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Abstract

We provide an extension for the second-order differential equation of a thermostat

model to the fractional hybrid equation and inclusion versions. We consider boundary

value conditions of this problem in the form of the hybrid conditions. To prove the

existence of solutions for our hybrid fractional thermostat equation and inclusion

versions, we apply the well-known Dhage fixed point theorems for single-valued and

set-valued maps. Finally, we give two examples to illustrate our main results.
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1 Introduction

Maybe it would have been a funny thing to talk about the possibility of mathematics help-

ing the environment a few years ago. In fact, mathematics can play a role if modeling

comes to the point where we can do some of the chemical testing on computers. Thus,

it is very important we increase our abilities in modern modeling by working on com-

plicated fractional integro-differential equations and inclusions. As is well known, there

have been studied different types of hybrid equations by many researchers (see, for ex-

ample, [1–4] and [5]). One of the significant strategies is reviewing of hybrid models of

different phenomena.

In 2010, Dhage and Lakshmikantham introduced hybrid differential equations [6]. In

2011, Zhao et al. extended Dhage’s work to fractional order and investigated the hybrid

fractional differential equations [4]. In 2012, Sun et al. studied the fractional hybrid two-

point boundary value problem

⎧

⎨

⎩

D
p
0[

z(t)
h(t,z(t))

] + g(t, z(t)) = 0 (t ∈ [0, 1],p ∈ (1, 2]),

z(0) = z(1) = 0.

By applying a Dhage’s fixed point theorem in Banach algebra under the mixed

Carathéodory and Lipschitz conditions, they obtained some existence results. In 2015,
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Hilal and Kajouni discussed the existence of extremal solutions for the Caputo hybrid

boundary value problem

⎧

⎨

⎩

cD
p
0 [

z(t)
h(t,z(t))

] = g(t, z(t)) = 0 (t ∈ J = [0,T]),

a z(0)
h(0,z(0))

+ b z(T)
h(T ,z(T))

= c,

where p ∈ (0, 1), a, b and c are some real constants with a + b �= 0 and the functions h :

J × R → R \ {0} and g : J × R → R are continuous [3]. Some months later, Baleanu et al.

reviewed some existence results for the Caputo fractional hybrid inclusion problem

cD
p
0

(

z(t)

h(t, z(t),I
α1
0 z(t), . . . ,Iαn

0 z(t))

)

∈H
(

t, z(t),I
β1
0 z(t), . . . ,I

βk
0 z(t)

)

,

for all t ∈ [0, 1], with boundary value conditions z(0) = z∗
0 and z(1) = z∗

1 , where p ∈ (1, 2],
cD

p
0 and I

γ

0 denote the Caputo derivative operator of the fractional order p and the

Riemann–Liouville integral operator of the fractional order γ ∈ {αi,βj} ⊂ (0,∞) for i =

1, . . .n and j = 1, . . . ,k, respectively. They used the Dhage fixed point theorem for multi-

valued mappings for the existence result [5].

In 2006, Infante andWebb formulated a model of thermostat insulated at t = 0 with the

controller at t = 1:

⎧

⎨

⎩

z′′(t) +Φ(t, z(t)) = 0 (t ∈ [0, 1]),

z′(0) = 0, λz′(1) + z(η) = 0,
(∗)

where η ∈ [0, 1] is a real constant and λ > 0 is a parameter [7]. According to this second-

order model, the thermostat adds or discharges heat depending on the temperature de-

tected by the sensor at t = η [7]). They obtained existence results for the boundary value

problem by applying the fixed point index theory on Hammerstein integral equations [7].

Some years later, Nieto and Pimentel studied the fractional-order version of the problem

⎧

⎨

⎩

cDpz(t) +Φ(t, z(t)) = 0 (t ∈ [0, 1]),

z′(0) = 0, λcDp–1z(1) + z(η) = 0,
(∗∗)

where cDp denotes the fractional derivative of Caputo type of order p ∈ (1, 2] and λ > 0

and η ∈ [0, 1] are given real constants [8].

It is well known that a thermostat is a component which senses the temperature of a

physical system and performs actions so that the system’s temperature is maintained near

a desired set-point. Many researchers have reviewed different models for thermostat sys-

tems. They have been provided some models for thermostat systems (see, for example,

[9–11]).

By using the main idea of [3, 5, 7] and [8] and mixing those with the thermostat models,

we are going to investigate the fractional hybrid problem for the thermostat model

cD
p
0

(

z(t)

h(t, z(t))

)

+Φ
(

t, z(t)
)

= 0
(

t ∈ [0, 1]
)

, (1)
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with the hybrid boundary value conditions

⎧

⎨

⎩

D( z(t)
h(t,z(t))

)|t=0 = 0,

λcD
p–1
0 ( z(t)

h(t,z(t))
)|t=1 + ( z(t)

h(t,z(t))
)|t=η = 0,

(2)

where p ∈ (1, 2], p – 1 ∈ (0, 1], η ∈ [0, 1], D = d
dt
, λ is a positive real parameter, cD

γ

0 is the

Caputo derivation of fractional order γ ∈ {p,p – 1}, the function Φ : [0, 1] × R → R is

continuous and h ∈ C([0, 1]×R,R \ {0}).

