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A Hybrid Channel Assignment Approach Using
an Efficient Evolutionary Strategy in Wireless

Mobile Networks
Geetali Vidyarthi, Alioune Ngom, and Ivan Stojmenović

Abstract—In wireless mobile communication systems, radio
spectrum is a limited resource. However, efficient use of available
channels has been shown to improve the system capacity. The role
of a channel assignment scheme is to allocate channels to cells or
mobiles in such a way as to minimize call blocking or call dropping
probabilities, and also to maximize the quality of service. Channel
assignment is known to be an NP-hard optimization problem. In
this paper, we have developed an evolutionary strategy (ES) which
optimizes the channel assignment. The proposed ES approach uses
an efficient problem representation as well as an appropriate fitness
function. Our paper deals with a novel hybrid channel assignment
based scheme called D-ring. Our D-ring method yields a faster
running time and simpler objective function. We also propose a
novel way of generating the initial population which reduces the
number of channels reassignments and therefore yields a faster
running time and may generate a possibly better initial parent. We
have obtained better results (as well as faster running time) than a
similar approach in literature.

Index Terms—Cellular network, channel assignment, evolution
strategy (ES), optimization, power control, radio spectrum, wire-
less mobile communication.

I. INTRODUCTION

THE CELLULAR principle divides the covered geograph-
ical area into a set of smaller service areas, called cells.

Each cell has a base station and a number of mobile terminals
(e.g., mobile phone). The base station is equipped with radio
transmission and reception equipment. A group of base stations
are connected to the mobile switching center (MSC). The
MSC connects the cellular network to other wired or wireless
networks. The base station is responsible for the communication
between a mobile terminal and the rest of the information
network.

II. CHANNEL ASSIGNMENT

In order to establish the communication with a base station,
a mobile terminal must first obtain a channel from the base sta-
tion. A channel consists of a pair of frequencies: one frequency
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(the forward link/downlink) for transmission from the base sta-
tion to the mobile terminal, and another frequency (the reverse
link/uplink) for the transmission in the reverse direction. Since
the available frequency spectrum is limited the channels must
be reused as much as possible in order to increase the system
capacity. This requires a proper channel assignment scheme.
The role of a channel assignment scheme is to allocate channels
to cells or mobiles in such a way as to minimize call blocking
or call dropping probabilities, and also to maximize the quality
of service (such as minimizing the interference).

The channel assignment problem has been shown to be NP-
hard [13]. The process of channel assignment must satisfy the
electromagnetic compatibility constraint (co-channel interfer-
ence, adjacent channel interference, and co-site interference)
[19] and the demand of channels in a cell. These constraints are
also known as hard constraints.

The channel assignment schemes in general can be classified
into three categories: fixed channel assignment (FCA), dynamic
channel assignment (DCA), and the hybrid channel assignment
(HCA). In FCA, the set of channels are permanently allocated
to each cell based on a pre-estimated traffic intensity. In DCA,
there is no permanent allocation of channels to cells. Rather,
the entire set of available channels is accessible to all the cells,
and the channels are assigned on a call-by-call basis. One of
the objectives in DCA is to develop a channel assignment strat-
egy, which minimizes the total number of blocked calls [25].
FCA scheme is simple but does not adapt to changing traffic
conditions and user distribution. These deficiencies are over-
come by DCA but FCA out performs most known schemes
in DCA under heavy load conditions [17]. To overcome the
drawbacks of FCA and DCA, HCA was proposed by Kahwa et
al. [15], which combines the features of both FCA and DCA
techniques. In HCA one set of channels is allocated as per
the FCA scheme, and the another set is allocated as per the
DCA scheme.

DCA schemes can be implemented as centralized or dis-
tributed. In the centralized approach [7], [10], [18], [29], [30]
all requests for channel allocation are forwarded to a central
controller that has access to system wide channel usage in-
formation. The central controller then assigns the channel by
maintaining the required signal quality. In distributed DCA, the
decision regarding the channel acquisition and release is taken
by the concerned base station based on the information from
the surrounding cells. As the decision is not based on the global
status of the network, it can achieve suboptimal allocation as
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compared to the centralized DCA and may cause forced termi-
nation of ongoing calls.

