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Abstract—Scheduling for directed acyclic graph (DAG) tasks with the objective of minimizing makespan has become an important

problem in a variety of applications on heterogeneous computing platforms, which involves making decisions about the execution order

of tasks and task-to-processor mapping. Recently, the chemical reaction optimization (CRO) method has proved to be very effective

in many fields. In this paper, an improved hybrid version of the CRO method called HCRO (hybrid CRO) is developed for solving the

DAG-based task scheduling problem. In HCRO, the CROmethod is integrated with the novel heuristic approaches, and a new

selection strategy is proposed. More specifically, the following contributions are made in this paper. (1) A Gaussian random walk

approach is proposed to search for optimal local candidate solutions. (2) A left or right rotating shift method based on the theory of

maximum Hamming distance is used to guarantee that our HCRO algorithm can escape from local optima. (3) A novel selection

strategy based on the normal distribution and a pseudo-random shuffle approach are developed to keep the molecular diversity.

Moreover, an exclusive-OR (XOR) operator between two strings is introduced to reduce the chance of cloning before new molecules

are generated. Both simulation and real-life experiments have been conducted in this paper to verify the effectiveness of HCRO. The

results show that the HCRO algorithm schedules the DAG tasks much better than the existing algorithms in terms of makespan and

speed of convergence.

Index Terms—Chemical reaction optimization, hamming distance, hybrid scheduling, normal distribution, pseudo random shuffle

Ç

1 INTRODUCTION

AN application consisting of a group of tasks can be rep-
resented by a node- and edge-weighted directed acyclic

graph (DAG), in which the vertices represent the computa-
tions and the directed edges represent the data dependen-
cies as well as the communication times between the
vertices. DAGs have been shown to be expressive for a large
number of and a variety of applications. Task scheduling is
one of the most thought-provoking NP-hard problems in
general cases, and polynomial time algorithms are known
only for a few restricted cases [1]. Hence, it is a challenge on
heterogeneous computing systems to develop task schedul-
ing algorithms that assign the tasks of an application to pro-
cessors in order to minimize makespan without violating
precedence constraints. Therefore, many researchers have
proposed a variety of approaches to solving the DAG task

scheduling problem. These methods are basically classified
into two major categories: dynamic scheduling and static
scheduling. In dynamic scheduling, the information, such
as a task’s relation, execution time, and communication
time, are all not previously known. The scheduler has to
make decisions in real time. In static scheduling, all infor-
mation about tasks is known before hand. Static scheduling
algorithms by using different techniques to find a near opti-
mal solution are universally classified into two major
groups: heuristic scheduling and meta-heuristic scheduling.

Heuristic scheduling algorithms are based on the specific
characteristics of an application, and the quality of the solu-
tions obtained by these algorithms is heavily dependent
upon the effectiveness of the heuristics. These algorithms
give near-optimal solutions but with low time complexity
(polynomial time) and acceptable performance, since the
attempted solutions are narrowed down by greedy heuris-
tics to a very small portion of the entire solution space.
Therefore, it is not likely to produce consistent results on a
wide range of problems, especially when the DAG schedul-
ing problem becomes complex.

Meta-heuristic scheduling techniques use guided search
strategies to explore the search space more effectively. They
often focus on some promising regions of the search space,
which generate optimal solutions with exponential time
complexity. Meta-heuristic methods begin with a set of ini-
tial solutions or an initial population, and then, examine
step by step a sequence of solutions to reach a desirable
solution. These methods have demonstrated their potential
and effectiveness in solving a wide variety of optimization
problems than many traditional algorithms. Well-known
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examples of meta-heuristic scheduling techniques include
ant colony optimization (ACO) [2], genetic algorithm (GA) [3],
[4], simulated annealing (SA) [5], etc.

Very recently, a chemical reaction optimization (CRO)
method has been proposed. The CRO algorithms are a kind
of the population based meta-heuristic algorithms devel-
oped by Lam and Li in 2010 [6]. The method has been
applied to solve the task scheduling problems, which enco-
des the solutions as molecules, and mimics the interactions
of molecules in chemical reactions to search the optimal sol-
utions. To date, the CRO method has only been used to
encode the scheduling of independent tasks on heteroge-
neous computing platforms. Scheduling independent tasks
involves mapping tasks to heterogeneous computing pro-
cessors. Scheduling DAG tasks on heterogeneous comput-
ing platforms is more complicated, which involves making
decisions about both execution order of tasks (i.e., task pri-
ority) and task-to-processor mapping. It is a challenge of
applying CRO to handle DAG scheduling problems [7]. In
order to solve the dependent task scheduling problem, we
have been investigating the problem of applying CRO to
address the DAG scheduling. Our previous work presented
in [8] applied the conventional CRO framework to address
the DAG scheduling. The DAG scheduling algorithm, in the
works of both [8] and this paper, is divided into two phases:
1) determining the execution order of the tasks in a DAG,
and 2) mapping the tasks to computing processors. In [8],
we developed a double molecular structure-based CRO
(DMSCRO) method, in which a set of CRO operations are
designed and applied to both above phases of the DAG
scheduling.

Although the developed DMSCRO is able to consistently
produce good scheduling solutions, the time overhead, i.e.,
time spent in finding a good solution, is high. This paper
aims to develop a CRO-based DAG scheduling algorithm
with similar performance but reduced overhead. In this
paper, we develop a hybrid CRO scheduling algorithm,
called HCRO, by integrating the CRO algorithm with some
heuristic approaches.

Hybrid algorithms have received significant interest in
recent years and are being increasingly used to solve real-
world problems [9], [10], [11], [12], [13], [14], [15], [16]. A
hybrid algorithm is an algorithm that combines two or
more other algorithms that solve the same problem, either
choosing one (depending on the data), or switching
between them over the course of the algorithm. This is
generally done to combine desired features of each, so
that the overall algorithm is better than the individual
components [17].

In the HCRO algorithm presented in this paper, the CRO
operations are applied to the first phase of the DAG task
scheduling, i.e., determining the execution order of the
tasks, while heuristic algorithms are designed and applied
to the second phase, i.e., mapping the tasks to processors. A
careful balance is struck between makespan and speed of
convergence in the hybrid CRO. As a result, the hybrid
CRO can achieve similar scheduling performance in terms
of makespan while reducing the scheduling overhead, com-
pared with the existing guided meta-heuristic algorithms.
Moreover, it can also achieve better performance than heu-
ristic algorithms.

We conducted both simulation experiments over a large
set of randomly generated graphs and real experiments by
using two well-known real applications: Gaussian elimina-
tion and molecular dynamics application. We compared the
proposed HCRO with two well-known heuristic algorithms
and a pure meta-heuristic method. The theoretical and
experimental results show that our proposed HCRO can
achieve better performance than the heuristic algorithms,
and can achieve a very close performance to that of the pure
meta-heuristic algorithm with much faster convergence
speed (therefore with much lower overhead).

Further, we investigated the CRO parameters which
affect the efficiency of the DMSCRO algorithm presented
in our previous work [8], such as the size of the initial
population and the particular elementary reactions.
Hence, in this paper, a new and novel way is designed to
encode the scheduling solutions of the initial molecular
population. Different reactions are developed to be per-
formed on the encoded solutions and generate increas-
ingly better solutions.

