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Abstract

Background: To exploit the flood of data from advances in high throughput imaging of optically sectioned nuclei,

image analysis methods need to correctly detect thousands of nuclei, ideally in real time. Variability in nuclear

appearance and undersampled volumetric data make this a challenge.

Results: We present a novel 3D nuclear identification method, which subdivides the problem, first segmenting

nuclear slices within each 2D image plane, then using a shape model to assemble these slices into 3D nuclei. This

hybrid 2D/3D approach allows accurate accounting for nuclear shape but exploits the clear 2D nuclear boundaries

that are present in sectional slices to avoid the computational burden of fitting a complex shape model to volume

data. When tested over C. elegans, Drosophila, zebrafish and mouse data, our method yielded 0 to 3.7% error, up to

six times more accurate as well as being 30 times faster than published performances. We demonstrate our

method’s potential by reconstructing the morphogenesis of the C. elegans pharynx. This is an important and much

studied developmental process that could not previously be followed at this single cell level of detail.

Conclusions: Because our approach is specialized for the characteristics of optically sectioned nuclear images, it

can achieve superior accuracy in significantly less time than other approaches. Both of these characteristics are

necessary for practical analysis of overwhelmingly large data sets where processing must be scalable to hundreds

of thousands of cells and where the time cost of manual error correction makes it impossible to use data with

high error rates. Our approach is fast, accurate, available as open source software and its learned shape model is

easy to retrain. As our pharynx development example shows, these characteristics make single cell analysis

relatively easy and will enable novel experimental methods utilizing complex data sets.

Background
Time-lapse imaging of optically sectioned nuclear

images has provided an unprecedented opportunity to

observe biological processes as they unfold in space and

time. Using fluorescent proteins such as GFP to label

nuclei, one can image the embryogenesis of diverse

organisms such as C. elegans [1], Drosophila [2], zebra-

fish [3,4] and mouse [5,6] with single cell resolution

over an extended period of time. Given sufficient tem-

poral resolution, individual nuclei can be followed over

time, providing a virtually contiguous record of prolif-

eration, differentiation and morphogenesis [2,5,7-9].

However, exploiting this source of information is not

trivial: such data sets can record thousands of cells over

hundreds of frames, adding up to terabytes of files. The

data becomes manageable only when tracks of the beha-

vior of individual cells are generated from the raw

images.

In response to this, a variety of computational techni-

ques and software packages have been developed to aid

in quantitative analysis of images [10-15]. The largest

class of image analysis methods focuses on segmenting

contiguous regions of pixels, implicitly detecting nuclear

locations in the process. The simplest technique, thresh-

olding image intensity, has been supplemented with

image processing techniques like smoothing, adaptive

thresholds [16,17], morphological operators, mode find-

ing [18,19], watershed [20,21]and level set methods [22]

to increase robustness in the face of noise, uneven
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contrast and touching nuclei. A second class of methods

uses matched filters to detect the centers of nuclei. A

predefined template of object appearance is compared

to every location in an image and local maxima of simi-

larity are assumed to be object centers [1,23,24].

The success of these methods is mixed. When nuclei

are widely spaced, many methods perform well, with

error rates of one percent or less [16,25,26]. However,

as nuclear density increases and nuclei start to touch,

which is typical of late embryonic development and

adult tissues, error rates rise to from two up to more

than ten percent [1,3,18,20,22]. Errors are caused by

image characteristics that violate the rules or models

underlying a detection method. These have their origin

in both biology and the imaging process. Variation in

nuclear fluorescence and shape is the primary biological

complication. Uneven signal within a nucleus (Addi-

tional file 1, Figure S1a) can result in over segmentation,

separate redundant detections of a nucleus on each

mode of intensity. Elongated and irregular nuclear

shapes can also contribute to over segmentation (Addi-

tional file 1, Figure S1c). Even if expression is uniform,

each end or bump may independently match some com-

putational definitions of a nucleus. Biology also contri-

butes to under segmentation or missed nuclei. When

nuclei are crowded, nuclei with weaker expression may

be masked by brighter neighbors and remain undetected

(see Additional file 1, Figure S1b for an illustration of a

weaker nucleus).

Imaging distortions and resolution limitations further

complicate nuclear detection. An optically sectioned sam-

ple yields a series of 2D cross sections, so that nuclei are

recorded as slices through bright globular shapes against a

dark background. Coordinates within the 2D planes are

referred to as x and y while z refers to the direction ortho-

gonal to the image planes. Optical and physical constraints

make resolution along the z axis lower than that within

the x,y plane. Typically, phototoxicity and image acquisi-

tion time also limit the number of optical sections, further

reducing the z resolution. In turn, this limits the informa-

tion available to resolve closely packed nuclei along the

z axis (Additional file 1, Figure S1d illustrates two nuclei

whose images merge along the z axis). Systematic distor-

tions such as fading of signal with depth and stretching of

fluorescent signal along the light path (Additional file 1,

Figure S1e) further distort the picture, contributing to

error.

