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HIGHLIGHTS

• A triboelectric nanogenerator (TENG) and a glucose fuel cell (GFC) were separately designed to harvest biomechanical energy from 

body motion and biochemical energy from glucose molecules.

• A hybrid energy-harvesting system (HEHS) which consisted of TENG and GFC was developed successfully, and it can simultaneously 

harvest biomechanical energy and biochemical energy.

ABSTRACT Various types of energy exist everywhere around us, 

and these energies can be harvested from multiple sources to power 

micro-/nanoelectronic system and even personal electronic products. In 

this work, we proposed a hybrid energy-harvesting system (HEHS) for 

potential in vivo applications. The HEHS consisted of a triboelectric 

nanogenerator and a glucose fuel cell for simultaneously harvesting 

biomechanical energy and biochemical energy in simulated body fluid. 

These two energy-harvesting units can work individually as a single 

power source or work simultaneously as an integrated system. This 

design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output. Compared with any indi-

vidual device, the integrated HEHS outputs a superimposed current and has a faster charging rate. Using the harvested energy, HEHS can 

power a calculator or a green light-emitting diode pattern. Considering the widely existed biomechanical energy and glucose molecules 

in the body, the developed HEHS can be a promising candidate for building in vivo self-powered healthcare monitoring system.
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1 Introduction

With the fast development of portable and implantable 

electronic devices, various new remarkable techniques 

of energy supplies experienced rapid growth. Relevant 

research studies involve energy generation, energy har-

vesting, and energy storage for micro-/nanoelectronic sys-

tems, which can be used to realize some specific functions 

[1–7]. Besides energy from nature and surroundings (e.g., 

wind energy and solar energy) [8–10], there are also many 

biomechanical and biochemical energy from body can be 

harvested (e.g., respiration, heart beating, and glucose oxi-

dation) [11–17]. If these energies can be efficiently col-

lected and stored, it will be possible to meet the energy 

requirements of many low-power electronic products, or 

even personal electronics [18, 19].

Triboelectric technology has been proved to be an effec-

tive means to harvest these ubiquitous energies and convert 

them into electricity, which can be used in health surveil-

lance [19–23], cell/nerve stimulation [24–26], or even power 

a commercial cardiac pacemaker [27]. These achievements 

bring new insights for scientific researchers and doctors 

to diagnose and treat related diseases. When a triboelec-

tric device was implanted in body, it collected energy from 

respiration [28], heart beating [27], blood flow [29], and 

so on. Whereas the biochemical energy (e.g., glucose) in 

body fluid around the device slipped away, if this energy can 

be simultaneously harvested, the converted electric energy 

will be augmented, and this step will likely be sufficient for 

powering microdevices in clinic, for instance, implantable 

wireless glucose sensor for diabetic patient [30], temperature 

monitor after surgery [31], and pressure sensor for arterial 

blockage [32]. Considering glucose in tissue fluid or blood, 

it is a feasible conception to use these biomolecules for glu-

cose fuel cell (GFC) and generating electric energy by redox 

reaction [33].

In this study, we designed a hybrid energy-harvesting 

system (HEHS) by integrating a triboelectric nanogenera-

tor (TENG) and GFC to simultaneously harvest the bio-

mechanical energy and biochemical energy. The HEHS 

was integrated on a flexible polyethylene terephthalate 

(PET) substrate. TENG and GFC were connected in paral-

lel, and their electric outputs were superimposed success-

fully, which proved its feasibility to harvest the mechanical 

energy and biochemical energy simultaneously. Compared 

with any single unit, the HEHS has a faster charging rate 

to a commercial capacitor, which proved its higher effi-

ciency as a hybrid system to harvest energy. Then the 

harvested energy can power a commercial calculator and 

a green light-emitting dioxide (LED) pattern. This study 

provided a feasible method to harvest energy from multiple 

sources simultaneously, and it has a great potential as a 

power source to drive micro-/nanodevices to achieve some 

specific functions.

2  Experimental Section

2.1  Fabrication of TENG

Aluminum (Al) foil was fixed on a PET substrate by silver 

paste and acted as one friction layer. The Al foil was pol-

ished using sandpaper to create microstructures [34]. Kapton 

film with copper back electrode was selected as another fric-

tion layer. Precut polydimethylsiloxane (PDMS) (thickness, 

2 mm) was used as spacer to make the friction layers keep a 

gap [4, 16]. One piece of titanium (Ti) foil was used as the 

backbone to ensure the fast recovery of friction layers after 

contact [29]. To protect TENG from water infiltration, it was 

encapsulated with polytetrafluoroethylene (PTFE) film and 

PDMS in sequence.

