There were a total
of fifteen trials for the test of the SSVEP-based interface. Each

trial with a duration of 5.5 s consisted of a remind phase for 0.6 s

and a stimulation phase for 3 s and a feedback phase for 1.9 s.
Subjects were asked to shift their gaze to the button indicated

by the cue in the remind phase, and focus on the button in the
stimulation phase to ignore the influence of other buttons as

much as possible. In the feedback phase, a button was marked

in red color according to the real-time classification. Subjects
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FIGURE 6 | The raw and differential EOG data of triple blink.

decided whether to use a wink to cancel the command based on
the clue given in the start of the GUI. If there was no wink in the
feedback phase, the corresponding command was transmitted to
the robotic arm for motion control. When all buttons flickered
once, the switch interface was appeared to remind subjects to use
a triple blink to deactivate the flash of the SSVEP-based interface
and take a break before the next block.

Asynchronous Robotic Arm Operation
In this experiment, the commands were selected by subjects to
execute a series of sequential actions without visual cues. In order
to maintain the difficulty of the experiment, the start and end
location of the target object were consistent for each subject.
Moreover, the robotic arm was reset to its initial position before
the start of each operation. For the procedures of the experiment,
in the first step, subjects used a triple blink to activate the flash
of the SSVEP-based interface when they were ready to control
the robotic arm. The paradigm of the SSVEP-based interface
was mostly the same as the cue-based experiment except that
there is no visual cues in the remind phase. Each trial started
with the appearance of all stimuli in static state without visual
cues, which lasted 0.6 s for attention and gaze shifting. Then the
stimulus began to flicker with a duration of 3 s. Last, the screen

displayed the online feedback for 1.9 s, giving the subjects a
chance to decide whether he or she will cancel the corresponding
command or not. A wink after the appearance of the feedback
could be identified as a canceled intention. Subjects were asked
to operate the robotic arm to perform a series of actions of
moving, grasping, lifting, and placing by gazing the SSVEP-
based interface. After placing the target object to the specific
location, the reset command was used to reset the robotic arm by
gazing the “R” button twice before the next operation. The task
execution time was recorded by the host computer based on the
synchronous event triggers. To avoid misidentification, the reset
command was executed only when the “R” button was detected
in two consecutive trials. During the experiment, subjects were
able to use a triple blink to deactivate the flash of SSVEP-based
interface whenever they needed to rest and adjust.

RESULTS

As for the cue-based experiment, the classification accuracy and
ITR were calculated to evaluate the performance of the SSVEP-
based BCI. The false activation rate (FAR) which meant the rate
of false triggering (Wang et al., 2014) was used to assess the
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TABLE 1 | Results of EOG in cue-based experiment.

Subject Triple blink FAR (event/min) Wink TPR (%) Wink FPR (%)

S1 0 95.56 0

S2 0 95 0

S3 0 95 1.67

S4 0 100 0

S5 0 96.67 0

S6 0.068 96.67 0

S7 0 96.67 1.67

S8 0.066 93.33 0

S9 0 95 1.67

S10 0 86.67 0

S11 0 78.33 0

Mean ± SD 0.01 ± 0.03 93.54 ± 6.00 0.46 ± 0.78

efficiency of the EOG-based switch. The FAR was calculated by
dividing the number of false identifications of the triple blink
during the stimulus flicker by the duration time of the cue-based
experiment. The false positive rate (FPR) and true positive rate
(TPR) of the wink were computed to evaluate the reliability of
the cancellation of commands. There were four blocks in the cue-
based experiment that prompted the subject for a wink to cancel
the execution of the current command after feedback occurrence
in each trial, and the other four blocks did not require a wink
in the feedback phase. Thus, the TPR was calculated by dividing
the number of winks identified in the four blocks that required a
wink in the feedback phase by the total number of trials in those
four blocks. The FPR was calculated by dividing the number of
winks identified in the four blocks that did not require a wink
during the feedback phase by the total number of trials in the
four blocks. The results in Table 1 showed that the EOG-based
switch resulted in a very low FAR with average 0.01 event per
minute for all subjects which meant that the switch had good
stability and reliability. Subjects were able to use the switch by a
triple blink to stop the flicker of buttons in idle state to reduce
visual fatigue. The detection of a wink in the feedback phase
resulted in an average TPR of 93.54% and FPR of 0.46%, which
indicated the capability of using a wink to cancel the command.
The efficient detection of the wink in the feedback stage made
it more convenient and effective for the robotic arm control.
As for SSVEP-based BCI, the results in Table 2 showed that
the proposed system worked well in robotic arm control and
acquired an average accuracy of 92.09% and the average ITR was
35.98 bit/min. Therefore, the results of the cue-based experiment
illustrated the potential of the hybrid BCI to perform complex
tasks in practical applications.