III. CHANNEL REUSE

The reuse of channels in cellular system is inevitable and at
the same it is directly related to co-channel interference. This is
a radio interference caused due to the allocation of same chan-
nel to certain pairs of cells with geographical separation not
enough to avoid deterioration of signal quality. The minimum
distance required between the centers of two cells, using the
same channel to maintain the desired signal quality, is known as
the reuse distance. The longer the reuse distance is, the smaller
will be the co-channel interference level. However, a long reuse
distance increases the number of cells per cluster resulting in
lower reuse efficiency. Thus, the frequency reuse pattern should
be determined taking into consideration both the co-channel
interference level and the reuse efficiency. In traditional FCA
and DCA the channel assignment is made according to the
co-channel interference level determined by a fixed reuse dis-
tance decided during network planning. Many heuristics have
been proposed in the literature to solve FCA and DCA prob-
lem based on fixed reuse distance concept. This includes neural
networks [12], [16], [27], simulated annealing [9], [18], genetic
algorithm [3], [5], [14], [17], [19], [23], [26] evolutionary strat-
egy [22], and the Tabu search [4]. The neural network approach
provides sub-optimal solutions because it easily converges to
local optima [19]. The simulated annealing approach achieves
the global optimum asymptotically but its rate of convergence
is slow, and requires a carefully designed cooling schedule [19].

IV. RELATED STUDIES

An evolutionary strategy (ES) approach to the optimization
of DCA and HCA has been proposed in [22]. Sandalidis et al.
formulated the channel assignment as combinatorial optimiza-
tion problem with solutions represented as vectors of binary
digits. The size of a solution is always equal to the total number
of channels available. In the following sections, we will dis-
cuss the ways in which our proposed ES is better than the one
proposed in Sandalidis et al. [22].

V. PROBLEM STATEMENT

In this paper, we propose a new HCA strategy using dis-
tributed dynamic channel assignment strategy based on fixed
reuse distance concept. Each base station has a controller (com-
puter). The status of all calls and changes in each cell are being
sent to all the other cells using a good wired network between
the computers of all cells. Channel assignment is made by the
controller of the concerned base station according to the knowl-
edge about the neighbors of a given cell. The paper investigates
an ES-based approach with an efficient problem representation
and a simplified fitness function as compared to the one pro-
posed by Sandalidis et al. [22], and a new channel assignment
scheme. The fitness function takes care of the soft constraints.
The hard constraints are taken care of by the problem repre-
sentation and the proposed new channel allocation scheme. The

Fig. 1. Neighbors of a given cell.

chosen representation and the mutation operator guarantees the
feasibility of the solution.

In Section VI we describe the new model proposed in this pa-
per for hybrid channel assignment. Section VII briefly describes
the fundamentals of ES algorithm, gives detail of our proposed
ES algorithm including problem representation, generation of
initial parent and initial population, fitness function, and exam-
ines the application of the proposed ES to HCA, Section VIII
describes the basic assumption of the cellular model used in
the simulation, Section IX presents the results of simulation,
and Section X ovides the discussion of the model and future
research directions.

VI. D-RING HCA STRATEGY

We propose a new distributed dynamic channel assignment
strategy. In this strategy channel assignment is made by the con-
troller of the concerned base station according to the knowledge
about the neighbors of a given cell. The neighboring area of a
given cell includes all those cells which are located at a distance
less than the reuse distance. Conceptually, the neighboring area
defines an interference region marked by grey cell belonging
to D rings centered in a given cell H as shown in the Fig. 1.
The channels are allocated to the host cell from a set of chan-
nels which excludes all those channels which are in use in the
interference region. As such, the selected channels always sat-
isfy the co-channel interference constraint. The channel usage
information in the neighbors of a given cell is obtained from
the allocation matrix. The allocation matrix, is a C × F binary
matrix (where C is the total number of cells in the system and
F is the total number of channels available to the system). The
allocation matrix for each cell is a copy of the system channel
pool. Each element aij in the matrix is one or zero such that

aij =
{

1, if channel j is assigned to cell i
0, otherwise.

