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ABSTRACT The 4D trajectory is amulti-dimensional time series with plentiful spatial-temporal features and

has a high degree of complexity and uncertainty. Aiming at these features of aircraft flight trajectory and the

problem that it is difficult for existing trajectory prediction methods to extract spatial-temporal features from

the trajectory data at the same time, we propose a novel 4D trajectory prediction hybrid architecture based

on deep learning, which combined Convolutional Neural Network (CNN) and Long Short-Term Memory

(LSTM). An 1D convolution is used to extract the spatial dimension feature of the trajectory, and LSTM

is used to mine the temporal dimension feature of the trajectory. Hence the high-precision prediction of

the 4D trajectory is realized based on the sufficient fusion of the above features. We use real Automatic

Dependent Surveillance -Broadcast (ADS-B) historical trajectory data for experiments and compare the

proposed method with a single LSTM model and BP model on the same data set. The experimental results

show that the trajectory prediction accuracy of the CNN-LSTM hybrid model is superior to a single model.

The prediction error is reduced by an average of 21.62% compared to the LSTM model and by an average

of 52.45% compared to the BP model. It provides a certain reference for the trajectory prediction research

and Air Traffic Management decision-making.

INDEX TERMS 4D trajectory prediction, deep learning, CNN-LSTM model, spatial-temporal feature.

I. INTRODUCTION

Air Traffic Management (ATM) system is a dynamic, com-

plex, information-driven automation system [1]. It considers

the trajectory of the aircraft at all stages of flight and manages

these trajectories to avoid conflicts. With the smallest possi-

ble deviation from the flight plan, the optimized operation of

the entire system is achieved. With the vigorous development

of the air transport industry, the scale of the route network

has gradually expanded, and airspace resources have become

increasingly scarce. In order to meet the challenges brought

by the continuous increase in air traffic to the Air Traffic

Control (ATC) system, International Civil Aviation Organiza-

tion (ICAO) regards Trajectory BasedOperation (TBO) as the

core operating concept of the next generation air navigation

system. TBO uses the flight trajectory of the aircraft as the

only reference and realizes the sharing of the flight trajec-

tory within the ATM system. All parties concerned make
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collaborative decisions to accurately manage and control the

operation of the aircraft [2], [3].

In addition, the United States has proposed the Next

Generation Air Transportation System (NextGen) [4], [5],

and the Eurocontrol has launched the Single European Sky

ATM Research (SESAR) program [6]. NextGen intends to

help controllers make reasonable decisions through trajec-

tory optimization and matching, flight conflict detection and

resolution, etc., so as to reduce flight delays, improve flight

operational efficiency, and ensure the safety of flights at the

same time. SESAR uniformly monitors the airspace of each

member state, so that the planning of airspace flow can be

free from national boundaries, thereby achieving a reasonable

allocation of airspace resources.

4D trajectory prediction is the process of calculating the

longitude, latitude, altitude, and time of the aircraft at future

moments. Accurate 4D trajectory prediction helps to improve

the level of automated decision-making in air traffic, thereby

reducing the participation of staff; on the other hand, it helps

to avoid potential flight conflicts and enhance air traffic

safety.
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In the process of rapid development of artificial intelli-

gence, deep learning has gradually been applied to various

fields. At present, great success has been achieved in image

classification, machine translation, natural language process-

ing, and human-machine games [7]–[10]. Inspired by this

phenomenon, deep learning methods have also been utilized

to process time series prediction, for instance, pedestrian

trajectory prediction, vehicle trajectory prediction, and traffic

flow prediction [11]–[13]. Since the aircraft trajectory can

be viewed as multi-dimensional time series, deep learning

can be used for processing the trajectory prediction problem.