After the cue-based experiment, subjects were familiar with
the procedures of the proposed hybrid BCI, and then they
were required to asynchronously utilize the proposed system to
operate the robotic arm to perform a complicated task three
times by grasping, lifting, and moving a target object (i.e., a little
doll) from the initial position to a specific location. Figure 7
showed the process of controlling the robotic arm to complete

TABLE 2 | Results of SSVEP in cue-based experiment.

Subject Accuracy (%) ITR (bit/min)

S1 96.67 39.56

S2 100 42.62

S3 86.67 31.19

S4 93.33 36.57

S5 100 42.62

S6 85.83 30.32

S7 100 42.62

S8 83.78 28.91

S9 97.5 40.33

S10 88.33 33.44

S11 80.83 27.61

Mean ± SD 92.09 ± 7.20 35.98 ± 5.88

the specified actions. In the experiment of self-paced operation
of the robotic arm, all subjects succeeded in asynchronously
grasping and moving the target object from the initial position
to the specific location by directly controlling the robotic arm
through the hybrid BCI system. To evaluate the efficiency of
the hybrid BCI in performing the complex tasks, we recorded
the completed time and total number of commands of each
subject in the operations of the robotic arm. Table 3 showed
the results of the asynchronous experiment for operating the
robotic arm through the hybrid EOG-SSVEP-based BCI. Since
it was a complicated task for subjects to conduct, the numbers of
commands and time required to complete the task were different
for each subject, which were related to lots of factors, such as the
classification accuracy, the focus and concentration on the task,
the planning and grasp strategy, and the proficiency in the robotic
arm operation.

DISCUSSION

This study attempted to realize an asynchronous hybrid BCI
for robotic arm control through the combination of an EOG
and SSVEP signals in BCI. Compared with synchronous BCI,
the proposed system used EOG-based switch to deactivate
the flash to rest or activate the flash to operate the robotic
arm whenever they wanted which made the system more
flexible and convenient. Additionally, EOG-based timely cancel
command allowed users to control the robotic arm to complete
a complicated task with a series of actions more effectively.
Previous studies which proposed asynchronous SSVEP-based
BCI mainly used a conventional threshold method to distinguish
the control state from idle state (Cheng et al., 2002; Pfurtscheller
et al., 2010b). In these studies, the buttons in the GUI continued
to flash from the beginning of the experiment even when subjects
were in idle state, which was easy to cause visual fatigue. Several
researches designed novel methods to improve the performance
of the asynchronous SSVEP-based BCI. Pan et al. proposed
asynchronous SSVEP-based brain switches using a pseudo-key-
based approach to improve the discrimination between control
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FIGURE 7 | The process of operating the robotic arm to grasp, lift, and move a target object from (a–f).

and idle states (Pan et al., 2013). Pfurtscheller et al. used an MI-
based brain switch to achieve self-paced operation of an SSVEP-
based orthosis control system (Pfurtscheller et al., 2010b). Tomita
et al. proposed of a bimodal BCI using simultaneously NIRS and
EEG signals to estimate whether the subject is in idle or active
mode (Tomita et al., 2014).

In this study, we chose EOG as the switch signals to either
activate or deactivate the flash of the SSVEP-based interface
for asynchronous operation of the robotic arm based on the
intention of subjects. EOG-based switch in asynchronous SSVEP-
based BCI did not need for stimulus in idle state when compared
with asynchronous system used the threshold criteria. No
stimulus in idle state help relieve fatigue. Moreover, compared
with MI-based brain switch and the use of fNIRS signals, the
EOG-based switch has the advantage of short response time
and high SNR which makes it accurately distinguish the control
state from idle state to decrease the FAR in the potential
applications. But EOG-based switch also has its limitations. For
the experiments lasting for a long time, the major challenge
is that subjects may confuse the intended and unintended eye
blinks when they get fatigue. Therefore, there is a need for
future work to design a simpler and special switch mode,
and the improvement of detection algorithm for different eye
movements is also helpful. Furthermore, the present study used
the SSVEP-based BCI to select specific actions performed by
the robotic arm. SSVEP has the advantage of less training
and relative high SNR, but the challenge for SSVEP is that
it is easy to cause fatigue. In order to reduce user fatigue,
we set the buttons to flash between green and blue under
black background.