In summary, the major contributions of this paper are
listed below.

� We adopt some novel approaches to generating an
initial molecular population and to accelerating
the convergence of searching for good scheduling
solutions. Because a high-quality solution, obtained
from a heuristic technique, can help the HCRO
to find better solutions faster than it can from a
random start, and with a good uniform coverage.
The molecules are well spread out to cover a whole
feasible solution space. Moreover, the molecular
diversity of the population can help the HCRO to
reach a feasible part of the solution space as large
as possible.

� We present a Gaussian random walk approach to
searching for local optimal candidate solutions in
the operator of on-wall ineffective collision. On the
other hand, for the purpose of obtaining a global
optimum or a near-optimal solution, we employ a
left or right rotating shift strategy according to the
theory of maximum Hamming distance, aiming to
help the operator of decomposition to escape from
local optima.

� We propose a novel selection approach based on the
normal distribution, and use an exclusive-OR (XOR)
operator between two strings to reduce a chance of
cloning before new molecules are generated. Then a
pseudo-random shuffle approach is employed to
generate new molecules to help the operator of
inter-molecular ineffective collision to keep the
molecular diversity, and on the contrary, to realize
the operator of synthesis to eliminate close relatives
of the molecules.

� We demonstrate through the experiments over a
large set of randomly generated graphs as well as
the graphs for real-world problems with various
characteristics that our proposed HCRO algorithm
outperforms several related heuristic-based list
scheduling algorithms and meta-heuristic algo-
rithms in terms of the schedule quality.
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The remainder of this paper is organized as follows.
Section 2 describes the system and workload model. In
Section 3, a heuristic chemical reaction optimization algo-
rithm is presented for DAG scheduling, aiming to mini-
mize the makespan on heterogeneous computing systems.
Section 4 compares the performance of the proposed algo-
rithm with three existing algorithms. Finally, Section 5
concludes the paper.

Due to space limitation, a review of related work is pre-
sented in Section 1 of the supplemental file, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2014.2385698
available online.

2 MODELS AND WORKLOAD

This section first presents the system model and workload
considered in this paper, and then presents an example and
motivations of our devised algorithm. In Section 2.1, a het-
erogeneous computing system consisting of a set P of
m heterogeneous processors is presented, which are fully
interconnected with a high-speed network. In Section 2.2,
we introduce an application which is represented by a DAG
graph, with the graph vertexes representing tasks and edges
between vertexes representing execution precedence
between tasks. Then a workload formula is presented. In
Section 2.3, we explain a motivation to develop a hybrid
approach by integrating CRO with heuristic approaches
and make a trade-off between the quality of makespan and
the speed of convergence. A list of notations and their defi-
nitions used in the paper is summarized in Appendix A of
the supplemental file, available online.

2.1 System Model

The heterogeneity model of a computing system can be
divided into two categories, i.e., processor-based heterogeneity
model (PHM) and task-based heterogeneity model (THM). In a
PHM model, a processor executes the tasks at the same
speed, regardless of the type of the tasks. In a THM model,
how fast a processor executes a task depends on how well
the heterogeneous processor architecture matches the task
requirements and features.

In this paper, we assume a THM model, where the main
characteristics are given in Table 1. The heterogeneous com-
puting system consists of a set P of m heterogeneous pro-
cessors, P1, P2, . . ., Pm, which are fully interconnected with
a high-speed network. Each task in a DAG application can
only be executed on a processor. The communication time
between two dependent tasks should be taken into account
if they are assigned to different processors.

Note that when the level of heterogeneity is 1 (h ¼ 0), the
computing system is homogeneous. Furthermore, as we

change the value of h, i.e., the level of heterogeneity, the
average computing speed remains unchanged.

We also assume that a static computing model in which
the dependency relations and the execution orders of
tasks are known a priori and do not change over the pro-
cess of the scheduling. In addition, all processors are fully
available to the computation on the time slots they are
assigned to.

2.2 Application Model

In this work, an application is represented by a DAG graph,
with the graph vertexes representing tasks and edges
between vertexes representing execution precedence
between tasks [6]. PredðTiÞ and SuccðTiÞ denote the set of
predecessor tasks and successor tasks of task Ti, respec-
tively. The entry task Tentry is the starting task of the applica-
tion without any predecessors, while the exit task Texit is the
final task with no successors. The vertex weight, denoted as
WdðTiÞ, represents the amount of data to be processed in the
task Ti, while the edge weight, denoted as CdðTi; TjÞ, repre-
sents the amount of communication between task Ti and
task Tj. The DAG topology of an exemplar application
model is shown in Fig. 1.

In this paper, the execution speeds of the processors in
the heterogeneous computing system are represented by a
two-dimensional matrix, S, in which an element SðTi; PkÞ
represents the speed at which processor Pk to execute task
Ti. The computation cost of task Ti running on processor Pk,
denoted asWðTi; PkÞ, can be calculated by Eq. (1):

WðTi; PkÞ ¼
WdðTiÞ

SðTi; PkÞ
: (1)

The average computation cost of task Ti, denoted as

WðTiÞ, can be calculated by Eq. (2):

WðTiÞ ¼
1

m

X

m

k¼1

WðTi; PkÞ: (2)

The communication bandwidths between heterogeneous
processors are represented by a two-dimensional matrix B.
The communication startup costs of the processors are rep-
resented by an array, Cs, in which the element CsðPkÞ is the
startup cost of processor Pk. The communication cost
CðTi; TjÞ of edgeðTi; TjÞ, which is the time spent in transfer-
ring data from task Ti (scheduled on Pk) to task Tj (sched-
uled on Pl), can be calculated by CðTi; TjÞ ¼ CsðPkÞþ

TABLE 1
The THM Heterogeneous Computing System

Notation Definition

The amounts of computing power available
at each node

0.1-2.0

The maximum number of processors 32
The level (degree) of heterogeneity of the systems 1þh%

1�h%

Fig. 1. A simple DAG application model containing 10 tasks.
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CdðTi;TjÞ

BðPk;PlÞ
and CðTi; TjÞ ¼ Cs þ

CdðTi;TjÞ

B
; where Cs ¼

1
m

Pm
k¼1 CsðPkÞ is the average communication startup cost

over all processors, and B ¼ 1
m2

Pm
k¼1

Pm
l¼1 BðPk; PlÞ is the

average communication cost per transferred unit over all
processors [6]. When Ti and Tj are scheduled on the same
processor, the communication cost is regarded as 0. That is
to say, a communication cost is only required when two
tasks are assigned to different heterogeneous processors. It
is assumed that the inter-computing-node communications
are performed at the same speed (i.e., with the same band-
widths) on all links. For simplicity, we assume BðPk; PlÞ ¼ 1

and CsðPkÞ ¼ 0 in our DAG task scheduling model.
Assume that the DAG has the topology as shown in

Fig. 1. An example of the processor heterogeneity and the
computation costs of the tasks are shown in Table 2. Note
that there are two numbers in each vertex in Fig. 1. The
number at the top is the task id and the one at the bottom is
the average computation cost as calculated in Table 2.