The allocation matrix is updated every time a channel is allo-
cated and released in the network.
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VII. PROPOSED EVOLUTIONARY STRATEGY APPROACH

Rechenberg [21] pioneered ES. It was proposed as an opti-
mization method for real-valued vectors. It works on an encoded
representation of the solutions. Each candidate solution is as-
sociated with an objective value. The objective value is repre-
sentative of the candidate solution’s performance in relation to
the parameter being optimized. It also reflects a candidate solu-
tion’s performance with respect to other potential solutions in
the space. Based on the fitness values, number of individuals are
selected and genetic operators (mutation and/or recombination)
are applied to generate new individuals in the next generation.
The best solutions generated in one generation becomes the
parents for the next generation. ES is an iterative method and
hence the process of selection and application of genetic opera-
tors is repeated until some terminating criteria is reached. Upon
reaching the termination criterion, the solution to the problem is
represented by the best individual so far in all generations. The
basic steps of an ES algorithm can be summarized as follows.

1) Generate an initial population of λ individuals.
2) Evaluate each individual according to a fitness function.
3) Select µ best individuals called the parent population and

discard the rest.
4) Apply genetic operator to create λ offsprings from µ par-

ents.
5) Go to step 2 until a desired solution has been found or

predetermined number of generations have been produced
and evaluated.

An introductory survey on ES can be found in [11]. The
two common variations of ES introduced by Schwefel [24] are
the (µ + λ)-ES and (µ, λ)-ES. In both the approaches parents
produce λ offspring. These two approaches differ in the selection
of individuals for the next generation. In (µ + λ)-ES, µ best
individuals from all the (µ + λ) individuals are selected to form
the next generation, but in (µ, λ)-ES, µ best individuals from
the set of λ offsprings are selected to form the next generation.

A. Problem Representation

Assume a new call arrives in cell k, which is already serv-
ing (d − 1) calls [(d − 1) is the traffic demand at cell k before
the arrival of the new call]. Our problem is to assign a channel
for the new call, also with possible reassignment of channels
to the (d − 1) ongoing calls in k, so as to maximize overall
channel usage in the entire network. A potential solution, Vk ,
is an assignment of channels to all ongoing calls and the new
call, at k. We call such solution a chromosome. We will rep-
resent Vk as an integer vector of length d, where each integer
is a channel number being assigned to a call in cell k and
d is the new traffic demand at k. For example, if k = 1, d =
4, available channel numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9], then a
possible solution is V1 = [7, 2, 5, 3]. Our representation is effi-
cient than Sandalidis et al. [22]. Sandalidis et al. used a binary
representation where the size of a solution vector is indepen-
dent of the traffic and equals the total number of channels in
the system pool. The disadvantage of this representation is that
although we are interested only on d channels extra memory is
consumed in storing the information about other channels. This

representation also yields slower evaluation and manipulation
of candidate solutions, due to the size of the binary representa-
tion. The other advantage of our representation is that the size
of the solution vector is short and thus it is easier and faster to
manipulate the vector.