All errors are problematic because the quality of infor-

mation extracted during image analysis limits the kinds

of biological questions that can be answered. A low per-

centage of error, say three or five percent, allows reliable

assessment of statistical trends in the behaviors of a

homogeneous group of cells, such as drug response in

cell culture, or the shape and overall migration of a

tissue. On the other hand, this level of accuracy is not

always sufficient for detailed analysis of embryogenesis,

where tracing the behavior of single cells is often neces-

sary. Investigation of many critical developmental pro-

cesses such as neural crest cell dispersion [27] or

convergent extension [28] can be most effectively inves-

tigated with this kind of single cell record of develop-

ment. Though desired information may be theoretically

present in images, it is large-scale annotation of cell

behavior that makes systematic investigation possible.

Tracing the paths of cells as they move and divide

demands virtually 100% accuracy, as a handful of misi-

dentified cells per time point can lead to a thoroughly

fragmented and scrambled lineage [1]. To make use of

error filled data, biologists must spend a significant

amount of time manually editing the automatically con-

structed result. Even for simple organisms with a few

hundred cells, such as C. elegans, this has previously

taken up to days [29]. In an organism like zebrafish this

amount of editing would be an impossible task, with

correction of even a sublineage of interest being weeks,

or months, of effort. Errors quickly make human cura-

tion a bottleneck, undermining the premise of high

throughput imaging. Often, when combined with time

constraints, this inability to accurately find cells forces

one to detour around a key question, missing an oppor-

tunity for a clean experimental design.

To address this challenge we present a detection and

segmentation method that is accurate enough to allow

high fidelity analysis over a variety of images while

remaining fast enough to run in real time, making it

practical for use with large data sets.

Results
Algorithm Design

Given that image planes are widely spaced along the

z axis, adjacent and similar voxels along the z axis are

fairly likely to belong to separate nuclei, frustrating

naive detection and segmentation methods. A shape

model is necessary to guide segmentation, filling in

boundary information that is not locally available in the

image. Our method views nuclei as a collection of slices

and uses a shape model that consists of expectations

about slice size, brightness and location relative to other

slices (See Figure 1 for a graphical overview of this pro-

cess from image data to segmented nucleus).

This basic shape model is sufficient because nuclei have

relatively simple, largely convex shapes. Pixel level seg-

mentation is done within 2D image planes, a shape model

is not necessary because resolution is high (Figure 1c). In

contrast, the final definition of 3D nuclear extent, which

must be done under the constraint of limited resolution

along the z axis, is based on pre-segmented slices, allowing

computationally efficient use of a model of nuclear shape
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(Figure 1d). This approach avoids the impossibly high

computational cost of fitting complex shape models, like

the active shape models [30] commonly used to segment

noisy volumetric data, to hundreds of thousands of nuclei.

Figure 2 provides the flow of our algorithm, which starts

with finding and segmenting all nuclear slices, and then

uses local 3D maxima as seeds for extracting nuclei as a

set of slices. Unclaimed slices give rise to new nuclear

seeds, and competing claims on the same slices are

resolved by choosing between merging the overlapping

nuclei or giving slices to the nucleus with the stronger

claim. Below, each step of the algorithm is detailed with a

subheading corresponding to each box in the flow dia-

gram. Implementation details are provided in Additional

File 1: Supplemental Methods and Figures, section 1.

Image filtering

Our approach begins with image filtering to find an

initial set of seed locations for nuclei. Volume data is fil-

tered with a 3D Difference of Gaussian’s (DoG) filter

[31], which can be viewed as a matched filter represent-

ing a blurred sphere against a dark background. As in

typical use of such filters, 3D maxima of intensity in the

filtered image serve as candidate nuclear centers for

further analysis. At the same time, the filtering process

also highlights information about the individual nuclear

slices: 2D local maxima within each image plane repre-

sent the centers of nuclear slices, and the edges of

nuclei are highlighted as zero crossings of intensity

(Figures 1b and 3). See Additional File 1: Supplemental

Methods section 1.1 for more details.

Slice Segmentation

Based on the filtered volume data, nuclear slices are

extracted as polygonal regions. For every 2D intensity

maxima above a base threshold a 2D shape representing

that slice through the nucleus is segmented. Following

our goal of reducing computational complexity, 2D seg-

mentation is reduced to a set of 1D boundary detection

problems. Sixteen evenly spaced rays are sent out from

the 2D maxima. These rays terminate when they

encounter a zero-crossings (illustrated in Figure 1c). Ray

endpoints are then post processed to discard rays that

are unusually longer or shorter than their neighbours.

These final ray endpoints define a polygonal segmenta-

tion boundary that can capture detailed shape, but is

computationally very cheap to compute. See Additional

File 1: Supplemental Methods section 1.3 for more

details.

Nuclear Extraction

We then combine extracted slices and the subset of

these slices corresponding to 3D maxima to segment

nuclei. The slice corresponding to each 3D maximum

attempts to claim slices above and below it based on a

trained probabilistic model of nuclear shape. The under-

lying shape model is a set of 7 dimensional gaussian dis-

tributions, generated using labeled training data, and

representing the expected properties of slices within a

nucleus and of ‘distractor’ slices originating from other

nearby nuclei. Dimensions of this distribution include

the relative size, intensity and position of slices in rela-

tion to the center slice and the closest intervening slice

(shown in Figure 1d). Training the model is simple, a

superset of slices that might be part of the nucleus is

generated automatically and extra slices are deleted to

create a corrected result (see readme in Additional File

2: source code for detailed instructions). This model is

used in a simple maximum likelihood classifier that

assesses whether each nearby slice along the imaging

axis is more likely to belong to the nucleus or another

nearby ‘distractor’ nucleus. This shape model, though

simple, is flexible enough to capture different levels of

shape variation, nuclear separation, and optical distor-

tion, making it adaptable to different organisms and

microscopy techniques. See Additional File 1: Supple-

mental Methods section 1.4-1.6 for more details.