2.3 Example and Motivation

In Figs. 2 and 3, we can observe that the DMSCRO can get a
better makespan than the HCRO for the simple DAG appli-
cation in Fig. 1. In Fig. 4, we can also observe that the con-
vergence of HCRO is faster than DMSCRO while
maintaining a good makespan of the best individual and
the average makespan of the population. Therefore, in this
paper, we try to find a trade-off between the quality of
makespan and the speed of convergence. We develop a
hybrid approach by integrating CRO with heuristic

approaches. We find that being compared with the over-
head of pure meta-heuristic algorithms, such as the
DMSCRO method, this hybrid approach can achieve similar
performance in terms of makespan for DAG scheduling
while reducing the scheduling overhead. We also find that
the hybrid approach can achieve better performance than
heuristic algorithms. All these benefits will be shown in the
experiment section.

3 HYBRID CHEMICAL REACTION OPTIMIZATION

In this paper, a method of integrating CRO and the heu-
ristic approach, called HCRO, is proposed to schedule
DAG tasks on heterogeneous computing systems. The
idea of this method is to exploit the advantages of both
CRO and heuristic algorithms, while avoiding their
drawbacks. In HCRO, the CRO technique is used to
search the execution order of the tasks, while a heuristic
algorithm is used to determine a suitable task-to-proces-
sor mapping. In this section, an important factor for the
priority queues of task scheduling is first introduced in
Section 3.1. Namely, not every permutation of n tasks
forms a legal schedule due to the precedence relations in
the DAG application graph. Second, the encoding mecha-
nism of our task scheduling algorithm is presented in
Section 3.2 to represent the search nodes as molecules. It
is desirable that any molecule can determine a unique
schedule. Third, four molecular operators are proposed

TABLE 2
Processor Heterogeneity and Computation Costs

Speed WðTi; PjÞ Cost Ave. Cost

T i W ðTiÞ P 0 P 1 P 2 P 0 P 1 P 2 W ðTiÞ.

0 11 1.10 1.00 1.00 10.0 11.0 11.0 10.67
1 9 1.00 0.90 1.13 9.0 10.0 8.0 9.00
2 9 1.13 1.50 1.13 8.0 6.0 8.0 7.33
3 9 0.90 0.90 1.00 10.0 10.0 9.0 9.67
4 13 1.00 1.08 1.00 13.0 12.0 13.0 12.67
5 3 1.00 1.50 0.75 3.0 2.0 4.00 3.0
6 9 0.90 1.13 1.00 10.0 8.0 9.00 9.0
7 2 1.00 1.00 1.00 2.0 2.0 2.00 2.0
8 18 1.00 1.06 1.13 18.0 17.0 16.0 17.00
9 15 1.00 1.07 1.07 15.0 14.0 14.0 14.43

Fig. 2. A case study of the HCRO algorithm (the number of process-
ors ¼ 3, makespan ¼ 61).

Fig. 3. A case study of the DMSCRO algorithm (the number of process-
ors ¼ 3, makespan ¼ 58).

Fig. 4. The convergence trace of the average makespan of the popula-
tion for the simple DAG task graph (the number of processors ¼ 3, 100
independent runs).

XU ET AL.: A HYBRID CHEMICAL REACTION OPTIMIZATION SCHEME FOR TASK SCHEDULING ON HETEROGENEOUS COMPUTING... 3211



for our task scheduling algorithm in detail in Section 3.3.
Fourth, the heuristic method is proposed in Section 3.4,
which tries to map each task in the solution (in the order of
its position in the queue) to the computing processor that can
provide the earliest finish time. Finally, the time and space
complexity of HCRO is analyzed in Section 3.5. Section 2 of
the supplemental file, available online, introduces the back-
ground information of CRO.

3.1 Fundamental Characteristics of Priority Queues

Our aim is to use CRO to find a good execution order of
the tasks in a DAG application. Therefore, the execution
order is the solution that should be optimized by CRO. A
solution v of the execution order is encoded as an integer
queue and an integer represents a task id, i.e., v ¼ fT1;

T2; . . . ; Ti; . . . ; Tng. Here, v corresponds to a molecule, a
task corresponds to an atom in the molecule, and the exe-
cution order of the tasks corresponds to the molecular
structure.

Theorem 1. The size of the solution space (i.e., the number of pos-
sible solutions) of an application containing n tasks without
dependency is n! ¼ n� ðn� 1Þ � � � � � 1.

Proof. In the task scheduling, the solution of task scheduling
is the execution order (without consideration of the task-
to-processor mapping). The number of possible execu-
tion order of n tasks is n!. Therefore, the size of the solu-
tion space is n!. tu

When an application contains n tasks with depen-
dency, the size of the solution space will be much smaller
than n!. This is because a solution of task scheduling is
an execution order which is a linear order (topological
order) of tasks based on their dependencies. In a DAG
application graph, the tasks are represented by vertices,
which may represent tasks to be performed, and the
edges may represent constraints so that one task must be
performed before another. Then, a topological sort is just
a valid sequence of the tasks and gives an order for per-
forming the tasks. For a DAG application containing
n tasks, it is apparent that the number of all topological
sorts is much less than n!. Therefore, the size of the solu-
tion space is much smaller than n!. Moreover, an impor-
tant factor is that every priority queue in a search space
is represented uniquely. That is, each solution corre-
sponds to a legal priority queue of a DAG task schedul-
ing. An intermediary encoded representation of the
schedule and a decoder are used that always yield the
legal solutions to the problem.

Note that not every permutation of n tasks corresponds
to a legal schedule because of the precedence relations. This
representation of DAG task scheduling falls into the

category that molecule (the priority queue) is not in one-to-
one correspondence with the search space. The representa-
tion of the DAG task scheduling must accommodate the
precedence relations between the computational tasks, as
shown in Fig. 5.

3.2 Molecular Representation and Initial Population

In this section, first, the encoding mechanism of our task
scheduling algorithm is proposed for representing search
nodes as molecules. It is desirable that any molecule can
determine a schedule uniquely. Second, the quality of initial
molecular population is introduced to enhance the possibil-
ity of obtaining a globally optimal solution. Finally, the ini-
tial algorithm for molecular population is proposed.

A solution v of the execution order is encoded as an inte-
ger queue, in which an integer represents a task id, i.e.,
v ¼ fT1; T2; . . . ; Ti; . . . ; Tng, as shown in Fig. 6.

For the DAG task scheduling problem in this paper, the
molecule representation needs to consider the precedence
relations between the tasks of DAG applications, and a legal
priority queue (a schedule) is one that satisfies the following
conditions.

� The precedence relations among the tasks are
satisfied.

� Every task appears only once in the priority queue
(completeness and uniqueness).

The initial molecular population consists of PopSize indi-
viduals (molecules), the size of the initial molecular popula-
tion has been investigated from several theoretical points of
view, although the underlying idea is always a trade-off
between efficiency and effectiveness. Intuitively, it would
seem that there should be some individuals with “good” fit-
ness values for a given molecular structure length, on the
grounds that a too small molecular population would not
allow sufficient room for exploring the search space effec-
tively, while a too large molecular population would so
impair the efficiency of the method that no solution could
be expected in a reasonable amount of time. In our study,
we adopt a novel approach to generating a good “seeding”,
good uniform coverage, and molecular diversity for the ini-
tial population.