2.2  Fabrication of Glucose Fuel Cell (GFC)

Bacterial cellulose (BC) membranes were purchased from 

Hainan Yida Food Co. Ltd., which were used as the matrix 

scaffold of multiwalled carbon nanotubes (MWCNTs). 

These BC membranes were pretreated in sodium hydroxide 

(NaOH) solution (0.1 mol L−1) at 90 °C for 1 h and then 

rinsed repeatedly with deionized (DI) water until neutral.

The dispersion of MWCNTs was prepared by dispersing 

MWCNTs (0.4 g) and sodium dodecylbenzene sulfonate 

(SDBS) (4 g) in DI water (400 mL) with ultrasonication 

(100 W, 60 Hz) for 2 hours [35–39]. The dispersion solution 

was centrifuged at 6000 rpm for 10 min. MWCNTs were 

inserted into BC membrane (BC/MWCNTs) by infiltrating 

the as-prepared supernatant to improve the conductivity of 

BC membranes.  H2PtCl6·6H2O (1 g) was dissolved in DI 

water to prepare chloroplatinic acid solution. The samples 
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should be protected from light. Palladium chloride was dis-

solved in 20 mM HCl solution (25 mL) at 60 °C for 1 h. BC/

MWCNTs was soaked in the mixed solution of chloropla-

tinic acid and chloropalladium acid (volume ratio, 1:1) for 

1 h and then put it in sodium borohydride solution (0.1 M) 

at 90 °C with stirring for 1 h to obtain BC/MWCNTs/Pt–Pd 

film; it was used as the anode film. BC film with MWCNTs 

on both sides served as cathode film.

Gold film with scheduled area was sputtered on polyethyl-

ene terephthalate (PET) substrate. The BC membrane clings 

to the gold film. A polylactic acid (PLA) fixture fabricated 

by 3D printing was used to fix the electrode film and sup-

porting substrate. PBS solution was prepared by mixing 

sodium hydrogen phosphate  (Na2HPO4·12H2O) and potas-

sium phosphate monobasic  (KH2PO4) in DI water. Glucose 

solution (1 g L−1) was added in PBS solution and used as the 

electrolyte of the cathode and anode electrode.

2.3  Integration of GFC and TENG

GFC and TENG were integrated on a transparent and flex-

ible PET substrate. Au films as cathode and anode for GFC 

were sputtered on both sides of PET. Al foil of TENG and 

Au film of GFC were isolated by a blank region to prevent 

them from conduction. A rectifier and a unilateral diode 

were connected to TENG and GFC, respectively. Then the 

rectified TENG and GFC were connected in parallel. The 

TENG was encapsulated with PTFE and PDMS to ensure 

that the HEHS can work normally in watery environment.

2.4  Material Characterization and Electrical 

Measurement

To confirm the BC/MWCNTs/Pt–Pd has the ability to oxi-

dize glucose, its electrochemical characteristic was tested 

by electrochemical workstation. BC/MWCNTs/Pt–Pd film 

was tied on a glassy carbon electrode as working electrode. 

Platinum electrode and calomel electrode (SCE) were used 

as counter electrode and reference electrode, respectively 

[40]. The materials’ properties were characterized by scan-

ning electron microscope (SEM, HITACHI, SU8020) and 

X-ray diffraction (XRD, PANalytical, X’Pert3 Powder). The 

electrical outputs of TENG and GFC were measured by an 

electrometer (Keithley, 6517B) and a digital oscilloscope 

(Teledyne LeCroy, HDO6104). A commercial capacitor 

(capacity, 10 μF) was used to store energy of TENG, GFC, 

and HEHS, respectively.

3  Results and Discussion

3.1  Conception of Using HEHS for Multiple Energy 

Harvesting

Human body contains many types of energy, such as biome-

chanical energy, biochemical energy, and thermal energy. If 

these energies were effectively collected, it will be beneficial 

to provide electric energy for self-powered portable electron-

ics. Because the thermal energy is difficult to be harvested 

due to the limitation of temperature difference in human 

body, the biomechanical energy and biochemical energy 

became the preferred candidates for energy conversion.

The biomechanical energy can be from external or inter-

nal body motions, for instance, finger pressing and hand 

flapping. The biochemical energy can be from the glucose 

molecules in body fluid. If a proposed HEHS was implanted 

in a suitable position, it will be feasible for the HEHS to 

simultaneously harvest biomechanical energy and biochemi-

cal energy from the body motion and surrounding body fluid 

(Fig. 1a). As shown in Fig. 1a, a HEHS was implanted in the 

subcutaneous region, and it was surrounded by body fluid. 