The current flight trajectory prediction mostly uses LSTM

networks with memory function. It can better capture the

features of the trajectory in the time dimension, but it cannot

capture the spatial features of the trajectory well. CNN is

more suitable for extracting spatial features, and the com-

bination of CNN and LSTM has also been widely used

in classification tasks such as authorship classification of

paintings, deep sentiment representation and prediction tasks

such as traffic flow prediction, stock market index prediction,

etc. [14]–[17]. The above models often use two-dimensional

convolution to process image data or embed the convolution

into the LSTM modules. The difference is that this paper

first extracts the spatial correlation of the trajectory by one-

dimensional convolution, and then extracts the time dimen-

sion dependence of the trajectory by LSTM network, so as to

better integrate the temporal-spatial features of the trajectory.

The main contribution of our research is described below.

a) A novel 4D trajectory predictionmethod based on com-

bined CNN-LSTM is presented. The 1D convolution

of CNN is used for extracting the spatial features of

the adjacent area of the trajectory, and the subsequent

LSTM module is used to mine the temporal features

of the trajectory data, so as to achieve the full fusion

of the temporal and spatial features of the prediction

point. This method solves the shortcomings of insuf-

ficient extraction of trajectory features. To the best of

our current knowledge, it is the first time to apply the

CNN-LSTM model for achieving the prediction of 4D

trajectory.

b) The scheme of single-step and multi-step prediction

of 4D trajectory based on the time window are intro-

duced. The future trajectory at one moment or multiple

moments is predicted by the historical trajectory infor-

mation within the time window, which guarantees the

real-time prediction of trajectory to a certain extent.

c) We compared the constructed model with a single BP

and LSTM model, which greatly improved the predic-

tion accuracy compared to a single model.

The rest of this paper is organized as follows. Section II dis-

cusses the related works of trajectory prediction. Section III

analyzes the ADS-B trajectory. Section IV introduces the the-

ory of deep learning and presents the model of 4D trajectory

prediction. Section V shows the experimental simulation and

result analysis. Section VI summarizes the conclusions and

gives a future research plan.

II. RELATED WORKS

With the continuous updating of communication, navigation,

surveillance and airborne equipment, the requirements

for real-time and accuracy of trajectory prediction are

constantly increasing. And the prediction methods have

been continuously developed into the following categories.

(i) Aerodynamic-based or aircraft performance model-based

methods. (ii) Mixed estimation theory-based methods.

(iii) Machine learning-based methods.

A. AERODYNAMIC-BASED OR AIRCRAFT PERFORMANCE

MODEL-BASED METHODS

The prediction method based on aerodynamics or aircraft

performance model is to divide the entire flight process of

the aircraft into several stages, establish a motion equation

for the flight trajectory of each stage, and define the start and

end conditions and motion equation parameters of each sub-

phase. Chao et al. [18] proposed a four-dimensional trajectory

predictionmethod based on the basic flight model. According

to the features in the flight phase, the basic flight model

was used to construct the aircraft’s horizontal profile, altitude

profile, and speed profile. Junfeng et al. [19] designed a

four-dimensional trajectory prediction model by statistically

analyzing the actual radar trajectory data of the aircraft, with

a combination of aircraft intent model and aircraft dynam-

ics and kinematics model. Zhou et al. [20] combined flight

motion model and gray theory to predict the trajectory, which

improved the prediction accuracy. Kaneshige et al. [21] pro-

posed a trajectory prediction method based on the basic

motion model, which can improve the reliability of the

trajectory prediction.

The above methods effectively utilize the characteristics of

aircraft flight phases to simplify modeling and is suitable for

trajectory prediction of complex operating states of aircraft

in the terminal area. However, the dynamic parameters of the

aircraft constantly change during flight, which is difficult to

accurately estimate in advance. As the division of stages is

too idealized, the actual flight trajectory may not meet the

division of these stages. Therefore, this type of aerodynamic

model has certain disadvantages, such as too many parame-

ters, and the prediction accuracy is not high.