In this paper, a method to generate good seeding, with
which there is a higher possibility to generate good solu-
tions, is proposed. A high-quality solution obtained from
another heuristic technique can help the CRO to find bet-
ter solutions more quickly than it can from a random
start. In order to achieve a good “seeding” for the task
scheduling problem, we take advantage of the heuristic
rank policies [18], which are mostly used by traditional
list scheduling approaches for estimating the priority of
each subtask. The individuals have a good uniform cov-
erage and a molecular diversity if they do not form clus-
ters and leave relatively large areas of the feasible
unexplored solution space [19], [20]. In order to achieve

Fig. 5. Illustration of two different transformational schemes for the DAG
applications with precedence constraints: (a) Both legal and illegal mole-
cules (b) Only legal molecules.

Fig. 6. The demonstration of molecular structure for DAG tasks.
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a good uniform coverage, the priority queues are gener-
ated by selecting from left to right an atom in the priority
queues for these molecules. In a molecule, an atom is
selected and inserted into an appropriate position with-
out violating the precedence constraints, aiming to make
the largest Hamming distance of two molecules. If the
condition PopN < PopSize holds, then we select a mole-
cule randomly from the initial molecular population and
adopt a left rotating shift strategy according to the theory
of maximum Hamming distance, aiming to have a good
uniform coverage and a molecular diversity. Section 4 of
the supplemental file, available online, presents the
experimental results relevant to these approaches.

A detailed description for generating the initial molecu-
lar population is given in Algorithm 1.

Algorithm 1. Initial molecular population

Input:
Seed molecules generated by the heuristic rank policies.

Output:
The initial molecular population.

1: PopN ¼ 1;
2: for each atom i in the molecule v do
3: Find the first successor SuccðiÞ, namely Tj from Ti to the

end;
4: temp ¼ Ti;
5: for k ¼ i to j� 2 do
6: Tk  Tkþ1;
7: end for
8: Tj�1 ¼ temp;
9: Generate a new molecule and add to the population;
10: PopN ¼ PopN þ 1;
11: end for
12: while PopN < PopSize do
13: Select a molecule v in molecular population randomly;
14: Generate a new individual using the maximum code

distance and the left rotating shift approach;
15: Add the new molecule to the population;
16: PopN ¼ PopN þ 1;
17: end while
18: return Population.

3.3 Hybrid Heuristic Operators

The size of search space of the heuristic CRO method pro-
posed in this paper is much smaller than n!, and in order
to find increasingly better solutions (i.e., the molecular
structures with less energy), the operations simulating the
four types of chemical reactions have to be performed over
the solutions by using the heuristic transformational
approach. In this section, we propose four molecular oper-
ators in detail for our task scheduling algorithm. First, in
Section 3.3.1, we present a random walk approach, which
follows the normal (or Gaussian) distribution. It could help
the operator of on-wall ineffective collision to search for a
local optimization candidate solution. Second, in Section
3.3.2, for the purpose of obtaining a global optimum or a
near-optimal solution, we employ a left or right rotating
shift strategy according to the theory of maximum Ham-
ming distance, aiming to help the operator of decomposi-
tion to escape from local optima. Third, in Section 3.3.3,

before the operator of inter-molecular ineffective collision,
a novel selection approach based on the normal distribu-
tion is adopted, and an exclusive-OR (XOR) operator
between two strings is used to reduce the chance of clon-
ing before new molecules are generated. Then a pseudo-
random shuffle approach is employed to generate new
molecules to help the operator of inter-molecular ineffec-
tive collision to keep the molecular diversity. Fourth, in
Section 3.3.4, in the operator of synthesis, we adopt a new
scheme to realize the molecules to eliminate close relatives
of the molecules according to the results calculated by an
exclusive-OR (XOR) operator.

3.3.1 On-Wall Ineffective Collision

On-wall ineffective collision is an uni-molecular reaction,
whose reactant involves only one molecule. When a mole-
cule v collides onto the wall of the closed container, it is
allowed to change to another molecule v0 in order to search
for a local optimization, if the condition PEv0 � PEv or
PEv0 � PEv þKEv holds, where Potential energy and Kinetic
energy (KE) are two key properties attached to a molecular
structure. The former corresponds to the fitness value of the
solution, while the latter is used to control the acceptance of
new solutions with worse fitness. After collision, the KE
energy will be re-distributed. A certain portion of KE of the
new molecule will be withdrawn to the central energy
buffer (i.e., environment) [6]. In other words, it means that
on-wall ineffective collision is a random search operator
which searches a new and better molecule v0 around the
molecule v without violating the condition 0 � PEv0 �
PEv þKEv.

In this paper, a neighboring molecule v0 is generated, by
adopting a random walk of one step approach in every on-
wall ineffective collision, namely, Gaussian random walk of
one step. A random walk having a step size that varies
according to a normal (Gaussian) distribution is used as a
model for helping the operator of on-wall ineffective colli-
sion to search for a local optimization candidate solution
and to speed-up the search. Here, the step size has the nor-

mal distribution X � Nðm; s2Þ, whereX is a normally dis-
tributed random variable, m and s are the mean and
standard deviation of the normal distribution, respectively.
We adopt the Box Muller transform [21] to obtain a nor-
mally distributed random variableX with any m and s.

Suppose U1 and U2 are independent random variables
that are uniformly distributed in the interval ð0; 1�. Let sto-

chastic variable X � Nðm; s2Þ, with mean m and variance

s2, be given as

X ¼ mþ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 lnð1� U1Þ
p

cos ð2pU2Þ; (3)

where X is independent random variables following a stan-
dard normal distribution with any m and s. According to
statistics, the 68� 95� 99:7 rule states that nearly all values
lie within three standard deviations of the mean in a normal
distribution [22]. The operation is illustrated in Fig. 7.

Therefore, in on-wall ineffective collision operator, first, a
position i in the queue v is randomly selected. The task cor-
responding to position i is denoted as Ti. Second, from posi-
tion i to the beginning of the queue, we identify the last
predecessor of Tj, assuming its position in the queue is j.
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Third, from position i to the end of the queue, we identify
the first successor of Tk, assuming its position in the queue
is k. Then according to Eq. (3), namely the half-normal dis-
tribution, we can calculate the independent random vari-

able X with mean m ¼ 0 and variance s2 ¼ 1, and a random

walk x ¼ maxði�j;k�iÞ�jXj
3

, where jXj is the absolute value ofX.

If the condition i� j < k� i and iþ x < k holds, then
first we put Ti to the temporary variable Temp. Second all
atoms, from the position iþ 1 to iþ x, shift one position to
the left. Third, the temporary variable Temp is placed at the
position iþ x. Otherwise, we put Ti to the temporary vari-
able Temp. All atoms, from the position i� 1 downto i� x,
shift one position to the right one by one. Last, the tempo-
rary variable Temp is placed at the position i� x.

By this operator, a newmodule v0 is generated. The oper-
ation is illustrated in Fig. 8.

A detailed description of the on-wall ineffective collision
operator is given in Algorithm 2.

Algorithm 2. On-wall ineffective collision operator

Input:
Amolecule v randomly selected from the current Pop.

Output:
A new molecule v0.