Also, we investigate the hybrid fractional differential inclusion model of the thermostat

as

–cD
p
0

(

z(t)

h(t, z(t))

)

∈ G
(

t, z(t)
)

, t ∈ [0, 1], (3)

with the three-point hybrid boundary value conditions

⎧

⎨

⎩

D( z(t)
h(t,z(t))

)|t=0 = 0,

λcD
p–1
0 ( z(t)

h(t,z(t))
)|t=1 + ( z(t)

h(t,z(t))
)|t=η = 0,

(4)

where G : [0, 1]×R→P(R) is a multi-valued map.

Let p > 0 be a real number with n – 1 < p < n and the function z : [a,b] → R integrable

(or z ∈ C([a,b],R)). The Riemann–Liouville fractional integral of the function z is defined

by

J
p
0 z(t) =

1

Γ (p)

∫ t

0

(t – τ )p–1z(τ ) dτ (t > 0),

whenever the integral exists [12, 13]. The Caputo fractional derivative of a function z ∈

C(n)([a,b],R) is defined by

cD
p
0z(t) =

1

Γ (n – p)

∫ t

0

(t – τ )n–p–1z(n)(τ ) dτ ,

where n–1 < p < n with n = [p] + 1 [12, 13]. It is well known that a general solution for the

fractional differential equation cD
p
0z(t) = 0 is given by z(t) = b0 + b1t + b2t

2 + · · ·+ bn–1t
n–1,

where b0, . . . ,bn–1 are some real numbers and n = [p] + 1 [14]. Also, for every positive real

number T and every continuous function z on the interval [0,T], the relation

(

I
p
0
cD

p
0

)

z(t) = z(t) +

n–1
∑

j=0

bjt
j = z(t) + b0 + b1t + b2t

2 + · · · + bn–1t
n–1

holds, where b0, . . . ,bn–1 are some real constants and n = [p] + 1 [14].

Assume that (M,‖ · ‖M) is a normed space. We denote by P(M), Pcl(M), Pb(M),

Pcp(M) and Pcv(M) the set of all subsets of M, the set of all closed subsets of M, the

set of all bounded subsets of M, the set of all compact subsets of M, and the set of all

convex subsets ofM, respectively. A set-valued map G has convex values if the set G(z) is

convex for each element z ∈ M. Moreover, we say that the set-valued map G is an upper
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semi-continuous (u.s.c.) whenever for each z∗ ∈ M, the set G(z∗) belongs to Pcl(M) and

for every open set V containing G(z∗), there exists an open neighborhood U∗
0 of z∗ such

that G(U∗
0 ) ⊆ V [15]. An element z∗ ∈ M is called a fixed point for the multi-valued map

G :M→P(M) whenever z∗ ∈ G(z∗) [15]. The set of all fixed points of the multifunction

G is denoted by Fix(G) [15].

Let (M,dM) be a metric space. For each two subsets A1,A2 ∈ P(M), the Pompeiu–

Hausdorff metric PHd :P(M)×P(M)→ R∪ {∞} is defined by

PHdM (A1,A2) = max
{

sup
a1∈A1

dM(a1,A2), sup
a2∈A2

dM(A1,a2)
}

,

where dM(A1,a2) = infa1∈A1 dM(a1,a2) and dM(a1,A2) = infa2∈A2 dM(a1,a2) [15]. Amulti-

valued function G :M → Pcl(M) is said to be Lipschitzian with Lipschitz constant k > 0

whenever PHdM (G(z1),G(z2)) ≤ kdM(z1, z2) holds for each z1, z2 ∈M. A Lipschitz map G

is called contraction whenever k ∈ (0, 1) [15]. A set-valued operator G : [0, 1] → Pcl(R) is

calledmeasurable whenever the function t −→ dM(ω,G(t)) = inf{|ω–ν| : ν ∈ G(t)} is mea-

surable for all real constant ω [15, 16]. The graph of a set-valued function G :M→Pcl(Q)

is defined by Graph(G) = {(z1, z2) ∈ M × Q : w∗ ∈ G(z)} [15]. We say that graph of G is

closed whenever for each sequence {zn}n≥1 inM and {wn}n≥1 inQ, zn → z0, wn → w0 and

wn ∈ G(zn), wh have w0 ∈ G(z0) [16].