When a finger pressed on the skin, the local pressure brings 

friction materials (Kapton and aluminum) into contact 

[Fig. 1b(i)], equal amount of opposite charges distributed 

on their contact surfaces due to coupling of triboelectrifica-

tion and electrostatic induction. When the finger gradually 

moves away from the skin, free electrons will migrate from 

copper to aluminum to balance the potential difference until 

the space recovered to the initial state [Fig. 1b(ii) and (iii)]. 

When the finger approaches the skin again, free electrons 

migrate from aluminum to copper until the Kapton fully 

contact with aluminum [Fig. 1b(iv) and (i)]. The repetitively 

press and release lead to periodic electric current output in 

external circuit. And the biomechanical energy was con-

verted into electric energy by the TENG.

Meanwhile, the body fluid containing glucose molecules 

penetrates into active materials and participates in the redox 

reaction around the anode electrode of GFC (Fig. 1c). The 

lost electrons migrated from anode to cathode and were 

captured by dissolved oxygen in body fluid. This process 

converted the biochemical energy in glucose into electric 
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energy. In the following part, we showed the HEHS design 

and demonstrated the feasibility of using HEHS to harvest 

biomechanical energy and biochemical energy simultane-

ously in simulated body fluid. The harvested energy was 

used to power a calculator and a green LED pattern.

3.2  Harvesting Mechanical Energy by TENG

The electric performance test of TENG was carried out in 

phosphate-buffered solution (PBS). The as-fabricated TENG 

has a vertical contact-separation mode. Kapton film and alu-

minum (Al) foil acted as friction layers. Thin copper layer 

was deposited on Kapton film as back electrode. The whole 

TENG device was packaged by polytetrafluoroethylene 

and polydimethylsiloxane (PTFE & PDMS) (Fig. 2a). The 

surface of Kapton film was treated by inductively coupled 

plasma-reactive ion etching (ICP) to form micropillars. The 

surface of Al foil was polished by sandpaper to form parallel 

microchannels. The microstructures on friction layers con-

tribute to increasing the electric output of TENG (Fig. 2b).

As shown in Fig. 2c, the TENG can output an open-circuit 

voltage of about 22 V under the stimulus of a linear motor, 

and after rectification, the voltage value kept stable. The 

short-circuit current was about 0.24 μA, and after rectifica-

tion, the current value has no decay (Fig. 2d). The effec-

tive output power of the TENG was measured by recording 

the voltage and current values with different load resist-

ances ranging from 0.1 MΩ to 5 GΩ (Fig. 2e). The cur-

rent decreased with increasing load resistance because of 

the Ohmic loss, while the voltage showed an increasing 

trend. A maximum power density of about 3.3 mW  cm−2 

was obtained with a load resistance of about 70 MΩ (Fig. 

S1). The transferred charge was about 12 nC without rec-

tification in each cycle (upper, Fig. 2f). After rectification, 

the transferred charge was about 1 μC within 18 s (lower, 

Fig. 2f). These results indicated that the as-fabricated TENG 

can efficiently harvest biomechanical energy and convert it 

into electric energy.

3.3  Preparation and Micromorphology of GFC

To harvest the biochemical energy, redox reaction-based 

GFC was fabricated to convert the biochemical energy from 

glucose into electric energy. Bacterial cellulose (BC) mem-

brane was selected as the supporting matrix scaffold due 

to its good biocompatibility and porous structure, which is 
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in favor of biological application and high specific area for 

redox reaction. Figure 3a shows two types of BC membranes 

with MWCNTs prepared as the cathode and anode films, 

respectively. Firstly, MWCNTs were filtrated into both sides 

of a BC membrane, and it was named MWCNTs/BC/MWC-

NTs and used as the cathode film of GFC. Secondly, after 

one side of BC membrane was filtrated with MWCNTs, it 

was soaked in  H2PtCl6–H2PdCl6 solution and then reduced 

by  NaBH4 to obtain the catalyst Pt–Pd nanoparticles (NPs), 

the product was named Pt–Pd/MWCNTs/BC and used as the 

anode film of GFC (Figs. S2 and S3).

Before MWCNTs filtration, the original BC membrane 

has a porous structure, the filamentary BC interweaved with 

each other (Fig. 3b), and their edges were clear (Fig. 3e). 