Additionally, the proposed system allowed subjects to timely
cancel the command in feedback phase by a wink to effectively
operate the robotic arm to complete a series of grasping,
moving, and lifting actions. We implemented a comparable
experiment to evaluate the effectiveness of using a wink to
cancel command. Six subjects participated in the comparable

TABLE 3 | Results of asynchronous robotic arm operation.

Subject Total number of commands Completion time (s)

S1 71 394.26

S2 51 284.14

S3 83 473.53

S4 62 349.02

S5 55 305.37

S6 104 586.25

S7 36 197.54

S8 66 371.79

S9 58 324.27

S10 81 474.47

S11 89 500.04

Mean ± SD 68.73 ± 19.38 387.33 ± 112.43

experiment. Subject S9 and S11 also participated in the previous
cue-based experiment. After conducting the calibration process
to obtain the thresholds required for EOG detection, each subject
was trained to be familiar with using the hybrid SSVEP-based
BCI system to perform the grasping task described in the section
“Asynchronous Robotic Arm Operation.” And then each subject
was asked to perform the grasping tasks with and without the
capability of using a wink to cancel the feedback commands
three times each. Considering that the execution sequence of
tasks might influence the completion of the task, three subjects
conducted the grasping tasks with a wink to cancel commands
firstly, then without a wink to cancel commands, while the
other subjects performed the grasping tasks in reverse sequence.
The average number of commands executed by the robotic arm
during the grasping task with and without a wink to cancel
the commands for each subject was shown in Figure 8. The
results indicated that using a wink to cancel the inappropriate
commands in the grasping task significantly declined the number
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FIGURE 8 | The number of commands executed by the robotic arm for each subject in the grasping task with (blue bar) and without (orange bar) the use of a wink to

cancel the feedback command. Avg indicated the average result of all subject. The error bar indicated the standard deviation. We used the paired t-test. *indicated the

p < 0.05.

FIGURE 9 | The averaged classification accuracy for 11 subjects under different window length in the cue-based experiment. The blue bar shows the results of CCA

and the yellow bar shows the results of FBCCA. Error bars are standard deviations. The asterisk indicates 1% significance level between CCA and FBCCA methods

(t-test).
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FIGURE 10 | Individual classification accuracy of CCA and FBCCA in the cue-based experiment. Nine bars in a subject indicated nine window length from 1 s (Left)

to 3 s (Right) at a step of 0.25 s. The blue bar shows the results of CCA and the yellow bar shows the results of FBCCA.

of commands executed by the robotic arm. Therefore, the wink-
based cancel command helped to improve the effectiveness of
robotic arm control.

As for the classification of the SSVEP-based BCI, we used
the FBCCA method for classification, and we compared the
classification results of the FBCCA and CCAmethods in different
window length which was shown in Figure 9. The statistical
results revealed that the classification accuracy of the FBCCAwas
significantly better than the results of the CCA at each window
lengths (p < 0.01). For the same length of stimulation time,
the classification accuracy of FBCCA is better than CCA due
to the use of harmonic frequencies information (Chen et al.,
2015a,b). Figure 10 showed the individual classification accuracy
of CCA and FBCCA methods in the cue-based experiment. The
results showed that FBCCA outperformed CCA in each window
length for all subjects, especially for those subjects with lower
classification accuracy in CCA. However, the flash of buttons in
GUI is still easy to cause user fatigue. Recently, several studies
attempted to flash the buttons at high frequency to reduce user
fatigue (Allison et al., 2010; Diez et al., 2011). Furthermore,
several studies showed that BCI combined with technologies like
computer vision and deep learning also improve the performance
of BCI and reduce the workload of users (Tayeb et al., 2018; Chen
et al., 2019). The combination of the proposed asynchronous
hybrid BCI and new technologies as future research direction will
make the BCI more convenience and user friendly.

CONCLUSION

This paper proposed a hybrid BCI which combined SSVEP-based
BCI and an EOG-based switch for asynchronous control of the

robotic arm. To decrease the FPR in asynchronous BCI, we
designed the EOG-based switch to turn on and off the stimulus
and a cancel command to effectively accomplish complex tasks.
Two online experiments verified the feasibility of the subjects
to use the EOG-based switch by a triple blink to activate or
deactivate the flash of the SSVEP-based BCI which was used to
select the control commands for the operation of the robotic arm
to complete a series of complicated movements. And subjects
were allowed to timely cancel the current command in feedback
phase for more effective control of the robotic arm. All subjects
succeeded in asynchronously operating the robotic arm to grasp,
lift, and move a target object from the initial position to a
specific location. The experimental results suggested that effective
combination of EOG and SSVEP signals was able to realize
an asynchronous hybrid BCI which allowed user to directly
communicate with the external environment based on their
own intention.
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