Finding Overlooked Nuclei

When crowded, nuclei with weaker fluorescence intensity

are often overshadowed by brighter neighbours, and so are

not 3D maxima. Conceptually, we can imagine masking

the signal from known detected nuclei. When this is done

dimmer nuclei become local maxima. The segmentation

of all nuclear signal into the unit of slices provides a prac-

tical way to achieve this. All slices claimed by at least one

Figure 1 Slice extraction and nuclear definition. a. An x,y plane

through C. elegans volume data at the ~350 cell stage. b. the

corresponding slice through the 3D DoG filtered volume. c. Slices

are segmented by casting out rays in search of a zero crossing. The

2D intensity maxima where rays originate are marked as black dots.

Final end points of search rays are marked as blue dots. These

points define a polygonal slice; multiple slices can be assembled

together to yield a 3D nuclear boundary. d. Nuclear shape

definition. The position, intensity, and size of each slice that might

be part of a nucleus are measured relative to the nuclear center,

and also relative to the closest slice between the possible member

and the nuclear center. These measurements make up the 7D

vector that represents a slice and nucleus center pairing. Actual

nuclear extraction starts from the center and in turn considers the

likelihood of each slice as an endpoint for the nucleus.
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nucleus are marked as accounted for and the remainder

examined. In any 3D spherical neighbourhood where mul-

tiple unclaimed slices exist, an overlooked nuclear center

is seeded at the locally brightest slice. This works because

the shape model is accurate enough to prevent the

brighter, initially detected nuclei from claiming the slices

corresponding to these undiscovered dimmer nuclei.

These nuclei are extracted from the full set of slices

(including claimed ones) subject to the same nuclear

shape model above, and this is repeated iteratively until no

unclaimed clusters of slices remain. See Additional File 1:

Supplemental Methods section 1.7 for more details.

 

Difference of Gaussians  (DoG) filter 

matched to expected diameter 

Segment all nuclear slices in each 

image plane

 

 Extract nucleus as set of slices associated

with center slice

Find overlooked nuclei centers

 (unclaimed slices) 

 

Conflict resolution for overlapping nuclei 

3d maxima subset 

of slices 

DoG filtered image

 

Nuclei: set of slices judged to 

belong to a given center slice 

 

All extracted nuclei 

Final nuclei  

Extracted slices 

Image 

Recovered nuclear

 centers

Figure 2 Flowchart overview of the algorithm. Boxes represent major elements of the algorithm and arrows the flow of data between them.
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Conflict Resolution

False positives come largely from multiple detections of

the same nucleus caused by variation of intensity within

the nucleus. False positives from noise are rare because

of the strong smoothing provided by filtering. Most false

positive cases are revealed by significantly overlapping

claims on slices from multiple (equivalent) nuclei. These

cases are judged by a conflict resolution step. Whenever

Figure 3 Test Data. A representative plane of test sets and corresponding slice segmentation (see Figure 1 for C. elegans example plane). a.

early Drosophila (stage 8, ~4 hpf) b. late Drosophila (stage 11, ~7 hpf) c. early zebrafish (~3 hpf) d. late zebrafish (~18 hpf) e. mouse ~E7.75
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two extracted nuclei both claim a slice, two possibilities

are considered, merging the two nuclei, and splitting

their overlap between them. These two configurations

are scored against the shape model and the option with

the best shape score is picked. Merging is scored by

using the shape model to calculate the total score of all

slices in a nucleus formed from the union of all slices in

both nuclei, assuming its center to be the slice closest

to the geometric middle of the merged set of slices. The

second possibility, splitting, is scored by assigning each

slice to the nucleus with the strongest claim on it, sub-

ject to the constraint of each nucleus being contiguous

and adding up the total of the two nuclei’s claim on

their slices. See Additional File 1: Supplemental Meth-

ods section 1.8 for more details.

Image analysis software

Matlab source of the image analysis software is available

as Additional File 2: source code and is distributed

under the GNU GPL. The source will be actively main-

tained; the most recent version is available for download

at sourceforge (starrynite.sourceforge.net under the file

subheading blob-slice cell detection).

Though the algorithm contains a significant number

of parameters, the set of key parameters is relatively

small. It is typically possible to get good results by set-

ting only two intuitive parameters: the diameter of the

nucleus in the first frame, used to set the filter size, and

the noise threshold used to discard filtered maxima cor-

responding to image noise. A full catalogue of all para-

meters (Additional Table S3 and S4) and advice on

tuning them for new images is provided in Additional

File 1, section 2.1. An example parameter file along with

a script and instructions for retraining the 3D shape

mode is provided in Additional File 2: source code.