1: Choose randomly an atom Ti, where i 2 ½1; n� 1�;
2: Calculate the last predecessor Tj of the atom Ti;
3: Calculate the first successor Tk of the atom Ti;
4: Calculate the independent random variable X with s ¼ 1

and n ¼ 0 using Eq. (3);
5: Calculate the random walk x ¼ maxði�j;k�iÞ�jXj

3
;

6: Generate a new molecule v0 copied from the molecule v;
7: if i� j < k� i and iþ x < k then
8: Temp T 0i ;
9: for l ¼ i to iþ x� 1 do
10: T 0l  T 0lþ1;
11: end for
12: T 0iþx  Temp;
13: else
14: Temp T 0i ;
15: for l ¼ i downto i� xþ 1 do
16: T 0l  T 0l�1;
17: end for
18: T 0i�x  Temp;
19: end if
20: return a new molecule v0.

3.3.2 Decomposition

In information theory, the Hamming distance between two
strings of equal length is the number of positions at which

the corresponding symbols are different [23]. It can be for-
mally defined as follow,

Definition. The Hamming distance d(x, y) between two vectors

x; y 2 F ðnÞm is the number of coefficients in which they differ.

For example, F
ð5Þ
2 dð00111; 11001Þ ¼ 4, and F

ð10Þ
10

dð0431256789; 0412563789Þ ¼ 5. Notice that the subscript
m denote the different base number system, and the super-
script n denote the length of strings.

The decomposition operator is also an uni-molecular
reaction. A molecule v can decompose into two new mole-
cules, v01 and v02, if the condition PEv þKEv þ buffer 	
PEv0

1
þ PEv0

2
holds [6], where buffer denotes the energy

stored in the central buffer, which plays an important role
to help the HCRO to obtain a global optimum or a near-opti-
mal solution.

In other words, it means that the decomposition operator
can generate the new molecules, v01 and v02. If the condition
PEv0

1
� PEv or PEv0

2
� PEv holds, the decomposition oper-

ator gets a better solution. Otherwise, if the condition
PEv0

1
	 PEv or PEv0

2
	 PEv holds, the decomposition oper-

ator generates a worse solution randomly, but may help
HCRO to escape from local optima when the on-wall inef-
fective collision operator executes a certain number of times
and doesn’t get any better solution. Therefore, in this opera-
tor, the further the molecule v01 and v02 jump from the mole-
cule v, the more the decomposition operator can help
HCRO to obtain a global optimum or a near-optimal
solution.

In this paper, for the purpose of obtaining a global opti-
mum or a near-optimal solution, we employ a left or right
rotating shift strategy according to the theory of maximum
Hamming distance, aiming at helping the operator of
decomposition to escape from local optima. The key feature
of a left or right rotating shift strategy is that it provides a
mechanism to escape local optima by allowing moves which
worsen the objective function value. For instance, in this
operation, a solution v is decomposed into two new solu-
tions v01 and v02. The solution v01 is generated in the follow-
ing steps: 1) We randomly select a position i in v (the
corresponding task is Ti); 2) From the position i to the begin-
ning of the queue, we identify the last predecessor of Tj,
assume its position in the queue is j, and from the position i

to the ending of the queue, we identify the first successor of
Tk, assume its position in the queue is k; 3) If the condition
i� j > k� i holds, then Ti is stored in the temporary vari-
able Temp, and then from the positions i� 1 to jþ 1, we

Fig. 7. Illustration of a probability density function of Gaussian random
walk.

Fig. 8. Illustration of on-wall ineffective collision.
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shift one position to the right one by one, and generate an
empty slot for the next atom. Last, the temporary variable
Temp is placed at the position jþ 1. Otherwise, Ti is stored
in the temporary variable Temp, and from the position iþ 1

to k� 1, we shift one place to the left. Then the temporary
variable Temp is placed at the position k� 1.

The approach can effectively help the HCRO operator
of decomposition to escape from local optima, by keeping
the maximum hamming distance between the old mole-
cule v and the new molecule v01. From another point of
view, it can effectively improve uniform coverage of the
population too. We can generate another new solution v02
in the similar fashion.

Note that because of the decomposition (and the synthe-
sis operator discussed later) operator, the number of solu-
tions in the CRO process may be varied during the
reactions, which is a feature of CRO that is different from
genetic algorithms. This operation is illustrated in Fig. 9.

A detailed description of the decomposition operator is
given in Algorithm 3.

Algorithm 3. Decomposition operator

Input:
Amolecule v selected randomly from the current Pop.

Output:
Two new molecules v01 and v02.

1: while the decomposition operator is not finished do
2: Choose randomly a atom from the molecule v, where

i 2 ½1; n� 1�;
3: Generate a new molecule v0 which is copied from the

molecule v;
4: Find the last predecessor Tj of the atom Ti from the position

i to the beginning of queue;
5: Find the first successor Tk of the atom Ti from the position

i to the ending of queue;
6: if i� j < k� i then
7: Temp T 0i ;
8: for l ¼ i to k� 1 do
9: T 0l  T 0lþ1;
10: end for
11: T 0k�1  Temp;
12: else
13: Temp T 0i ;
14: for l ¼ i downto jþ 1 do
15: T 0l  T 0l�1;
16: end for
17: T 0jþ1  Temp;
18: end if
19: Copy v0 as a new molecule v01 or v

0
2;

20: end while
21: return two new molecules v01 and v02.

3.3.3 Inter-Molecular Ineffective Collision

The inter-molecular ineffective collision operator is an inter-
molecular reaction, whose reactants involve two molecules.
When two molecules, v1 and v2, collide into each other, they
can change into two new molecules, v01 and v02, if the condi-
tion PEv1

þ PEv2
þKEv1

þKEv2
	 PEv0

1
þ PEv0

2
holds [6].

It means that the molecules v01 and v02 can have a wide range
of random search space than those of on-wall ineffective col-
lision operator can do. In other words, the inter-molecular
ineffective collision operator can generate more different
molecules to keep a molecular diversity and to search a
wider range of solution space. In this section, a novel selec-
tion approach based on the normal distribution, an exclu-
sive-OR (XOR) operator between two strings, and a pseudo-
random shuffle approach are employed to generate new
molecules to help the operator of inter-molecular ineffective
collision to keep the molecular diversity.

For the presence of the task scheduling problem, the
operator of inter-molecular ineffective collision is combin-
ing two valid molecules, whose subtasks are ordered topo-
logically, to generate two new molecules which are also
valid. Booker [24] suggested that before applying crossover,
we should examine the selected parents to find suitable
crossover points. This entails computing an exclusive-OR
between the parents, so that only positions between the out-
ermost 1s of the XOR string (the reduced surrogate) should
be considered as crossover points.

For instance, two task priority queues, v1 and v2, are
shown in Table 3.

They will generate only clones if the crossover point is
anyone of the first three positions. Therefore, as previously
stated, only crossover points from four to eight will give
rise to a different string.

We apply the same principles to the HCRO algorithm. In
order to keep the molecular diversity, the operator of inter-
molecular ineffective collision adopts a novel approach
when newmolecules are generated. In this paper, the opera-
tor of inter-molecular ineffective collision consists of two
stages: a selection stage and a reaction stage.