B. Initial Parent and Initial Population

When a call arrives in a cell k at time t, we determine the
set of eligible channels I at time t. Here I(k, t) = F\(P (k, t) ∪
Q(k, t)), where F is the total set of available channels, P (k, t) is
the set of channels of the ongoing calls in k at time t, and Q(k, t)
is the set of channels in use in the neighboring area of k at time t.
This information is obtained from the allocation matrix. The ini-
tial parent solution (that is the very first chromosome) is selected
from a set G (initial population) of λ solution vectors where
λ = |I(k, t)|. Each solution vector in G is evaluated according
to the fitness function, and the individual with the best fitness is
selected as initial parent. In order to find an optimal combination
of channels for the cell involved in new call arrival, we preserve
the (d − 1) channels allocated to this cell before the arrival of
new call in the initial population. So each solution in G contains
a unique integer selected from I(k, t). The remaining (d − 1)
integers in all solution vectors are the same and are the channels
of the ongoing calls in the cell, i.e., P (k, t). For instance, let
us consider the following example: a call arrives in cell 2 at
time t, where P (k, t) = [2, 5], F = [1, 2, 3, 4, 5, 6, 7, 8, 9] and
Q(k, t) = [1, 3, 6, 7, 8]. Therefore, I(k, t) = [4, 9], and λ = 2.
Here, d = 3, therefore the size of a solution in G is 3. The two
solution vectors in G are thus: G1 = [2, 5, 4] and G2 = [2, 5, 9].
Out of G1 and G2, the fittest solution is selected as initial par-
ent. So instead of starting from a totally random combination
of channel numbers, we start with solution vectors with (d − 1)
channels allocated to the cell by the algorithm in its last call
arrival. This way of generating initial parent and initial pop-
ulation will reduce the number of channel reassignments and
therefore yields a faster running time. The initial parent is also a
potentially good solution since channels for ongoing calls were
already optimized.

C. Fitness

Beside the hard constraint and traffic demand constraint, other
conditions may be violated to improve the performance of the
dynamic channel allocation technique: They are the packing
condition, the resonance condition, and the limitation of re-
assignment operations [22]. These conditions are called soft
constraint and were introduced in [8]. The soft constraint per-
mits to further lower the call blocking probability. The packing
condition tries to use the minimum number of channels every
time a call arrives [22]. This condition permits the selection of
channels already in use in other cells as long as the co-channel
interference constraint is satisfied. With resonance condition,
same channels are assigned to cells that belong to the same
reuse scheme [22]. Channel reassignment improves the quality
of service in terms of lowering call blocking probability. Hence,
it is an important process in dynamic channel allocation. It is
the process of transferring an ongoing call to a new channel
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without call interruption [6]. Reassignment in the entire cel-
lular network upon a new call arrival will obviously result in
lower call blocking, but it is complex both in terms of time and
computation [22]. Therefore, the reassignment process is limited
to the cell involved in new call arrival. But excessive reassign-
ment in a cell may lead to increase in blocking probability [22].
So a process called limiting rearrangement is considered which
tries to assign, where possible, the same channels assigned be-
fore, thus limiting the reassignment of channels. One of the ma-
jor hard constraints, the co-channel interference is taken care by
the D-ring based strategy as explained in Section VI. This sim-
plifies our fitness function as compared to Sandalidis et al. [22]
where there is a separate term in the fitness function to take care
of the co-channel interference. This also leads to a simpler and
faster fitness calculation than Sandalidis et al. [22]. Our prob-
lem representation takes care of traffic demand constraint as the
number of channels in a solution vector equals the demand of
channels in the cell. The soft constraints can be modelled as
an energy function as shown in (1). The minimization of this
function gives an optimal channel allocation [22]

E = −W1

dk∑
j=1

C∑
i=1i �=k

Ai,Vk , j
· 1
dist(i, k)

+ W2

dk∑
j=1

C∑
i=1i �=k

Ai,Vk , j

· (1 − res(i, k)) − W3

dk∑
j=1

Ak,Vk , j
(1)

where
k cell where a call arrives;
dk number of channels allocated to cell k (traffic

demand in cell k);
C number of cells in the network;
Vk output vector (the solution) for cell k with dimen-

sion dk ;
Vk,j jth element of vector Vk ;
Ai,Vk , j

the element located at the ith row and Vk,j th col-
umn of the allocation matrix A;

dist(i, k) distance (normalized) between cells i and k;
res(i, k) function that returns a value of one if the cells i

and k belong to the same reuse scheme, otherwise
zero.

W1,W2, and W3 are positive constants. The first term ex-
presses the packing condition. The energy decreases if the jth
element of vector Vk is also in use in cell i, and the cells i and
k are free from co-channel interference. The decrease in energy
depends upon the distance between the cells i and k. The second
term expresses the resonance condition. The energy increases if
the jth element of vector Vk is also in use in cell i, and cells i
and k does not belong to the same reuse scheme. The last term
expresses the limiting re-assignment. This term results in a de-
crease in the energy if the new assignment for the ongoing calls
in the cell k is same as the previous allocation. The value of the

positive constants determines the significance of the different
terms. We use the energy function as our fitness in the ES.