Evaluation of Accuracy

We applied our method to a diverse set of test data,

encompassing both confocal and light sheet microscopy,

and sampling a range of metazoan model organisms.

Data sets include in toto C. elegans using laser scanning

confocal microscopy [1], in toto Drosophila using

DLSM-SI [32], in toto zebrafish using DLSM [3] and a

partial mouse embryo using laser scanning confocal

microscopy (see Figure 3 for representative slices and

Additional file 1, Table S1 for image resolution and

other details). For C. elegans, we analyzed 280 time

points covering roughly five hours of development and

ranging from the four-cell stage to about 500 cells. For

each of the other data sets, sub volumes containing 200-

400 cells were selected, due to the time constraint of

gathering the ground truth by manual identification of

nuclei when the guidance provided by an invariant line-

age is not available. For Drosophila and zebrafish data,

which cover an extended period of development, an

early and a late developmental stage were tested. We

analyzed Drosophila stage eight and eleven (approxi-

mately four and seven hours post fertilization (hpf) and

with ~6,000 and 14,000 total cells respectively) and the

zebrafish late “1K cell” and “14-19 somites” stages

(approximately three and eighteen hpf and with ~1,500

and 15,000 total cell respectively). The mouse embryo is

analyzed at the late headfold (embryonic day (E) 7.75)

stage with all non-axial mesodermal nuclei labeled.

When selecting the sub volumes, we chose regions with

above average difficulties in the respective data in terms

of nuclear density, variation of nuclear shape, size and

intensity. Parameters were tuned on one time point and

then tested on three successive time points for the same

test sub volume.

All error rates were calculated based on ground truths

created by human correction of all discernable detection

errors in the computed result. Segmentation accuracy

was not considered, as our primary goal is localization

of nuclei, segmentation is largely a way to increase the

accuracy of that localization. However, some segmenta-

tion results are shown in Figure 3 and appear to be of

good quality. For C. elegans the detection ground truth

can be considered perfect, as the invariant lineage pro-

vides a guide in resolving any temporary image ambigu-

ity. For all other data sets the ground truth was

generated by examining the volume data slice by slice

several times, deleting multiple detections and marking

overlooked nuclei. The ground truth was automatically

matched against the original result and deviations

logged as errors. Computed results and ground truths

are available as Additional File 3. C. elegans image data

is available on request because of its large size; images

for other organisms are included as Additional Files 4,

5, 6 and 7 This additional data is release under the

GNU GPL. Average error rates range from near zero for

early zebrafish and C. elegans to around 3 to 3.7% in

Drosophila and late C. elegans (Figure 4). These error

rates are about two to six fold lower when compared to

previous approaches. For early development in C. ele-

gans, our method achieves 0.25% error around the 180-

cell stage, compared to 1.98% reported for data of

equivalent quality with a mode finding approach [18].

Our approach also compares favorably with 0.43% error

reported using a graph cut segmentation method [26]

on another highly similar dataset. Performance on later

developmental stages was not reported for either of

these methods. For late C. elegans development, our

method achieves ~0.5% between the 180- to 350-cell

stage (the ninth and second to last round of cell divi-

sion) and ~3% afterwards (350- to ~500-cell stage). Our

previous matched filter method [1] yielded ~3% and

12% error respectively at these stages using the identical

Santella et al. BMC Bioinformatics 2010, 11:580

http://www.biomedcentral.com/1471-2105/11/580

Page 6 of 13



test data and ground truth. Error on the zebrafish data

set is a third or less (~2.5% vs ~10% at the 14-19

somites stage) than that of the adaptive thresholding

method originally used on the same data set [3]. While

our assessment is based on a portion of the whole

volume used in prior error analysis the sub volume is

one of the most crowded areas in the image.

We further analyzed how different components of our

algorithm contribute to the final accuracy of the results.

We analyzed one of the data sets that gave the highest

error rate, namely the late stage C. elegans embryo from

about 350 to 500 cells. The breakdown in Table 1 illus-

trates the contribution of the shape model, both in finding

missing nuclei in the form of unclaimed slices, and in mer-

ging redundant overlapping segmentations of the same

nucleus. These steps reduce both false negatives and false

positives by about a half from the initial 3D blob detection.

In analyzing error rates we found that accuracy corre-

lates well with the separation of nuclei in z across

organisms and imaging methods (see graph in Figure 4).

Error is close to zero when the average separation is

greater than or equal to one plane. This means that, on

average, gaps between nuclei are captured by one or

more planes. Error rises sharply when the average

separation is less than half a plane. In contrast, sampled

slices per nucleus, an intuitive measure of visibility, does

not predict accuracy (Additional Figure S2). These

results emphasize that, because the gap between nuclei

is typically much smaller than nuclear size, resolvability

(rather than visibility) of nuclei bounds performance.