In the first stage, two candidate molecules are selected in
the following steps. First, one molecule v1 is selected from
the molecular population. Second, some molecules are
selected randomly as the candidates, and the Hamming dis-
tances are computed between the molecule v1 and the can-
didates. Third, according to the Hamming distance, the
candidates are sorted in descending order. Fourth, accord-
ing to Eq. (3), we can calculate the independent standard
normal random variable X with mean m ¼ 0 and variance

s2 ¼ 1. Last, we select one molecule as v2, whose index is

x ¼ the number of candidates �jXj
3

, from the candidates.

Fig. 9. Illustration of decomposition.

TABLE 3
XOR String Operator

Position of atoms Hamming

0 1 2 3 4 5 6 7 8 9 distance

v1 0 1 2 3 4 5 6 7 8 9
v2 0 1 2 3 5 4 8 6 7 9
Result 0 0 0 0 1 1 1 1 1 0 5
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In the second stage, the operations are used to generate
two new solutions v01 and v02 from two existing candidate
solutions v1 and v2. The new solutions are generated by
using a pseudo-random shuffle method as shown in Fig. 10.
1) The suitable crossover point i is chosen randomly
between the outermost 1s of the XOR string and n, and the
crossover point cuts the priority queues of the pair of mole-
cules (v1 and v2) into left and right segments. 2) The left
segments of v01 and v02 are inherited from the left segments
of v1 and v2, respectively. 3) Each task in the right segment
of v01 comes from the tasks in v2 that do not appear in the
left segment of v1. This can guarantee that a task will not
appear more than once in a new solution. Similarly, each
task in the right segment of v02 comes from the tasks in v1

that do not appear in the left segment of v2. The operation
is illustrated in Fig. 10.

A detailed description of the inter-molecular ineffective
collision operator is given in Algorithm 4.

Algorithm 4. Inter-molecular ineffective collision operator

Input:
The current Pop.

Output:
Two new molecules v01 and v02.

1: Choose randomly a molecules v1 from the current
population Pop;

2: Choose some molecules as candidates from the population;
3: Calculate the Hamming distance between the molecules

v1 and the candidates;
4: Sort the candidates in descending order by the Hamming

distance;
5: Calculate the independent random variableX with s ¼ 1

and m ¼ 0 using Eq. (3);

6: Calculate x ¼ the number of candidates �jXj
3

;
7: Select one molecule as v2, whose index is x, from the

candidates;
8: Choose randomly a suitable cut point i according to an

exclusive-OR result;
9: Inherit from the left segments of v1 and v2 to generate the

left segments of v01 and v02, respectively;
10: Generate each task in the right segments of v01, which comes

from the tasks in v2 that do not appear in the left segment of
v1

11: Generate each task in the right segments of v02, which comes
from the tasks in v1 that do not appear in the left segment of
v2;

12: return two new molecules v01 and v02.

3.3.4 Synthesis

The synthesis operator is also an inter-molecular reaction.
When two molecules, v1 and v2, collide into each other,

they can be combined to generate a new molecule, v0, if the
condition PEv1

þ PEv2
þKEv1

þKEv2
	 PEv0 holds [6]. It

means that the synthesis operator is a random search opera-
tor too, which searches a new better or worse molecule v0

randomly, and satisfies the condition 0 � PEv0 � PEv1
þ

PEv2
þKEv1

þKEv2
. In other words, the synthesis opera-

tor can generate a new and better or worse molecule. How-
ever, in this paper, a new scheme is added into the
synthesis operator to eliminate close relatives and to keep
the molecular diversity.

The synthesis operator consists of two stages: a selec-
tion stage and a synthesis stage. In the first stage, two
candidate molecules are selected in the following steps.
First, one molecule v1 is selected from the molecular pop-
ulation randomly. Second, some molecules are selected if
they have equal PE to v1, and the Hamming distances,
which denote close relatives, are computed between the
molecule v1 and candidates. Third, according to the Ham-
ming distance, the candidates are sorted in ascending or
descending order, respectively. Then we can choose one
order randomly. The ascending order denotes that the
synthesis operator is to eliminate close relatives and to
keep the molecular diversity, and a descending order
denotes that the synthesis operator is to escape from local
optima. Fourth, according to Eq. (3), we can calculate the
independent standard normal random variable X with

mean m ¼ 0 and variance s2 ¼ 1. Last, we select one mole-

cule as v2, whose index is x ¼ the number of candidates �jXj
3

, from

the candidates.
In the second stage, we generate a new solution v0

from two existing solutions v1 and v2, which have close
or distant relatives. The new solution is generated in the
following steps. 1) If the molecules v1 and v2 are not the
same, then a suitable crossover point i is chosen ran-
domly between the outermost 1s of the XOR string and
n, and the crossover point cuts the priority queues of the
pair of molecules (v1 and v2) into left and right seg-
ments; else the molecule v2 is deleted directly, and the
operator is over. 2) The left segment of vt1 is inherited
from the corresponding segment of v1, and each task in
the right segment of vt1 comes from the v2 and it does
not appear in the left segment of v1. In contrast, the left
segment of vt2 is inherited from the corresponding seg-
ment of v2, and each task in the right segment of vt2

comes from the v1 that it does not appear in the left seg-
ment of v2. 3) We select a better molecule between the
vt1 and the vt2, and copy it to the v0.

This operation is illustrated in Fig. 11.
A detailed description of the synthesis operator is given

in Algorithm 5.

Fig. 10. Illustration of inter-molecular ineffective collision.
Fig. 11. Illustration of synthesis.
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Algorithm 5. Synthesis operator

Input:
The current population Pop.

Output:
One new molecule v0.

1: Choose randomly a molecules v1 from the current popula-
tion Pop;

2: Choose some molecules as candidates from the population;
3: Calculate the Hamming distance between the molecules

v1 and the candidates;
4: if a random number > 0:5 then
5: Sort the candidates in ascending order by the Hamming

distance;
6: else
7: Sort the candidates in descending order by the Hamming

distance;
8: end if
9: Calculate the independent random variable X with s ¼ 1

and m ¼ 0 using Eq. (3);
10: Calculate x ¼ the number of candidates �jXj

3
;

11: Select one molecule as v2, whose index is x, from the
candidates;

12: if the molecules v1 and v2 are the same then
13: Delete v2 from the current population;
14: else
15: Choose randomly a suitable cut point i according to an

exclusive-OR result;
16: Inherit from the left segments of v1 and v2, and generate

the left segments of vt1 and vt2, respectively;
17: Copy from the tasks in v2 to the right segments of vt1 that

do not appear in the left segment of v1;
18: Copy from the tasks in v1 to the right segments of vt2 that

do not appear in the left segment of v2;
19: if PEvt1 > PEvt2 then
20: Copy the molecule vt2 to the new molecule v0;
21: else
22: Copy the molecule vt1 to the new molecule v0;
23: end if
24: end if
25: return the new molecule v0.

3.4 Heuristic Mapping and Potential Energy Value
Computing

Given a solution of the execution order obtained in Section 3,
the heuristic method tries to map each task in the solution
(in the order of its position in the queue) to a computing
processor that can provide the earliest finish time. For the
task scheduling problem, the goal is to obtain a task assign-
ment that ensures the minimum makespan and guarantees
the precedence constraints among all tasks. The earliest fin-
ish time of the exit task will be the makespan of the DAG
application. The scheduling length, namely makespan, or
potential energy is defined as:

PE ¼ makespan ¼ AFT ðTexitÞ; (4)

where AFT ðTexitÞ is the actual finishing time of the exit task
Texit. The overall schedule length of the entire DAG is the
latest finish time among all tasks, which is equivalent to the
actual finish time of the exit task Texit.