D. Mutation

An offspring is generated from a parent by randomly swap-
ping values of the parent vector with the corresponding vector of
free channels. The number of swaps lies between 1 and N (in-
clusively). The parameter N is the maximum number of swaps
and takes the value of the length of the parent vector or the num-
bers of free channels whichever is less. Given N , we generate
a random number S between 1 and N (inclusively). The pa-
rameter S represents the actual number of swaps. For example,
if total number of available channels |F | = 10, k = 1, d = 4,
and the parent vector p = [7, 2, 5, 3], then the vector of eligi-
ble channels = [1, 4, 6, 8, 9, 10]. Here, N = 4, and if number of
swaps is S = 2, then one possible offspring O = [7,4, 5,10].
Since mutation does not affect the length of the parent vector,
and does not result in duplicate copy of any position, it always
produces feasible solutions.

E. ES Approach

The algorithm starts with an initial parent generated as ex-
plained in Section VII-B. At every generation, the size of a
population is λ. These λ individuals of the new population are
randomly generated from the actual parent by the process of
mutation as explained in Section VII-D. The fittest individual of
the newly generated population called the Best child will form
the parent for the next generation provided its fitness is better
than the former parent’s fitness. In case of a poor Best child the
algorithm tries to locally optimize the fitness of the Best child. In
this process, we generate a new population from the Best child
through the process of mutation and try to find a child better in
fitness than the Best child within a predefined number of gener-
ations. We call this process local optimization. When the local
optimization fails to find a better child within a predefined num-
ber of generations, a process called destabilization is applied.
This process is used to escape from local optimum. During this
process one of three possibilities is selected with probability
1/3 and exactly N number of individuals are mutated with the
corresponding vector of free channels to form the parent for the
next generation. The process terminates when the destabiliza-
tion process occurs for the fourth consecutive time. The demand
of channels in a cell is also known as traffic. The proposed ES
is shown in Fig. 2. It belongs to the class of (1, λ)-ES.

When a new call arrives, the cellular system looks for channels
which are not in use in the cell and its neighboring area. If no
such channel is found the new call is blocked, otherwise the ES
algorithm finds a solution vector Vk with a minimum energy.
This vector includes channels for all the ongoing calls and the
new call. The allocation matrix is updated, and the existing calls
are reassigned if any. This completes a call arrival process.

F. Complexity Analysis of Our Algorithm

In our algorithm, in each generation, we mutate and evaluate
each string
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Fig. 2. Proposed ES algorithm.

• complexity of doing mutation is O(dk );
• complexity of evaluating a chromosome according to (1)

is O(2dk · C).
Since in each generation we have λ strings, therefore com-

plexity of a generation is O(λ · 2dk · C).
In the algorithm proposed by Sandalidis et al. [22], in each

generation, each string is mutated and evaluated:
• complexity of doing mutation is O(1);
• Complexity of evaluating a chromosome according to [22]

O(3F · C).
Since in each generation there is λ strings, therefore com-

plexity of a generation is O(λ · 3F · C).
The parameter F which represents the total number of avail-

able channels in the system is much greater than the parameter
dk which represents the traffic demand at a particular time in-
stant. Moreover the time complexity of evaluating a string is less

Fig. 3. Cellular network model.

Fig. 4. Reuse distance used in the model.

in our proposed algorithm than the one proposed in [22]. There-
fore it clearly shows that the time complexity of our proposed
algorithm is much less than the one proposed in [22].

VIII. CELLULAR MODEL ASSUMPTION

In the paper, ES is applied to the mobile cellular model pro-
posed in Del Re et al. [8]. The basic characteristics of the model
are briefly described as follows.

1) The topological model is a group of hexagonal cells that
form a parallelogram shape (equal number of cells along
x-axis and y-axis) as shown in the Fig. 3 (adapted from [8],
Fig. 1).