A multifunction G is said to be completely continuous operator whenever the set G(W)

is relatively compact for all W ∈ Pb(M). If the multifunction G :M → Pcl(Q) is an up-

per semi-continuous, then Graph(G) is a subset of the product space M×Q with close-

ness property. Conversely, if the set-valued mapping G is completely continuous and has

a closed graph, then G is an upper semi-continuous ([15], Proposition 2.1). A set-valued

map G : [0, 1]×R→P(R) is said to be Carathéodory multifunction whenever t → G(t, z)

is measurable mapping for all z ∈ R and z → G(t, z) is upper semi-continuous mapping

for almost all t ∈ [0, 1] [15, 16]. Also, a Carathéodory multifunction G : [0, 1]×R →P(R)

is said to be L1-Carathéodory whenever for each constant μ > 0 there exists a function

φμ ∈L1([0, 1],R+) such that

∥

∥G(t, z)
∥

∥ = sup
t∈[0,1]

{

|s| : s ∈ G(t, z)
}

≤ φμ(t)

for all |z| ≤ μ and for almost all t ∈ [0, 1] [15, 16]. The set of selections of a multifunction

G at point z ∈ C([0, 1],R) is defined by

(SEL)G,z :=
{

v ∈L1
(

[0, 1],R
)

: v(t) ∈ G
(

t, z(t)
)}

for almost all t ∈ [0, 1] [15, 16]. Let G be a set-valued map. It is known that (SEL)G,z �= ∅ for

all z ∈ C([0, 1],M) whenever dimM <∞ [15]. We need the following results.

Lemma 1 (Dhage’s nonlinear alternative of Schaefer’s type [17]) Let M be a Banach al-

gebra. For each positive number ε ∈ R, consider the open ball Vε(0) and the closed ball

V ε(0). Suppose that two operators B1 :M→M and B2 : V ε(0) →M satisfy the following

conditions:

(i) B1 is an operator including Lipschitzian property with a Lipschitz constant l∗;

(ii) B2 has complete continuity property;
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(iii) l∗M∗
0 < 1, so thatM∗

0 = ‖B2(V ε(0))‖M = sup{‖B2z‖M : z ∈ V ε(0)}.

Then either

(a) The operator equation B1zB2z = z has a solution in V ε(0), or

(b) there is an element v∗ ∈M with ‖v∗‖M = ε such that μB1v
∗B2v

∗ = v∗ for some

μ ∈ (0, 1).

Lemma 2 ([18]) Suppose thatM is a separable Banach space, G : [0, 1]×M →Pcp,cv(M)

is anL1-Carathéodory multifunction and Υ :L1([0, 1],M)→ C([0, 1],M) is a linear con-

tinuous mapping. Then

Υ ◦ (SEL)G : C
(

[0, 1],M
)

→Pcp,cv

(

C
(

[0, 1],M
))

is an operator in the product space C([0, 1],M) × C([0, 1],M) with action z → (Υ ◦

(SEL)G)(z) = Υ ((SEL)G,z) having closed graph property.

Lemma 3 ([19]) Let M be a Banach algebra. Suppose that there exist a single-valued map

B1 :M→M and a multi-valued map B2 :M→Pcp,cv(M) such that

(i) B1 is an operator including Lipschitzian property with a Lipschitz constant l∗;

(ii) B2 is an operator including upper semi-continuity and compactness property;

(iii) 2l∗M∗
0 < 1 so thatM∗

0 = ‖B2(M)‖.

Then either

(a) there is a solution inM for the operator inclusion z ∈ B1zB2z, or

(b) The set Σ∗ = {v∗ ∈M|μv∗ ∈ B1v
∗B2v

∗,μ > 1} is not bounded.

2 Main results

Consider the Banach spaceM = CR([0, 1]) with the norm

‖z‖M = sup
{
∣

∣z(t)
∣

∣ : t ∈ [0, 1]
}

.

Now, we provide our first key result.

Lemma 4 Let ρ ∈M. A function z0 is a solution for the hybrid fractional equation

cD
p
0

(

z(t)

h(t, z(t))

)

+ ρ(t) = 0, t ∈ [0, 1],p ∈ (1, 2], (5)

with the three-point hybrid boundary conditions

D

(

z(t)

h(t, z(t))

)
∣

∣

∣

∣

t=0

= 0,

λcD
p–1
0

(

z(t)

h(t, z(t))

)
∣

∣

∣

∣

t=1

+

(

z(t)

h(t, z(t))

)
∣

∣

∣

∣

t=η

= 0,

(6)

if and only if z0 is a solution for the integral equation

z(t) = h
(

t, z(t)
)

[

–

∫ t

0

(t – τ )p–1

Γ (p)
ρ(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
ρ(τ ) dτ + λ

∫ 1

0

ρ(τ ) dτ

]

.

(7)



Baleanu et al. Boundary Value Problems         ( 2020)  2020:64 Page 6 of 16

Proof First, assume that z0 is a solution for the hybrid fractional equation (5). Then there

exist constants b0,b1 ∈R such that

z0(t) = h
(

t, z0(t)
)

[

–

∫ t

0

(t – τ )p–1

Γ (p)
ρ(τ ) dτ + b0 + b1t

]

. (8)

Then

D

(

z0(t)

h(t, z0(t))

)

= –

∫ t

0

(t – τ )p–2

Γ (p – 1)
ρ(τ ) dτ + b1

and

cD
p–1
0

(

z0(t)

h(t, z0(t))

)

= –

∫ t

0

ρ(τ ) dτ + b1
t2–p

Γ (3 – p)
.

Thus, b1 = 0 and

b0 =

∫ 1

0

ρ(τ ) dτ +

∫ η

0

(η – τ )p–1

Γ (p)
ρ(τ ) dτ .