This porous structure provided enough space for MWCNTs 

filling. After the filtration, BC membrane was filled with 

MWCNTs (Fig. 3c). MWCNTs in BC connected with each 

other (Fig. 3f), which ensured its conduction of electrons 

when redox reaction occurred. With the in situ reduction 

of Pt–Pd, many particles with various sizes appeared on 

the surface of MWCNTs/BC membrane, which indicated 

that the Pt–Pd catalyst was loaded successfully (Fig. 3d, g). 

XRD peaks of Pt–Pd of the as-prepared sample also verified 

its existence in MWCNTs/BC membrane (Fig. S4), which 

ensured the realization of redox reaction in the following 

experiment.
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Fig. 3  a Preparation process of cathode and anode films of GFC. b, e Surface micromorphology of original BC membrane. c, f Surface mor-

phology of MWCNTs filtrated into BC membrane. d, g Micromorphology of Pt–Pd nanoparticles (NPs) on the surface of MWCNTs/BC film
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3.4  Harvesting Biochemical Energy by GFC

As shown in Fig. 4a, a GFC was assembled layer by layer 

on a flexible PET substrate to harvest the biochemical 

energy from glucose molecules. The components include 

anode, gold (Au) electrode, PET substrate, cathode, and 

fixture. When the GFC was immersed into glucose solu-

tion, glucose molecules will be oxidized to gluconic acid 
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at anode. Electrons flowed from anode to the cathode 

through the external circuit and generated electric current. 

The dissolved oxygen around cathode accepted electrons 

and combined with hydrogen ions to form water molecules 

(Fig. 4b). The redox reaction equations are as follows [41, 

42]:

The cyclic voltammetry (CV) test of Pt–Pd/MWCNTs/BC 

was performed in PBS/glucose solution to prove the redox 

potential of GFC (Fig. S5c). When the glucose is absent, 

the CV curve has typical peaks for the hydrogen adsorption/

desorption between − 0.6 and − 0.2 V versus SCE reference 

electrode. After adding the glucose in PBS, CV curve shows 

increased faradaic currents due to glucose oxidation in three 

regions. In anodic positive scan, glucose oxidation occurred 

in two regions, including the hydrogen desorption region 

from -0.6 to -0.4 V and the double-layer region from − 0.4 

to 0.2 V. The third region for glucose oxidation occurred 

in the cathodic negative scan, i.e., hydrogen adsorption 

region from − 0.6 to 0.1 V [43]. These results indicated the 

qualified biochemical energy-harvesting ability of the as-

fabricated GFC.

To obtain the optimum energy-harvesting performance, 

the device size and loading time of catalyst for GFC were 

studied. As shown in Fig. 4c, d, the output voltages and 

currents of GFCs with five sizes were discussed, i.e., 1 × 1, 

1.5 × 1.5, 2 × 2, 2.5 × 2.5, and 3 × 3 cm2 (Figs. S6 and S7). 

The output voltage first increased rapidly with device size, 

and then it gets close to stable state after 2 × 2 cm2. This 

variation trend can be ascribed to the constant theoretical 

redox potential difference for glucose and oxygen [43]. 

With the size increase, more glucose molecules partici-

pate in the reaction, and the output voltage increased with 

the size and gradually approach theoretical value and then 

became stable. Because the internal resistance of GFC 

itself also shared the voltage, so its output voltage was 

slightly lower than 1 V. As for the output current, it firstly 

increased to about 6 μA at 2 × 2 cm2 and then decreased 

with the size. This trend can be attributed to the resistance 

variation with size. With increase in size, the effective 

reaction area and transferred electrons also rose, which 

contributes to the increase in output current. Meanwhile, 
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the increased size will also raise the bulk resistance of 

GFC, contact resistance between anode/cathode and Au 

electrode, which will decrease the current. Under the 

combined action, the current showed increasing trend at 

the early stage, then decreased at later stage under the 

combined action. According to these results, the size of 

2 × 2 cm2 was preferred in fabricating GFC.

To endow the GFC with ability of harvesting biochemi-

cal energy from glucose, Pt–Pd catalyst was loaded on 

MWNCTs/BC for different times. As shown in Fig. 4e, the 

output voltage of GFC firstly increased to about 0.6 V at 

three times of loading, and then it gets close to stable state 

with loading times. The voltage variation trend was simi-

lar to that shown in Fig. 4c. As for the output current, it 

firstly increased to 10.5 μA at three times of loading, then 

decreased with loading times (Fig. 4f). This decreasing 

trend can be attributed to the excessive loading of catalyst. 