2) Cells are grouped in cluster of size 7 cells. The reuse
distance is 3 cell units as shown in Fig. 4. (adapted from
[8], Fig. 9]).

3) A total of 70 channels are available to the whole network.
Each channel may serve only one call (i.e., multiplexing
techniques are ignored). In FCA, the available channels are
distributed among the cells. In DCA, all channels are put
in central pool. A channel is assigned to an incoming call
by a central controller that supervises the whole cellular
network.

4) Incoming calls at each cell may be served by any of the
system channels.
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Fig. 5. Nonuniform traffic distribution pattern 1 with initial Poisson arrival
rates (calls/h).

5) The selection of a channel is only subject to co-channel
interference. Other sources of interference are ignored.

6) A call is blocked if the entire set of channels in the net-
work is in use in the cell involved in call arrival and its
neighborhood, that is there is no channel that satisfies the
co-channel interference.

7) Existing calls in a cell involved in a new call arrival may
be rearranged.

In the model, we assume the traffic model to follow the
blocked-calls-cleared queuing discipline. An incoming call is
served immediately if a channel is available, otherwise the call
is blocked and there is no queuing of blocked calls. The most
fundamental characteristics of this model include: infinite num-
ber of users, finite number of available channels, memory-less
arrival of requests, call arrival follows a Poisson process with
mean arrival rate of λ (calls/h), and call duration is exponentially
distribution with mean x. Inter-arrival time follow a negative
exponential distribution with mean x. The product of the mean
arrival rate and the mean call duration gives the traffic load of-
fered to the cellular network. The traffic in the cellular network
may either follow uniform or non uniform distribution. In uni-
form traffic distribution, every cell has the same traffic load. In
non uniform traffic distribution, every cell has a different call
arrival rate. The assumption of nonuniform traffic distribution is
very realistic. For non uniform traffic distribution, we consider
the traffic patterns proposed in [22] shown in Figs. 5 and 6.
The number inside the cell represents the mean call arrival rate
per hour. With these simulation hypothesis we can compare our
results with those obtained in [22].

IX. SIMULATION

In HCA, the total set of available channels is divided into two
sets: fixed set and dynamic set. When a call arrives in a randomly
selected cell, the cellular system first makes an attempt to serve it
from the fixed set of channels. When all the channels in the fixed
set are busy, the cellular system applies ES algorithm to find a
suitable combination of channels. In the simulation, the follow-

Fig. 6. Nonuniform traffic distribution pattern 2 with initial Poisson arrival
rates (Calls/h).

ing representative ratios proposed in [22] were used: 21:49 (21
channels in the fixed set and 49 channels in the dynamic set),
35:35, and 49:21. Results were obtained by increasing the traf-
fic rates for all the cells of both the patterns by a percentage
with respect to the initial rates of the same cell (as in [22]). The
performance of the proposed ES based algorithm for channel al-
location has been derived in terms of the blocking probability for
the new incoming calls. This blocking probability is the ratio be-
tween the new call blocked and the total number of call arrivals
in the system. The values of the positive constants considered
in this paper are set to W1 = 1.5,W2 = 0.5, and W3 = 1, same
as in Sandalidis et al. [22]. We tried different values for weights
and these weights provide the best result. All the channels in the
set I (set of eligible channels) satisfies the hard constraint, so
when |I| = 1, as there is no scope of optimization the channel
is directly allocated to the incoming call. But when |I| ≥ 2, the
proposed ES does optimization. Therefore, the maximum num-
ber of initial parents µ that can be selected from I is two. We have
tested the performance of the algorithm for 1 ≤ µ ≤ 2 for four
different values of λ (λ = 10, λ = 20, λ = 30, and λ = 40) for
traffic pattern 1 with the following representative ratios: 21:49
(21 channels in the fixed set and 49 channels in the dynamic
set), 35:35, and 49:21 as shown in Figs. 7–9 respectively. It is
evident from these figures that the proposed ES is insensitive to
the value of λ and µ so far the blocking probability is concerned.
Considering the processing time, µ is set to 1 and λ is set to 10.
From Fig. 10, it is evident that inclusion of the destabilization
part does not affect the performance of the algorithm in terms of
blocking probability, however reduces the computational time.
In this figure, ES HCA shows the result with destabilization
whereas WD ES HCA shows the result without the destabiliza-
tion part. The performance of the proposed algorithm has been
compared with the channel allocation schemes proposed in [22].
Figs. 11 and 12 compares our results with [22]. In these figures,
ES HCA shows our result whereas HCA shows the result ob-
tained in [22]. Fig. 13 shows the results of the simulation for
the FCA scheme obtained for the pattern 1 (Fig. 5) and pat-
tern 2 (Fig. 6). The results are same as reported in Sandalidis