By substituting the values b0 and b1 in (8), we get

z0(t) = h
(

t, z0(t)
)

[

–

∫ t

0

(t – τ )p–1

Γ (p)
ρ(τ ) dτ +

∫ η

0

(η – τ )p–1

Γ (p)
ρ(τ ) dτ + λ

∫ 1

0

ρ(τ ) dτ

]

.

This means that z0 is a solution function for the fractional integral equation (7). Con-

versely, it can easily be seen that z0 is a solution function for the fractional hybrid problem

(5)–(6) whenever z0 is a solution function for the fractional integral equation (7). �

Theorem 5 Assume that h ∈ C([0, 1]×R,R \ {0}) and Φ ∈ C([0, 1]×R,R) and

(A1) there is a bounded mapping κ : [0, 1] →R
+ such that

∣

∣h(t, z1) – h(t, z2)
∣

∣ ≤ κ(t)
∣

∣z1(t) – z2(t)
∣

∣

for all z1, z2 ∈R and t ∈ [0, 1],

(A2) there are a continuous non-decreasing map χ : [0,∞) → (0,∞) and a continuous

function g : [0, 1] →R
+ such that

∣

∣Φ(t, z)
∣

∣ ≤ g(t)χ
(

‖z‖
)

for t ∈ [0, 1] and for all z ∈R,

(A3) there is a positive real number ε such that

ε >
H∗�∗G∗χ (‖z‖)

1 – κ∗�∗G∗χ (‖z‖)
, (9)

where H∗ = supt∈[0,1] |h(t, 0)|, G
∗ = supt∈[0,1] |g(t)|, κ

∗ = supt∈[0,1] |κ(t)| and

�∗ =
1

Γ (p + 1)
+

ηp

Γ (p + 1)
+ λ. (10)



Baleanu et al. Boundary Value Problems         ( 2020)  2020:64 Page 7 of 16

If κ∗�∗G∗χ (‖z‖) < 1, then the hybrid fractional problem (1)–(2) has at least one solu-

tion.

Proof Consider the closed ball V ε(0) := {z ∈ M : ‖z‖M ≤ ε} in the Banach space M,

where ε satisfies the inequality (9). By using Lemma 4 and the fractional integral equa-

tion (7), we define two operators B1,B2 : V ǫ(0) →M by (B1z)(t) = h(t, z(t)) and

(B2z)(τ ) = –

∫ t

0

(t – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ + λ

∫ 1

0

Φ
(

τ , z(τ )
)

dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ .

It is clear that z ∈ M as a solution for the fractional hybrid problem (1)–(2) satisfies the

operator equationB1zB2z = z. To prove this subject, by applying assumptions of Lemma 1,

we show that there exists such a solution. In first step, it is proved that the operator B1 is

Lipschitzian operator on normed space M with Lipschitz constant κ∗ = supt∈[0,1] |κ(t)|.

Let z1, z2 ∈M. By using the assumption (A1), we have

∣

∣(B1z1)(t) – (B1z2)(t)
∣

∣ =
∣

∣h
(

t, z1(t)
)

– h
(

t, z2(t)
)
∣

∣

≤ κ(t)
∣

∣z1(t) – z2(t)
∣

∣

for each z1, z2 ∈ V ε(0). By taking the supremum over [0, 1], one can deduce that

‖B1z1 –B1z2‖M ≤ κ∗‖z1 – z2‖M

for all z1, z2 ∈ V ε(0). This shows that B1 is Lipschitzian operator on V ε(0) with Lipschitz

constant κ∗. To establish the complete continuity of the operator B2 on V ε(0), we first

prove that the operator B2 is continuous on V ε(0). To this aim, suppose that {zn} is a

sequence in the open ball V ε(0) with zn → z, where z is an element of V ε(0). Since Φ is

continuous on [0, 1]×R, limn→∞ Φ(t, zn(t)) = Φ(t, z(t)). By using the Lebesgue dominated

convergence theorem, we conclude that

lim
n→∞

(B2zn)(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
lim
n→∞

Φ
(

τ , zn(τ )
)

dτ

+ λ

∫ 1

0

lim
n→∞

Φ
(

τ , zn(τ )
)

dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
lim
n→∞

Φ
(

τ , zn(τ )
)

dτ

= –

∫ t

0

(t – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ + λ

∫ 1

0

Φ
(

τ , z(τ )
)

dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ

= (B2z)(t)

for all t ∈ [0, 1]. Thus, B2zn → B2z and so B2 is a continuous operator on V ε(0).
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In the next step, the uniform boundedness of operator B2 on V ε(0) is checked. By as-

sumption (A2), we have

∣

∣(B2z)(t)
∣

∣ =

∫ t

0

(t – τ )p–1

Γ (p)

∣

∣Φ
(

τ , z(τ )
)
∣

∣dτ + λ

∫ 1

0

∣

∣Φ
(

τ , z(τ )
)
∣

∣dτ

+

∫ η

0

(η – τ )p–1

Γ (p)

∣

∣Φ
(

τ , z(τ )
)
∣

∣dτ

≤
tp

Γ (p + 1)
g(τ )χ

(

‖z‖
)

+ λg(τ )χ
(

‖z‖
)