This suggests that for quantitative analysis z sampling

should be carefully tuned in response to the spacing

between nuclei. In spite of this, our experience suggests

that experimenters tend to be less attentive to this para-

meter, compared for example to laser intensity, likely

because image quality within a plane is more percepti-

ble. The mouse data is an exception to this trend, z

sampling is more than adequate but error is higher than

expected because the x,y resolution is unusually low

(imposed by the technical requirements of keeping the

embryo healthy during imaging). This causes occasional

segmentation errors and somewhat higher than expected

error (Figure 3 and Additional file 1, Table S1 illustrate

the mouse data and give its resolution). A qualitative

sense of analysis results can be gained from Additional

files 8 and 9, 3D reconstruction movies of the mouse

and Zebrafish embryos generated from the unedited

output of our system.

Computational cost

To assess running times and memory loads, we tested

our method on a whole volume of each data set on a

2.13 GHz Intel core2 PC using a lightly optimized single

threaded Matlab implementation (Additional file 1,

Table S2). The runtime consists of several components,

with disk access and image filtering scaling with image

size while slice and nuclear extraction scale with the

number of nuclei present. In larger images computa-

tional time is strongly dominated by image filtering,

which contributes to 83% of runtime for the zebrafish

dataset. For the C. elegans, Drosophila and mouse data,

the processing speed is about 3 seconds per megapixel

of image data. For the zebrafish data, the speed is

reduced to approximately 6 seconds per megapixel. This

is likely due to memory management inefficiencies

resulting from the need to divide the image filtering

into multiple parts that fit within addressable memory

on a 32bit architecture.

Figure 4 Nuclear separation as a predictor of performance.

Nuclear separation is calculated as the average distance between

the computed boundary of a nucleus and the boundary of its

nearest neighbor, based on the bounding circle of the largest slice.

This distance is expressed in units of slice spacing, the distance

between successive z planes. Averages are displayed; error variability

between data sets was typically 1-2 mistakes.

Table 1 Error rates at each stage of the algorithm for the 350- to 500-cell C. elegans embryo

Initial DoG 3D maxima detection Overlooked nuclei added Final error after overlap resolution

False Negatives (%) 4.6 1.7 1.8

False Positives (%) 1.8 2.8 1.3

Total error (%) 6.4 4.5 3.1

Error rates compared to ground truth for the partial result available at each stage of the algorithm.
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It is worth noting that, even in this unoptimized

implementation on limited hardware, our algorithm is

fast and efficient enough for real time analysis of all

data sets but zebrafish. As the core image filtering is

highly parallelizable and memory management seems to

take a large toll in our tests, a parallelized implementa-

tion on a fairly typical multicore 64bit workstation with

sufficient memory would be qualitatively faster. This

should allow the processing of larger volumes such as

the zebrafish data in real time with a few CPUs. The

computational cost of our method compares favourably

with previous work. Our method takes ~23 seconds per

volume to process C. elegans data, well below the data

sampling rate of one volume per minute. In contrast,

mode finding [18] takes twice as long, on a volume less

than half the x,y resolution using comparable hardware.

Our detection combined with our previous tracking

approach [1], takes about 37 seconds per volume to

detect and track through the 180 cell stage, compared

to up to 20 minutes per volume at the 180 cell stage for

combined tracking and segmentation with a graph cut

approach [26]. Our method is also efficient in compari-

son with previous zebrafish analysis methods both of

which would require around two hours [3,22], to pro-

cess a volume of the size that our method can segment

in approximately 20 minutes.

3D reconstruction of pharynx development

We demonstrate the potential of our algorithm by ana-

lyzing the organogenesis of the pharynx in C. elegans.

The pharynx is a prime model for organogenesis and

has been widely studied. However, a detailed single cell

level record of its formation has never been made. This

is because of the image analysis challenge presented by

small cells in a crowded configuration during later

embryogenesis. With our previous cell detection method

[1] high error made this analysis impractical. More

accurate detection opens the door not only for this

record of wild type development, but also for novel

experimental investigations of late pharynx morphogen-

esis at the single cell level.

The pharynx is a feeding apparatus that ingests and

grinds bacteria. It is made of 80 cells, derived from dif-

ferent lineages and including multiple tissues such as

muscles, neurons and glands [33,34] [WormAtlas.org].

This complex set of tissues with a small set of cells has

made the pharynx a powerful model to study organo-

genesis. Genetic and functional genomic analysis have

identified the key signaling pathways, master regulators

and the molecular cascade underlying pharyngeal devel-

opment, leading to a substantial understanding of how

the cell lineage generates the particular set of 80 differ-

entiated cells (see Mango, [35] for a detailed review).

However, as in most models of complex organogenesis,

how the differentiated cells give rise to the structure of

a functioning organ is poorly understood.

We have reconstructed pharyngeal development up to

the stage where structures corresponding to the parts of

the fully formed pharynx can be visually identified in

the embryo (~340 minutes post first cell cleavage, pfc).