VIDYARTHI et al.: HYBRID CHANNEL ASSIGNMENT APPROACH 1893

Fig. 7. Performance of the proposed ES algorithm in terms of blocking prob-
ability, with different values of µ and λ, for the entire cellular network with
nonuniform traffic distribution according to pattern 1 (Fig. 5) for FCA = 21
and DCA = 49.

Fig. 8. Performance of the proposed ES algorithm in terms of blocking prob-
ability, with different values of µ and λ, for the entire cellular network with
nonuniform traffic distribution according to pattern 1 (Fig. 5) for FCA = 35
and DCA = 35.

et al. [22]. According to our simulations, the proposed algo-
rithm produces better results for all the representative ratios for
traffic pattern 1 (Fig. 5) in comparison with Sandalidis et al.
Among all the representative ratios, the best performance was
obtained with the 21:49 scheme. However, in terms of running
time, 49:21 is more efficient. The convergence of the proposed
ES is shown in Table I. The table shows the average and standard
deviation of blocking probability for traffic pattern 1 (Fig. 5) for
ten runs. For traffic pattern 2, our algorithm out performs [22]
for all the representative ratios up to 60% increase in traffic
rate. Beyond 60% the results obtained are as good as reported
in [22]. Table II summarizes the characteristics of the ES based
allocation algorithms.

X. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

The paper has modelled the HCA based on the interference
rings and has proposed an ES algorithm to perform channel al-

Fig. 9. Performance of the proposed ES algorithm in terms of blocking prob-
ability, with different values of µ and λ, for the entire cellular network with
nonuniform traffic distribution according to pattern 1 (Fig. 5) for FCA = 49
and DCA = 21.

Fig. 10. Comparison of the performance of the proposed ES algorithm in terms
of blocking probability with and without destabilization part in the algorithm
for the entire cellular network with nonuniform traffic distribution according to
pattern 1 (Fig. 5).

location. ES based algorithm has the advantage of producing re-
liable solutions in a smaller number of generation as compared
to other heuristics such as genetic algorithm. This is because
at each generation only one parent produces all the feasible
solutions [22]. The proposed algorithm uses integers to repre-
sent the solution vector. The advantage of the representation
proposed in this paper over the one used in Sandalidis et al. [22]
is that it reduces the computation time involved in the calcula-
tion of the energy when the demand of channel is less than the
total number of available channels. This is generally the case.
The concept of neighboring area avoids the selection of chan-
nel that will result in co-channel interference. Therefore, the
time required in the determination of co-channel interference is
reduced. The chosen representation and the mutation operator
guarantees the feasibility of the solution.
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Fig. 11. Performance of the proposed ES algorithm in terms of blocking
probability for the entire cellular network with nonuniform traffic distribution
according to pattern 1 (Fig. 5).

Fig. 12. Performance of the proposed ES algorithm in terms of blocking
probability for the entire cellular network with nonuniform traffic distribution
according to pattern 2 (Fig. 6).

We are currently investigating the performance of the pro-
posed algorithm in terms of quality of solution and time for
different mutation operators, and different ways of generating
initial population. Another possible mutation operator involves
the generation of neighborhood state of a solution vector as
done in Tabu Search method. In our future research work, we
will also investigate the use of recombination operator and im-
plement GA for our HCA and thus compare the results.
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