+
ηp

Γ (p + 1)
g(τ )χ

(

‖z‖
)

for all t ∈ [0, 1] and z ∈ V ε(0). Thus ‖B2z‖ ≤ G∗χ (‖z‖)�∗, where �∗ is given in (10). This

implies that the set B2(V ε(0)) is an uniformly bounded in the normed spaceM. Now, the

equi-continuity of the operator B2 is investigated. To this aim, assume that t1, t2 ∈ [0, 1]

with t1 < t2. Then we have

∣

∣(B2z)(t2) – (B2z)(t1)
∣

∣ =

∣

∣

∣

∣

∫ t2

0

(t2 – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ

–

∫ t1

0

(t1 – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ

∣

∣

∣

∣

≤ G∗χ
(

‖z‖
)

[∫ t1

0

(

(t2 – τ )p–1

Γ (p)
–
(t1 – τ )p–1

Γ (p)

)

dτ

+

∫ t2

t1

(t2 – τ )p–1

Γ (p)
dτ

]

.

It is observed that the right-hand side of the inequalities converges to zero independently

of z ∈ V ε(0) as t1 → t2. Therefore the operator B2 is equi-continuous. Now by using

the Arzela–Ascoli theorem, we conclude that the operator B2 is complete continuous on

V ε(0).

On the other hand by using (A3), we have

M∗
0 =

∥

∥B2

(

V ε(0)
)
∥

∥

M
= sup

{

|B2z| : z ∈ V ε(0)
}

=G∗χ
(

‖z‖
)

[

1

Γ (p + 1)
+

ηp

Γ (p + 1)
+ λ

]

=G∗χ
(

‖z‖
)

�∗.

By putting l∗ = κ∗, we get G∗l∗ < 1 and so the assumptions of Lemma 1 hold and so one of

the conditions (a) or (b) in Lemma 1 holds. For some μ ∈ (0, 1), assume that z satisfies the

operator equation z = μB1zB2z so that ‖z‖ = ε. Then we have

∣

∣z(t)
∣

∣ = μ
∣

∣(B1z)(t)
∣

∣

∣

∣(B2z)(t)
∣

∣ = μ
∣

∣h
(

t, z(t)
)
∣

∣

×

∣

∣

∣

∣

–

∫ t

0

(t – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ + λ

∫ 1

0

Φ
(

τ , z(τ )
)

dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
Φ

(

τ , z(τ )
)

dτ

∣

∣

∣

∣
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≤
(
∣

∣h
(

t, z(t)
)

– h(t, 0)
∣

∣ +
∣

∣h(t, 0)
∣

∣

)

×

(∫ t

0

(t – τ )p–1

Γ (p)

∣

∣Φ
(

τ , z(τ )
)
∣

∣dτ + λ

∫ 1

0

∣

∣Φ
(

τ , z(τ )
)
∣

∣dτ

+

∫ η

0

(η – τ )p–1

Γ (p)

∣

∣Φ
(

τ , z(τ )
)
∣

∣dτ

)

≤
(

κ(t)
∣

∣z(t)
∣

∣ +H∗
)

�∗G∗χ
(

‖z‖
)

≤
(

κ∗‖z‖ +H∗
)

�∗G∗χ
(

‖z‖
)

and so ε ≤
H∗�∗G∗χ (‖z‖)
1–κ∗�∗G∗χ (‖z‖)

which is a contradiction to inequality (9). This means that the

condition (b) of Lemma 1 is impossible. Thus, the condition (a) in Lemma 1 holds and the

fractional hybrid problem (1)–(2) has a solution. �

Now, we are going to state and prove our main result for the fractional hybrid inclusion

model for the thermostat which is stated by (3)–(4).

Definition 6 We say that an absolutely continuous function z : [0, 1] →R is a solution for

the fractional hybrid inclusion problem (3)–(4) whenever there is an integrable function

v ∈L1([0, 1],R) with v(t) ∈ G(t, z(t)) for almost all t ∈ [0, 1],

D

(

z(t)

h(t, z(t))

)
∣

∣

∣

∣

t=0

= 0, λcD
p–1
0

(

z(t)

h(t, z(t))

)
∣

∣

∣

∣

t=1

+

(

z(t)

h(t, z(t))

)
∣

∣

∣

∣

t=η

= 0

and

z(t) = h
(

t, z(t)
)

[

–

∫ t

0

(t – τ )p–1

Γ (p)
v(τ ) dτ +

∫ η

0

(η – τ )p–1

Γ (p)
v(τ ) dτ + λ

∫ 1

0

v(τ ) dτ

]

for all t ∈ [0, 1].

Theorem 7 Suppose that

(A4) there exists a bounded mapping κ : [0, 1] → R
+ such that, for every z1, z2 ∈ R and

t ∈ [0, 1], we have |h(t, z1(t)) – h(t, z2(t))| ≤ κ(t)|z1(t) – z2(t)|;

(A5) the set-valued map G : [0, 1]×R →Pcp,cv(R) has the L
1-Carathéodory property;

(A6) there exists a positive mapping σ ∈L1([0, 1],R+) such that

∥

∥G(t, z)
∥

∥ = sup
{

|v| : v ∈ G
(

t, z(t)
)}

≤ σ (t)

for all z ∈R, almost all t ∈ [0, 1] and ‖σ‖L1 =
∫ 1

0
|σ (τ )|dτ ;

(A7) there exists a positive number ε̃ ∈ R such that

ε̃ >
H∗�∗‖σ‖L1

1 – κ∗�∗‖σ‖L1
, (11)

where H∗ = supt∈[0,1] |h(t, 0)| and κ∗ = supt∈[0,1] |κ(t)|.