The excessive loading will result in geometrical hindrance 

and self-poisoning effect, and it can slow the effective 

redox reaction [33, 43, 44]. According to the results, three 

times of loading was preferred in fabricating GFC.

3.5  Integrated HEHS for Multiple Energy Harvesting

As demonstrated above, the as-fabricated TENG and GFC 

can work individually and harvest mechanical energy and 

biochemical energy. To prove the feasibility of using TENG 

and GFC to harvest multiple energies simultaneously, a 

hybrid energy-harvesting system (HEHS) consisted of 

TENG and GFC was developed and integrated on a flex-

ible PET substrate (Fig. 5a). Considering that the voltage of 

TENG (22 V) was much higher than that of GFC (less than 

1 V), and their output currents were similar, and therefore, 

the TENG and GFC were preferentially connected in par-

allel to enhance the combined output current. The TENG 

was rectified to generate unidirectional current. A unilateral 

diode was used to avoid the reverse charging from TENG 

to GFC (Figs. 5b and S8). As shown in Fig. 5e, the output 

currents of individual TENG and GFC were about 0.3 and 

0.9 μA, respectively. After integrating the TENG and GFC, 

the current curve of TENG appeared on the current curve of 

GFC, and their currents were superimposed to about 1.2 μA 

successfully. The output voltages of individual TENG and 

GFC were 22 and 0.3 V (Fig. 5f), respectively. After inte-

grating the TENG and GFC, the output voltage of TENG 
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appeared on the voltage curve of GFC, and the peak voltage 

drop slightly to 21.7 V due to the parallel connection circuit 

(Fig. 5f). If the TENG was not rectified, only half number 

of peak voltages was retained after integrating the TENG 

and GFC. Similarly, the peak currents were also reduced 

by half due to reverse charging between TENG and GFC 

(Figs. 5g and S9).

When use the rectified TENG, GFC and their hybrid 

device (i.e., HEHS) to charge a capacitor, respectively, the 

HEHS has an obviously faster charging rate than TENG and 

GFC, it can obtain a higher voltage (0.37 V) than that (0. 

24 V) of TENG and GFC within 90 s (Fig. 5h). To dem-

onstrate the feasibility of using the HEHS to power port-

able electronics, a capacitor was charged to 2.3 (Fig. 5i) 

and 3.6 V (Fig. 5j), respectively, and it can provide energy 

for a calculator (Fig. 5c) and light up a green BINN pat-

tern (Fig. 5d) immediately. Additionally, from the enlarged 

view in Fig. 5i and j, the charged voltage can quickly reach 

to about 0.3 V due to the existence of direct-current GFC, 

which can save about 20 s from the gray extension line.
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Fig. 5  a Structure diagram and b circuit diagram of the integrated HEHS for multiple energy harvesting. Demonstration of powering c a cal-

culator and d a green BINN pattern by the HEHS in PBS/glucose solution. e Output current of rectified TENG, GFC and their hybrid device. 

f Output voltage of rectified TENG, GFC and their hybrid device. g Output voltage of unrectified TENG, GFC, and their hybrid device (i.e., 

HEHS). h Charging curves by rectified TENG, GFC, and their hybrid device (i.e., HEHS). Charging/discharging curves of powering i a calcula-

tor and j a green BINN pattern
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4  Conclusions

In summary, the fabrication parameters of TENG and GFC 

were studied in detail. Three times of Pt–Pd loading and 

2 × 2 cm2 were selected as the preferential parameters for 

GFC fabrication. The developed TENG and GFC can effec-

tively harvest biomechanical energy and biochemical energy, 

respectively. The HEHS can simultaneously harvest biome-

chanical energy and biochemical energy in simulated body 

fluid (i.e., PBC/glucose solution). Before integrating the 

HEHS, TENG and GFC should be rectified to protect the 

circuit from reverse charging and enhance the overall energy 

conversion ability. After integrating the HEHS in parallel, 

the output currents and voltages of TENG and GFC were 

superimposed successfully. When used the HEHS to convert 

the mechanical energy and biochemical energy into electric 

energy and stored in a capacitor, a portable calculator and 

a green LED pattern were powered successfully. Based on 

these results, this study provided a feasible method to har-

vest energy from multiple sources, and it is reasonable to 

think that the HEHS can be a promising candidate when 

implanted into the body to harvest biomechanical and bio-

chemical energy simultaneously. The HEHS has a potential 

as a power source to drive low-power electronic devices to 

achieve some specific functions.
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