Visualized in 3D, early morphogenesis of the pharynx

appears to involve two distinct stages. During the first

stage, pharyngeal precursor cells are recruited from dis-

crete regions of the embryo to form a coherent struc-

ture with an overall left-right symmetry (Figure 5I,

Additional file 10: Movie 3). Pharyngeal cells are derived

from the AB and MS lineages, with the MS cells born in

a contiguous structure and the AB cells assembled pie-

cemeal. In the MS lineage, pharyngeal precursors are

born in two rows, one on the left side and one on the

right (cyan in Figure 5I). The two rows are born next to

each other and the midline corresponds to the future

midline of the organ, around which the AB cells assem-

ble. The AB cells can be further divided into two

groups. The right side group is derived from the ABara

sublineage. Cells in this group (red, pink, yellow and

blue in Figure 5I) are born next to each other (Figure 5I

frame a) and maintain their relative positions as they

move towards the midline to meet the left side group

(Figure 5I frames b and c). In contrast, the correspond-

ing cells in the left side group (sharing colors with their

left side fate counterparts in Figure 5I but marked with

arrows) are born isolated and migrate towards each

other to assemble a mirror image of the right side group

(Figure 5I frames b and c). In the meantime, the phar-

yngeal precursors move from the ventral surface to the

inside of the embryo. This process starts with the MS

cells at around 160 minutes pfc (Figure 5I frame a). The

AB cells first move on the ventral surface towards the

midline (see above) to cover the MS cells (Figure 5I

frame b) before following them inside (Figure 5I frame

c). This stage of morphogenesis, which we term the

assembly stage, ends at ~250 minutes pfc. The end

result is a contiguous primordium consisting of two flat

sheets of cells and an overall left-right symmetry. This is

highlighted in Figure 5IV frame a, which marks the cor-

respondences between pharyngeal cells from symmetric

lineages.

During the second stage of morphogenesis, which we

term the inflation stage, the flat, two-sheet structure

swells, similar to the inflation of a balloon, to create a

rounded structure. Figure 5II and Additional file 11,

Movie 4 illustrate the process with a color scheme that

shows the mapping of the primordium to the mature

pharynx (Figure 5II frame b) [34][WormAtlas.org].

Interestingly, shortly before the inflation starts (Figure

5II frame a), the primordium is aligned with the ante-

rior-posterior axis between the anterior end of the
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Figure 5 Reconstruction of C. elegans pharynx development. I. Assembly of the primordium. MSaa and MSpa lineages are in cyan. On the

right side ABaraaap (and then its anterior daughter) is in red, ABarapaa in pink, ABarapap in yellow and ABaraapp in blue. On the left side, the

symmetric sublineages are shown in the same colors but are marked by arrows, with ABalpaap (and then its anterior daughter) in red, ABalpaaa

in pink, ABalpapp in yellow and ABaraapa in blue. White in frame a represents ABaraaaa, which gives rise to two L/R symmetric sublineages (in

magenta in frame b and c) as well as a pair of cells one of which undergoes apoptosis and the other of which forms the third fold of symmetry

for part of that sublineage (white in frame b and c). Grey represents a non-pharyngeal precursor, ABalpapa which interrupts the left side group

at birth (frame a) but is excluded during subsequent development. For all frames in this figure, the non highlighted cells are shown as semi-

transparent spheres. In frame a, at time 160, left-right symmetric precursor cells have been born but are not symmetric in their layout. Note the

midline marked by the two rows of MS/cyan cells. MS cells have just started to enter the inside of the embryo. The blue cell that is part of the

left side is born on the right side of the midline but will cross over to join the other left side cells. In frame b, time 207, the AB pharynx cells

have moved to the midline to cover the MS cells. The blue cell of the left group has crossed the midline to assume a symmetrical position as its

right counterpart. However, the pink cells of the left group are still disconnected from the yellow cells compared to the right side. The grey

non-pharyngeal cells are now excluded from the primordium. In frame c, time 250, the left and right AB groups are fully assembled and

symmetrical. II. The inflation of the primordium. To illustrate the topological mapping of the primordium to the mature pharynx, cells are

colored as follows: white for buccal cavity, red for the corpus/anterior lobe, blue for the posterior lobe and purple for precursors whose

descendents contribute to both lobes. The E/gut cells are shown in green for context. Frame a shows the primordium prior to inflation, where

cells are arranged in two flat sheets that are left-right symmetric. In Frame b the sheets have begun to round slightly. In c they have rearranged

to create a rounded shape, and the ventral MS portion of the pharynx moved anterior to the E cells. III. The emergence of threefold symmetry.

Pharyngeal right side terminal cells (and their precursors) are in blue, those on the left are in red. Terminal cells and precursors are white if they,

or their descendents, have no L/R counterpart. These cells make up the third component of the final threefold lumen symmetry. IV. Frame a

shows the correspondence between pharynx cells whose lineages are annotated as left right symmetric with a line. A left view, angled slightly

posterior-dorsal y, highlights the consistent alignment. Frame b, the position of cells at ~340 min pfc. Frames a and b use the same color

scheme as in I with the addition of the E/gut cells in green. Frame c shows the final configuration of the pharynx colored as in II.
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embryo and the intestine (green in Figure 5II). From the

ventral view, this configuration is similar to that of the

mature pharynx, creating a false impression of the map-

ping to the final structure. As the left view shows, the

longitudinal axis of the digestive tract is curved and

deviates from the long axis of the whole embryo, that is,

the anterior-posterior axis. The inflation starts around

280 minutes pfc (Figure 5II frame b) and becomes pro-

minent by 320 minutes. It starts from the middle of the

primordium with no obvious bias towards the future

anterior or posterior lobe. The relative position of cells

largely remains constant during the inflation. A dramatic

exception is the e2V cell (marked with an arrow in Fig-

ure 5II), which moves anteriorly from the middle of the

primordium to join the other epithelial cells that make

the buccal cavity. We also followed the symmetry of the

primordium over time. The mature pharynx shows a

threefold rotational symmetry, while the cell lineage and

the primordium show largely bilateral symmetry. As Sul-

ston pointed out, “the third symmetry element arises [in

the lineage] by piecemeal recruitment of cells”, and the

placement of these cells in the lineage does not show

any apparent logic or regularity [33]. As shown in Figure

5III and Additional file 12: Movie 5, these cells (white)

are born at or near the midline along the length the pri-

mordium, on both the dorsal and the ventral sides.