Then the fractional hybrid inclusion problem (3)–(4) has at least one solution whenever

κ∗�∗‖σ‖L1 < 1
2
.
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Proof Let t ∈ [0, 1]. Consider the operator K :M→P(M) defined by

K(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

w ∈M :

w(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h(t, z(t))(–
∫ t

0
(t–τ )p–1

Γ (p)
v(τ ) dτ

+
∫ η

0
(η–τ )p–1

Γ (p)
v(τ ) dτ

+ λ
∫ 1

0
v(τ ) dτ ), v ∈ (SEL)G,z.

Note that the fixed point of K is a solution for the fractional hybrid inclusion problem

(3)–(4). Define a single-valued mapping B1 :M → M by (B1z)(t) = h(t, z(t)) and the set-

valued map B2 :M→P(M) by

(B2z)(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ψ ∈M :

ψ(t) =

⎧

⎨

⎩

–
∫ t

0
(t–τ )p–1

Γ (p)
v(τ ) dτ +

∫ η

0
(η–τ )p–1

Γ (p)
v(τ ) dτ

+ λ
∫ 1

0
v(τ ) dτ , v ∈ (SEL)G,z

for t ∈ [0, 1]. Note that K(z) = B1zB2z. We prove that B1 and B2 satisfy the assumptions

of Lemma 3. First by using the assumption (A4) and similar proof in Theorem 5, one can

show that B1 is Lipschitz on M. Now, we prove that the set-valued map B2 has convex

values. Let z1, z2 ∈ B2z. Then choose v1, v2 ∈ (SEL)G,z such that

zj(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
vj(τ ) dτ + λ

∫ 1

0

vj(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
vj(τ ) dτ (j = 1, 2)

for almost all t ∈ [0, 1]. For each constant γ ∈ (0, 1), we have

γ z1(t) + (1 – γ )z2(t) = –

∫ t

0

(t – τ )p–1

Γ (p)

[

γ v1(τ ) + (1 – γ )v2(τ )
]

dτ

+ λ

∫ 1

0

[

γ v1(τ ) + (1 – γ )v2(τ )
]

dτ

+

∫ η

0

(η – τ )p–1

Γ (p)

[

γ v1(τ ) + (1 – γ )v2(τ )
]

dτ

for almost all t ∈ [0, 1]. SinceG is convex-valued, (SEL)G,z has convex values and so γ v1(t)+

(1 – γ )v2(t) ∈ (SEL)G,z for all t ∈ [0, 1]. Thus, B2z is a convex set for all z ∈M.

To establish the complete continuity of the operator B2, we must prove that B2(M)

is an equi-continuous and uniformly bounded set. To do this, we prove that B2 maps all

bounded sets into bounded subsets of the spaceM. For a positive number ε∗ ∈R, consider

a bounded ball Vε∗ = {z ∈ M : ‖z‖M ≤ ε∗}. For every z ∈ Vε∗ and ψ ∈ B2z, there is a

function v ∈ (SEL)G,z such that

ψ(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
v(τ ) dτ + λ

∫ 1

0

v(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
v(τ ) dτ
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for all t ∈ [0, 1]. Then we have

∣

∣ψ(t)
∣

∣ ≤

∫ t

0

(t – τ )p–1

Γ (p)

∣

∣v(τ )
∣

∣dτ + λ

∫ 1

0

∣

∣v(τ )
∣

∣dτ

+

∫ η

0

(η – τ )p–1

Γ (p)

∣

∣v(τ )
∣

∣dτ

≤

∫ t

0

(t – τ )p–1

Γ (p)
σ (τ ) dτ + λ

∫ 1

0

σ (τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
σ (τ ) dτ

≤

[

1

Γ (p + 1)
+

ηp

Γ (p + 1)
+ λ

]

‖σ‖L1

=�∗‖σ‖L1 ,

where �∗ is given in (10). Thus, ‖ψ‖ ≤ �∗‖σ‖L1 and this implies that B2(M) is a uni-

formly bounded set. Now, we show that the operator B2 maps bounded sets onto equi-

continuous sets. Let z ∈ Vε∗ and ψ ∈ B2z. Choose v ∈ (SEL)G,z such that

ψ(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
v(τ ) dτ + λ

∫ 1

0

v(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
v(τ ) dτ

for all t ∈ [0, 1]. For each t1, t2 ∈ [0, 1] with t1 < t2, we have

∣

∣ψ(t2) –ψ(t1)
∣

∣ ≤

∣

∣

∣

∣

∫ t2

0

(t2 – τ )p–1

Γ (p)
v(τ ) dτ

–

∫ t1

0

(t1 – τ )p–1

Γ (p)
v(τ ) dτ

∣

∣

∣

∣

≤

∫ t1

0

(

[(t2 – τ )p–1 – (t1 – τ )p–1]

Γ (p)

)

σ (τ ) dτ

+

∫ t2

t1

(t2 – τ )p–1

Γ (p)
σ (τ ) dτ .