In this paper, in order to accelerate convergence speed of
the HCRO algorithm, a heuristic-based heterogeneous earliest
finish time (HEFT) algorithm is applied to realize the perfor-
mance-effective and low-complexity approach [18], which
avoids less effective task-to-processor mapping [25]. The
HEFT is proposed to search for a solution in order to mini-
mize makespan without violating precedence constraints.
Section 3 of the supplemental file, available online, presents
the entire framework of combining CRO and the heuristic
method in the hybrid CRO algorithm.

3.5 Time and Space Complexity Analysis

The time complexity of the HCRO is analyzed as follows.
The time is mainly spent in running the searching loop in
the proposed HCRO. In each iteration of the loop, the algo-
rithm may need to execute a fitness evaluation function, on-
wall ineffective collision, decomposition operator, inter-
molecular ineffective collision, and synthesis operator. The
time complexity of a fitness evaluation function is Oðe�mÞ
[18], where e is the number of edges in the DAG and m is
the number of heterogeneous computing processors. The
worst case time complexity of on-wall ineffective collision,
decomposition operator, inter-molecular ineffective colli-

sion, and synthesis operator is Oðn2Þ. Therefore, the time

complexity of the HCRO is Oðiters� ðe�mþ n2ÞÞ, where
iters is the number of iterations performed by the HCRO.
For a dense graph where the number of edges is propor-

tional to Oðn2Þ (n is the number of subtasks), the time com-

plexity is thus Oðiters� n2 �mÞ.
The space complexity of the HCRO can be analyzed as

follows. In the HCRO, for each molecule we need an array
of size ð2� nÞ to store it. There are PopSize molecules in the
initial Pop. Therefore, the space complexity of the HCRO is
OðPopSize� nÞ.

4 EXPERIMENTAL STUDIES

In this section, we conduct the experiments to verify the
effectiveness of our proposed HCRO. Since the proposed
HCRO combines CRO with the heuristic methods, we com-
pare our HCRO with two popular existing heuristic meth-
ods HEFT-B, CPOP [18], and the DMSCRO method, which
is a pure meta-heuristic method developed in [8] to sched-
ule DAG tasks. HEFT-B uses the length of the longest path,
i.e., from the exit task of the DAG application to task Ti, to
determine Ti’s execution order, while CPOP adopts differ-
ent mapping strategies for the nodes in the critical path and
the non-critical path nodes. A CP processor is defined as the
processor that minimizes the overall execution time of the
critical path assuming all nodes in the critical path are
mapped onto the CP processor. If the selected node is in the
critical path, it is mapped onto the CP processor. Otherwise,
it is mapped onto a processor that minimizes its EFT (simi-
lar as in the HEFT algorithm). Since the DMSCRO algorithm
developed in [8] is a pure meta-heuristic method, it spends
much longer time than the proposed HCRO to find a desir-
able scheduling solution, which has been analyzed in Theo-
rem 1 and will also be demonstrated in the experiments.

The performance metric used for comparison is make-
span. We use the Communication to Computation Ratio (CCR)
of a DAG to represent the characteristic of the graph, which
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is communication-intensive or computation-intensive. The
higher the value of CCR is, the more communication-inten-
sive the DAG graph is. The lower the value of CCR is, the
more computation-intensive the DAG is. For a given task
graph, it is computed by the average communication cost
divided by the average computation cost on a target com-
puting system.

The HCRO is programmed in C#. A DAG task in the pro-
gram is represented by a class, whose members include an
array of subtasks, a matrix of the speed at which each sub-
task runs on each computing processor, and a matrix of
communication data between every pair of subtasks. A sub-
task in the program is also represented by a class, whose
members include an array of predecessors of the subtask,
an array of successors of the subtask, the in-degree of the
subtask, the out-degree of the subtask, and the computa-
tional data of the subtask. The simulations are performed
on a computer with an Intel Core 2 Duo-E6700 @ 2.66 GHz
CPU and 2 GB RAM.

In the experiments, based on the results of preliminary
studies, the values of the parameters to be used in the
HCRO are determined as follows:

� InitialKE ¼ 10;000; buffer ¼ 2;000;
� MoleColl ¼ 0:2;KELossRate ¼ 0:5;
� a ¼ 200; b ¼ 100;
where InitialKE is the initial energy associated to mole-

cules, buffer is the initial energy in the energy buffer, MoleC-
oll is the rate of which determines whether to perform an
uni-molecular or an inter-molecular operation, KELossRate is
the loss rate of the KE energy. a and b are thresholds
defined for the conditions for decomposition and synthesis,
respectively. These values are deduced from [6]. In our
experiments, a and b are dynamically adjusted to keep the

population size. The algorithms are terminated when the
value converges to a relatively stable state (i.e., the make-
span remains unchanged) for a preset number of consecu-
tive iterations in the search loop (in the experiments, it is
10,000).

4.1 Real World Application Graphs

This experiment uses the task graphs from two real world
applications: Gaussian elimination [26] and Molecular
dynamics code [27].

4.1.1 Gaussian Elimination

Gaussian elimination is used to calculate the solution of a
set of linear equations. In this experiment, a Gaussian elimi-
nation algorithm with the problem size of seven (i.e., the
number of linear equations or the size of the coefficient
matrix) was used to evaluate the HCRO. Its underlying
DAG is shown in Fig. 12. The total number of tasks in the
graph is 27, and the largest number of tasks at the same
level is six (i.e., degree of parallelism in the DAG). More-
over, because of the feature of the Gaussian elimination
application, each task in the graph contains the same opera-
tions, and the same amount of data is communicated from a
task to its children tasks.

The computational complexity of Gaussian elimination is

Oðn3Þ; that is, the number of operations required is (approx-

imately) proportional to n3 for a matrix of size n� n. The
DAG for the Gaussian elimination algorithm for n ¼ 7; n ¼
10; n ¼ 15 and n ¼ 20 is shown in Table 4 where n is the size
of the matrix.

Since the structure of the graph is fixed, the total number
of subtasks in a graph can be calculated according to the
size of the matrix of Gaussian elimination. In the experi-
ments, the number of heterogeneous processors and the
matrix size values are varied. CCR value is equal to 1:0 in
the experiments.

Fig. 13 shows the performance of these algorithms under
the increasing problem size of the Gaussian elimination
application. As the number of tasks increases, the figure
shows that the HCRO outperforms HEFT-B and CPOP,
which is to be expected. The reason may lie in that when the
number of tasks becomes bigger, the problem becomes
more complicated and it becomes increasingly difficult for
the heuristic algorithms to find good solutions.

Fig. 12. Gaussian elimination of problem size 7.