Thus, the logic controlling which cells are recruited for

the 3D symmetric structure is apparently spatial. Addi-

tional file 13:Movie 6 illustrates the final 3D configura-

tion of cells colored by lineage origin, anterior/posterior

and left/right fate, allowing their systematic comparison.

More detailed temporal and spatial information is

available in movies corresponding to different coloring

schemes in Figure 5 (Additional files 10, 11, 12 and 13:

Movies 3 to 6). As individual cells within the organ can

be analyzed based on our accurate nuclear identification

method, morphogenic behaviours can be dissected at

single-cell resolution using mutants, gene expression

mapping and other approaches. Such studies will ulti-

mately extend the molecular cascade of pharyngeal

development from differentiation to morphogenesis, and

pave the way for a comprehensive understanding of

organogenesis.

Discussion and Conclusion
Our method is a reliable tool for nuclear identification

that, by respecting the structure of the underlying image

data, achieves robust and fast nuclear detection and seg-

mentation. Three key ideas underlie the strength of our

design. First, we separate the problem of 3D nuclear

segmentation into 2D slice segmentation and 3D slice

grouping. We can achieve reliable 2D segmentation

using simple methods because of the high resolution

within image planes. We can then efficiently solve the

hard problem of 3D segmentation by grouping the rela-

tively small number of slices in the image (typically 3 to

4 per nucleus at late developmental stages). Second, we

employ a trainable, probabilistic shape model based on

slices, which allows us to consider the variability of

nuclear shape and intensity within an easily manageable

framework. Third, we use the 3D maxima generated by

the DoG filter to guide nuclear segmentation. As 3D

maxima typically provide >95% accuracy in nuclear

detection, they provide a powerful guide for a greedy

slice grouping approach. The strategy of segmenting

individual slices of volume data is not unknown

[22,36,37], but our method is unique in its computa-

tional strategy and in being general, fully automatic and

capable of good results in the crowded images typical of

late embryogenesis. The algorithm remains efficient and

fast enough for a typical computer to achieve real-time

analysis of in vivo imaging of metazoan embryogenesis,

in models ranging from C. elegans to mouse.

Aside from accuracy and speed, our method has the

advantages of easy adaptability and an extensible modu-

lar framework. Retraining the probabilistic nuclear

model for new images provides increased flexibility with

minimal effort. Since slices can typically be segmented

with >95% accuracy after setting only 2 simple base

parameters, manual labeling involves only pruning a list

of nearby potential slices. No hand tracing of image

regions is necessary. Detailed tuning and training proce-

dures are given in Additional File 7 section 2. Apart

from the adaptability of the probabilistic model, our

method has the added flexibility of a modular algorith-

mic design. Each sub task is largely independent of the

others and can be replaced by other methods indepen-

dently of the general strategy. For example, if very dif-

ferently scaled or shaped nuclei were a concern, the

DoG filter could be replaced by a (more computationally

expensive) battery of oriented or multi-scale filters while

leaving the rest of the framework untouched. Additional

specializations can also be added at different stages to

address particular concerns, such as false detections out-

side the boundary of an embryo or adaptation to fading

signal.

Currently, our method still produces 2-3% error in the

more challenging cases of late embryogenesis. The vast

majority of remaining false negatives are crowded nuclei

for which secondary recovery failed because a brighter

neighbor not only prevented its detection as a 3D maxi-

mum but also mistakenly claimed all of its slices. Simi-

larly, the majority of remaining false positives are nuclei

split into upper and lower halves along the z axis. These

were detected twice but did not claim each other’s slices

sufficiently to be merged. This suggests that the classi-

fier for slice inclusion is likely the weakest link in our

system and could be improved, especially for the
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elongated nuclei with varying spatial orientation that are

frequently seen in the drosophila and mouse embryo.

However, at least half of these error cases are ambigu-

ous to the eye, and require examination of adjoining

time points to determine if they represent one or two

nuclei. This suggests performance of our algorithm may

be close to the bound set by information in a single

image, and large future improvements may be more

easily achieved through improvements to imaging and

use of temporal tracking.

As our analysis on the relationship between the error

rates and nuclear separation (Figure 4) suggests, the

most direct imaging improvement for detection in most

situations would be an increase in z resolution. Addi-

tional resolution in the x,y plane or improved signal to

noise ratio are always useful, but if x,y resolution is

already sufficient for segmentation this will not signifi-

cantly reduce error and might be counterproductive if,

for example, it results in increased phototoxicity due to

greater magnification or laser power. Our results pro-

vide a practical guide for optimizing imaging para-

meters: ensure a z sample spacing of at least the

separation between nuclei. Though acquisition speed

and other constraints will not always allow a sufficient z

resolution, the curve in Figure 4 allows these factors to

be traded off against error in an informed manner.