It is obvious that the right-hand side of the above inequalities towards to zero indepen-

dently of z ∈ Vε∗ as t2 → t1. Hence by using the Arzela–Ascoli theorem, the operator

B2 : C([0, 1],R) →P(C([0, 1],R)) has the complete continuity property.

Now, we show that B2 has a closed graph and this implies that B2 is upper semi-

continuous because B2 is completely continuous. For this goal, assume that zn ∈ Vε∗ and

ψn ∈ B2zn are such that zn → z∗ and ψn → ψ∗. We claim that ψ∗ ∈ B2z
∗. For each n ≥ 1

and ψn ∈ B2zn, choose vn ∈ (SEL)G,zn such that

ψn(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
vn(τ ) dτ + λ

∫ 1

0

vn(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
vn(τ ) dτ



Baleanu et al. Boundary Value Problems         ( 2020)  2020:64 Page 12 of 16

for all t ∈ [0, 1]. It is sufficient to show that there exists a function v∗ ∈ (SEL)G,z∗ such that

ψ∗(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
v∗(τ ) dτ + λ

∫ 1

0

v∗(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
v∗(τ ) dτ

for all t ∈ [0, 1]. Suppose that the continuous linear operator

Υ :L1
(

[0, 1],R
)

→M = C
(

[0, 1],R
)

is defined by

Υ (v)(t) = z(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
v(τ ) dτ + λ

∫ 1

0

v(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
v(τ ) dτ

for all t ∈ [0, 1]. Then we have

∥

∥ψn(t) –ψ∗(t)
∥

∥ =

∥

∥

∥

∥

–

∫ t

0

(t – τ )p–1

Γ (p)

(

vn(τ ) – v∗(τ )
)

dτ

+ λ

∫ 1

0

(

vn(τ ) – v∗(τ )
)

dτ

+

∫ η

0

(η – τ )p–1

Γ (p)

(

vn(τ ) – v∗(τ )
)

dτ

∥

∥

∥

∥

→ 0

as n → ∞. Hence by using Lemma 2, we conclude that the operator Υ ◦ (SEL)G has a

closed graph. Since ψn ∈ Υ ((SEL)G,zn ) and zn → z∗, there exists v∗ ∈ (SEL)G,z∗ such that

ψ∗(t) = –

∫ t

0

(t – τ )p–1

Γ (p)
v∗(τ ) dτ + λ

∫ 1

0

v∗(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
v∗(τ ) dτ

for all t ∈ [0, 1]. Thus, ψ∗ ∈ B2z
∗ and so B2 has a closed graph. Hence, B2 is upper semi-

continuous. Moreover, by the hypothesis, the operator B2 has compact values. Conse-

quently, B2 is a compact and upper semi-continuous operator. Now by using the assump-

tion (A6), we get

M∗
0 =

∥

∥B2(M)
∥

∥ = sup
{

|B2z| : z ∈M
}

=

[

1

Γ (p + 1)
+

ηp

Γ (p + 1)
+ λ

]

‖σ‖L1

= �∗‖σ‖L1 .

By putting l∗ = κ∗, we obtain M∗
0 l

∗ < 1
2
. Therefore, the assumptions of Lemma 3 hold for

B1 and B2 and so one of the conditions (a) or (b) holds.
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We claim that the condition (b) is impossible. By using Lemma 3 and the assumption

(A7), assume that z is an arbitrary element of Σ∗ with ‖z‖ = ε̃. Then μz(t) ∈ B1z(t)B2z(t)

for all μ > 1. Select the related function v ∈ (SEL)G,z. Then, for each μ > 1, we obtain

z(t) =
1

μ
h
(

t, z(t)
)

[

–

∫ t

0

(t – τ )p–1

Γ (p)
v(τ ) dτ + λ

∫ 1

0

v(τ ) dτ

+

∫ η

0

(η – τ )p–1

Γ (p)
v(τ ) dτ

]

for all t ∈ [0, 1]. Thus, we get

∣

∣z(t)
∣

∣ =
1

μ

∣

∣h
(

t, z(t)
)
∣

∣

[∫ t

0

(t – τ )p–1

Γ (p)

∣

∣v(τ )
∣

∣dτ

+ λ

∫ 1

0

∣

∣v(τ )
∣

∣dτ +

∫ η

0

(η – τ )p–1

Γ (p)

∣

∣v(τ )
∣

∣dτ

]

≤
[
∣

∣h
(

t, z(t)
)

– h(t, 0)
∣

∣ +
∣

∣h(t, 0)
∣

∣

]

[∫ t

0

(t – τ )p–1

Γ (p)

∣

∣v(τ )
∣

∣dτ

+ λ

∫ 1

0

∣

∣v(τ )
∣

∣dτ

+

∫ η

0

(η – τ )p–1

Γ (p)

∣

∣v(τ )
∣

∣dτ

]

≤
[

κ∗‖z‖ +H∗
]

[∫ t

0

(t – τ )p–1

Γ (p)
σ (τ ) dτ

+ λ

∫ 1

0

σ (τ ) dτ +

∫ η

0

(η – τ )p–1

Γ (p)
σ (τ ) dτ

]

≤
[

κ∗ε̃ +H∗
]

�∗‖σ‖L1

for all t ∈ [0, 1]. Hence,

ε̃ ≤
H∗�∗‖σ‖L1

1 – κ∗�∗‖σ‖L1
.