TABLE 4
Matrix Size and Number of Subtasks

No. Matrix size Number of subtasks

0 7 27
1 10 54
2 15 119
3 20 209

Fig. 13. Average makespan of Gaussian elimination with different matrix
size (the number of processors ¼ 8, CCR ¼ 1.0, 100 independent runs).
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Fig. 15 shows the performance of these four algorithms as
CCR increases. It can be observed that the average makespan
increases rapidly with the increasing of CCR. This may be
because when CCR increases, the application becomes more
communication-intensive, and consequently, the computing
processors remain idle for longer periods of time. Fig. 15
shows that the HCRO outperforms HEFT-B and CPOP, and
achieves better performance than DMSCRO. We can
observe that the advantage becomes more obvious when
CCR becomes bigger.

Figs. 14 and 16 show the final makespan achieved by the
HCRO and the DMSCRO after the stopping criteria are sat-
isfied. In this case, the fact that the HCRO converges faster
than the DMSCRO means that the makespan obtained by
the HCRO could be much better than that of the DMSCRO
when the algorithms stop.

4.1.2 Molecular Dynamics Code

This experiment used a DAG extracted from the molecular
dynamics code presented in [27] to evaluate the perfor-
mance of the scheduling algorithms. The underlying DAG
is shown in Fig. 17.

Fig. 19 shows the performance of these four algorithms as
CCR increases. These results suggest that the heuristic algo-
rithms HEFT-B and CPOP perform less effectively for

Fig. 15. Average makespan of Gaussian elimination with different CCR
(the number of processors¼ 8, thematrix of size 7, 100 independent runs).

Fig. 14. The convergence trace of the average makespan of the best
individual for Gaussian elimination (the number of processors ¼ 8,
CCR ¼ 1.0, the matrix of size 10, 100 independent runs).

Fig. 16. The convergence trace of the average makespan of the best
individual for Gaussian elimination (the number of processors ¼ 8, CCR
¼ 1.0, the matrix of size 7, 100 independent runs).

Fig. 17. A molecular dynamics code.

Fig. 19. Average makespan for the molecular dynamics code with differ-
ent CCR (the number of subtasks ¼ 41, the number of processors ¼ 8,
100 independent runs).

Fig. 18. Average makespan for the molecular dynamics code (the num-
ber of subtasks ¼ 41, CCR ¼ 1.0, 100 independent runs).
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communication-intensive applications, while the HCRO
and the DMSCRO can deliver more consistent performance
in a wide range of scheduling scenarios.

Fig. 18 shows the average makespan achieved by these
four algorithms under the increasing number of computing
processors. In Fig. 18, the makespan decreases with the
increasing number of computing processors, which is to be
expected. The trend observed in these figures is consistent
with those seen in our simulation experiments. The results
observed in all these figures show that the HCRO proposed
in this paper outperforms HEFT-B, CPOP, and the
DMSCRO in most cases.

This figure also shows that when the number of comput-
ing processors increases, the average makespan decreases,
which is to be expected. Furthermore, the decreasing trend of
the average makespan tails off as the number of computing
processors continues to increase. This is because the degree
of parallelism is limited in the DAG application. When the

number of computing processors approaches the degree of
parallelism, further increasing the number of computing pro-
cessorswill be of little help in reducing themakespan.

Fig. 20 shows the final makespan achieved by the HCRO
and the DMSCRO after the stopping criteria are satisfied. It
can be seen that the HCRO can obtain a better average
makespan performance than the DMSCRO. This result once
again verifies that the HCRO is able to strike a good balance
between performance and overhead.

4.2 Randomly Generated Application Graphs

In these experiments, we use randomly generated task
graphs to evaluate the performance. In order to generate
random graphs, we implemented a random graph genera-
tor which allows the user to generate a variety of random
graphs with different characteristics. Input parameters of
the generator are CCR, the number of instructions in a task
(representing the computation workload), the levels of the
graphs, and the number of tasks in a graph. We have gen-
erated a large set of random task graphs with different
characteristics, and scheduled these task graphs on a het-
erogeneous computing system. We have evaluated the

Fig. 20. The convergence trace of the average makespan of the best
individual for the molecular dynamics code (the number of subtasks¼ 41,
the number of processors¼ 8, CCR¼ 1.0, 100 independent runs).

TABLE 5
The Different Parameters of Random Task Graphs

Maximum Average

Tasks Levels In-degree Out-degree In-degree

10 3-11 11 11 3.63
20 4-21 21 21 5.46
50 6-44 42 44 5.86
100 7-57 47 51 7.81
200 7-77 181 188 30.72

Fig. 21. The average makespan of task graphs with different characteris-
tics (the size of the task graphs ¼ 10, the number of task graphs ¼ 100,
the number of processors ¼ 16, 100 independent runs).

Fig. 22. The average running time of task graphs with different character-
istics (the size of the task graphs¼ 10, the number of task graphs ¼ 100,
the number of processors¼ 16, 100 independent runs).

Fig. 23. The average makespan of task graphs with different characteris-
tics (the size of the task graphs ¼ 200, the number of task graphs ¼ 100,
the number of processors ¼ 16, 100 independent runs).
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performance of the algorithms under different parameters,
including numbers of tasks, different numbers of comput-
ing processors, and different CCR values. The performance
of the HCRO is compared with those of other algorithms.
Each value plotted in the graphs is the result averaged
over 100 different random DAG graphs.

The following is the values of parameters used in the
simulation experiments, unless otherwise stated. The num-
ber of tasks generated in a DAG is randomly selected from
10, 20, 50, 100, and 200. The number of instructions in the
tasks varies randomly between 1 and 80. The number of
successors that a task can have is a random number. The
random DAG task graphs have the following characteristics
shown in Table 5.

Figs. 21 and 23 show that the HCRO outperforms HEFT-
B and CPOP. This may be because the problem becomes
more complicated and it becomes increasingly difficult for
the heuristic algorithms to find good solutions when the
number of tasks becomes bigger. It can also be seen from
these figures that the HCRO is able to achieve better average
performance than the DMSCRO in all cases.

Figs. 22 and 24 show the final makespan achieved by the
HCRO and the DMSCRO after the stopping criteria are
satisfied.

Our experiments show that the HCRO spends much less
overhead to find a desirable solution than the DMSCRO.
The results indicate that although the HCRO costs much
less than the DMSCRO to find a sub-optimal solution, it can

achieve similar or better performance. Our experimental
results show that the HCRO can obtain a better average
makespan performance than the DMSCRO.

Figs. 25 and 26 show that the proposed HCRO algorithm
outperforms HEFT-B and CPOP, and it can achieve a better
average performance than the DMSCRO with lower over-
head. In this experiment, the algorithms are stopped the
search when the performance stabilizes (i.e., the makespan
remains unchanged) for a preset number of consecutive iter-
ations in the search loop (in the experiments, it is 10,000).

5 CONCLUSIONS

In this paper, a hybrid chemical reaction optimization
approach is proposed for DAG scheduling on heterogeneous
computing systems. The algorithm incorporates the CRO
technique to search the execution order of tasks while using a
heuristic method to map tasks to computing processors. By
doing so, our proposed HCRO scheduling algorithm can
achieve a good performance without incurring a high sched-
uling overhead. In the experiments, the proposed HCRO is
comparedwith two heuristic algorithms (HEFT-B and CPOP)
and a pure meta-heuristic method (DMSCRO). The results
show that our proposed HCRO algorithm outperforms
HEFT-B andCPOP, and it can achieve a better average perfor-
mance than the DMSCROwith lower overhead.
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