Furthermore, because nuclear separation is a universal

metric for fluorescence labeled nuclear images, it is use-

ful in comparing image analysis techniques across differ-

ent image data. For example, this metric highlights the

counterintuitive fact that the ~3 hpf zebrafish embryo

with over 1500 cells is about as easy to analyze as the

twenty four cell C. elegans embryo.

Methods
Imaging protocols

Zebrafish [3] and Drosophila [32] data are published

data sets captured with DLSM and DLSM-SI micro-

scopy techniques respectively. Imaging resolution and

temporal sampling information for these and all other

data sets are detailed in Additional file 1, Table S2 and

Table S1.

C. elegans 4-D confocal images were recorded with a

Zeiss Axio Observer.Z1 with 491-nm laser at a temporal

resolution of one minute for embryos between the two

cell and ~ 540 cell stages (320 minutes). To normalize

for loss of fluorescence in lower focal planes and

increase in fluorescence later in development, adjust-

ments were made to laser power (ranging from five to

thirty percent) and exposure time (from eighty five ms

to 120 ms) according to slice and developmental stages.

Mouse embryos expressing a H2B-GFP reporter speci-

fically within non-axial mesoderm where dissected and

imaged as detailed in [38].

Pharynx Development Analysis

Nuclei were detected using our method, then tracked

using StarryNite [1] with errors corrected manually

using AceTree [29]. Nuclei were followed until approxi-

mately 340 minutes pfc. Pharyngeal cells were identified

by their lineage identity, which, given the invariant cell

lineage of C. elegans, equates with fate [33].

Image analysis algorithm details are available in Addi-

tional File 1, section 1.

Additional material

Additional file 1: Additional Figures and Methods. Details of image

analysis algorithm, supplemental figures and instructions for tuning

parameters.

Additional file 2: Additional Source Code. Source code for the

detection algorithm, retraining the shape model, and an example

parameter file corresponding to the early zebrafish data. Zip file contains

Matlab source and related files.

Additional file 3: Additional Data and Ground Truth. Computed

nuclear positions and corrected ground truths for all example data

contributing to Figure 4. Zip file contains data in Acetree format comma

separated value text files. An explanation of the Acetree file format is

included in readme.txt.

Additional file 4: Additional Images Zebrafish - late, Drosophila,

Mouse. The sub-volumes of image data used in experiments. Each

Matlab dat file contains a 3d matrix ‘stack’ of intensity values with

dimensions ordered y,x,z.

Additional files 5: Additional Early Zebrafish image data. The sub-

volumes of image data used in experiments. Matlab format array data as

above; because these are larger each is included as a separate additional

file.

Additional files 6: Additional Early Zebrafish image data. The sub-

volumes of image data used in experiments. Matlab format array data as

above; because these are larger each is included as a separate additional

file.

Additional files 7: Additional Early Zebrafish image data. The sub-

volumes of image data used in experiments. Matlab format array data as

above; because these are larger each is included as a separate additional

file.

Additional file 8: Movie 1: Mouse Reconstruction. 3D movie

illustrating somites in the mouse embryo based on our system’s analysis

of a full volume of mouse test data.

Additional file 9: Movie 2: Zebrafish Reconstruction. 3D movie

showing the internal structure of a Zebrafish embryo based on our

system’s analysis of a full volume of Zebrafish test data.

Additional file 10: Movie 3: Early Pharynx Development. 3D

animation of the assembly stage of pharyngeal development based on

detection results. See legend of Figure 5I for an explanation of the

coloring scheme.

Additional file 11: Movie 4: Precursors of the corpus and posterior

bulb. 3D animation showing side by side left and ventral views of the

embryo during the inflation stage of pharyngeal development. See

legend of Figure 5II for coloring scheme. The movie illustrates the

detailed reshaping of the pharynx from 197 through 337 minutes. In the

later half of the assembly stage (197 to 250 minute), the two sheets

expand in size through division. During the final round of synchronized

divisions between ~277 and 307 the pharynx contracts along the AP axis

rounding slightly. On the completion of divisions this structure then

inflates to form a roundish structure[33] prior to its eventual elongating

and spitting into two chambers (not shown). This ballooning is apparent

from time 317 onward and occurs at the same time as the ventral MS

pharynx cells move anteriorly toward the main mass of the pharynx. The
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movie also highlights the mouth precursors being born relatively distant

from their final positions and converging near their final location.

Additional file 12: Movie 5: Establishment of 3 fold symmetry. 3D

animation of side by side ventral and anterior views of the embryo

during the inflation stage of pharyngeal development. See legend of

Figure 5III for coloring scheme.

Additional file 13: Movie 6: Structure of pharynx and contributions

of different sublineages. 3D rotation of the pharynx at time 337 makes

the 3D structure clear and allows comparison of the final time points in

the coloring schemes of movies 1, 2 and 3.
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