By using the condition (11), we observe that the condition (b) of Lemma 3 is impossi-

ble. Thus, the operator inclusion z ∈ B1zB2z has a solution and so the fractional hybrid

inclusion problem (3)–(4) has at least one solution. �

Now, we provide two examples to illustrate our main results.

Example 1 Consider the fractional hybrid differential equation of the thermostat model

cD
3
2
0

(

z(t)
t|z(t)|2

6+|z(t)|2
+ 5

)

+
t sin2(π

2
(t)) sin(z(t))

1000
= 0

(

t ∈ [0, 1]
)

, (12)
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with the three-point hybrid conditions

D

(

z(t)
t|z(t)|2

6+|z(t)|2
+ 5

)
∣

∣

∣

∣

t=0

= 0,

1

10
cD

1
2
0

(

z(t)
t|z(t)|2

6+|z(t)|2
+ 5

)
∣

∣

∣

∣

t=1

+

(

z(t)
t|z(t)|2

6+|z(t)|2
+ 5

)
∣

∣

∣

∣

t= 1
4

= 0.

(13)

Put p = 3
2
, p–1 = 1

2
, η = 1

4
and λ = 1

10
. Consider the continuousmaps h : [0, 1]×R →R\{0}

and Φ : [0, 1]×R →R
+ defined by

h
(

t, z(t)
)

=
t|z(t)|2

6 + |z(t)|2
+ 5

and

Φ
(

t, z(t)
)

=
t sin2(π

2
(t)) sin(z(t))

1000
.

If κ(t) = t, then κ∗ = supt∈[0,1] |κ(t)| = 1. Put g(t) = 1
1000

and χ (‖z‖) = 1. Then �∗ ≃ 0.85238.

Choose ε > 0.00426. Then κ∗�∗G∗χ (‖z‖) ≃ 0.00085 < 1. Now by using Theorem 5, the

fractional hybrid equation (12) with the three-point hybrid conditions (13) has at least

one solution.

Example 2 Consider the fractional hybrid inclusion problem

cD
8
5
0

(

z(t)

t cos z(t)
100

+ 6

)

∈

[

|z(t)|

4(|z(t)| + 1)
+
1

2
,

| sin z(t)|4

5(1 + | sin z(t)|4)
+
4

5

]

(

t ∈ [0, 1]
)

, (14)

with the three-point hybrid conditions

D

(

z(t)

t cos z(t)
100

+ 6

)
∣

∣

∣

∣

t=0

= 0,

7

4
cD

3
5
0

(

z(t)

t cos z(t)
100

+ 6

)
∣

∣

∣

∣

t=1

+

(

z(t)

t cos z(t)
100

+ 6

)
∣

∣

∣

∣

t=0.89

= 0.

(15)

Put p = 8
5
, p–1 = 3

5
, η = 0.89 and λ = 7

4
. Define the continuous map h : [0, 1]×R →R \ {0}

by h(t, z(t)) = t cos z(t)
100

+ 6 and the set-valued map G : [0, 1]×R →P(R) by

G
(

t, z(t)
)

=

[

|z(t)|

4(|z(t)| + 1)
+
1

2
,

| sin z(t)|4

5(1 + | sin z(t)|4)
+
4

5

]

.

If κ(t) = t
100

, then κ∗ = supt∈[0,1] |κ(t)| =
1

100
. Since

|ψ | ≤ max

(

|z(t)|

4(|z(t)| + 1)
+
1

2
,

| sin z(t)|4

5(1 + | sin z(t)|4)
+
4

5

)

≤ 1 (z ∈R)

for all ψ ∈ G(t, z(t)), we get ‖G(t, z(t))‖ = sup{|v| : v ∈ G(t, z(t))} ≤ 1. Put σ (t) = 1 for all

t ∈ [0, 1] and so ‖σ‖L1 = 1. By using the above relations, we get �∗ ≃ 3.0298. Hence, we
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can find ε̃ > 0 with ε̃ > 21.8712. Since κ∗�∗‖σ‖L1 ≃ 0.030298 < 1
2
, by using Theorem 7,

the fractional hybrid inclusion problem (14)–(15) has at least one solution.

3 Conclusion

It is important that we increase our ability for studying complicated fractional integro-

differential equations. One of the methods is extending well-known models to different

complicated versions. In this work, we provide an extension for the well-known fractional

thermostat model to its hybrid equation and inclusion versions. We also consider bound-

ary value conditions of this problem in the form of the hybrid conditions. Finally, we pro-

vide two examples to illustrate our main results.
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