B. MIXED ESTIMATION HEORY-BASED METHODS

The trajectory prediction can be regarded as a stochastic

linear hybrid system estimation problem. In view of this,

Yunxiang et al. [22] used the hybrid system theory to con-

struct the parameter evolution model of the aircraft in the

flight segment and the state transition model during flight

segment switching. By adjusting the corresponding aircraft

parameters, a multi-aircraft conflict-free 4D trajectory is

planned. Li et al. [23] described the aircraft’s horizontal

motion model based on the hybrid system theory. They

proposed an interactive multi-model trajectory prediction

algorithm based on the diversity and uncertainty of aircraft

motion. Taobo and Baojun [24] proposed a Kalman filter
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algorithm for real-time trajectory improvement of system

noise in prediction models. In view of the multi-modal nature

of aircraft motion, the single-model approach is incapable.

Although multi-model estimation takes into account the

three-dimensional state of aircraft motion, it has the drawback

that the algorithm complexity increases exponentially with

the number of models. Interactive Multiple Models (IMM)

can solve this problem. Interactive multi-model (IMM) algo-

rithm can realize state estimation of hybrid system through

state estimation weighted summation, and then realize tra-

jectory prediction [25]. In addition, there are improved inter-

active multi-model estimation methods. A modal switching

update method is proposed in literature [26]. Literature [27]

proposed a hybrid estimation method which is related to the

state based on wind speed and direction, to realize the tra-

jectory prediction. However, the algorithm complexity of the

abovemethods is too large tomeet the real-time requirements.

C. MACHINE LEARNING-BASED METHODS

The continuous rise of artificial intelligence has made

machine learning an emerging technology in terms of 4D tra-

jectory prediction. Kun and Wei [28] presented a regression

statistical model. This model mainly mines historical flight

time, finds out the factors that affect flight time, and predicts

the full flight time of the next flight. Then, the position of the

aircraft at the beginning of each sampling period is analyzed

from the historical position, to achieve a complete 4D tra-

jectory prediction. Song et al. [29] processed historical radar

trajectory data based on data mining technology to extract

a classic trajectory data set. Taobo and Baojun [30] used

fuzzy clustering to analyze the flight data of the approach-

ing aircraft’s 4D trajectory, thereby providing a basis for

the reasonable design of the approach and departure proce-

dures. Aiming at the target trajectory in the hotspot area,

Kui et al. [31] build a BP neural- network based model for

target trajectory prediction.

The above machine learning methods also have corre-

sponding problems. The cluster-based method has limited

prediction performance due to the limitation of input informa-

tion. The regression statistical model must model each flight

with massive trajectory data. The BP prediction model only

considers the two-dimensional position information of the

aircraft’s latitude and longitude, so the prediction dimension

is insufficient.

Since the LSTM network in deep learning is very expert in

processing long sequences, in the year of 2018, Shi et al. [32]

constructed a 4D trajectory prediction model using LSTM

neural network. At the same time, Zhang et al. [33] then

proposed an LSTM network optimized by the Ant Lion

Optimization (ALO) algorithm for trajectory prediction.

Han et al. [34] also proposed a short-term 4D trajectory pre-

diction model based on LSTM. Zhang and Mahadevan [35]

proposed a blended model combining DNN and LSTM for

trajectory prediction, in which the uncertainty of model

prediction is characterized by Bayesian approach, so as to

increase en-route flight safety. In addition, Yin and Tong [36]

carried out the influence of GRIB data on the accuracy

of 4D trajectory prediction, which is an important research

direction. Pang et al. [37] proposed a novel network archi-

tecture, aiming at solving the problem of aircraft trajectory

prediction related to convective weather before takeoff. The

convolutional layer is embedded in the repeating modules

of the LSTM to extract useful features from weather cube.

Unlike the two-dimensional convolution in literature [37],

we use one-dimensional convolution to process trajectory

data, extracting the spatial correlation between the adjacent

areas of the trajectory.

In this paper, we propose a multi-layer CNN-LSTM hybrid

model that can fully extract the spatial-temporal features

of the trajectory. Since the traditional trajectory prediction

methods are not suitable for the situation with a large number

of trajectory samples, the model in this paper is compared

with the most commonly used BP neural network and the

latest LSTM network in the field of 4D trajectory prediction

to verify the prediction performance of the proposed model.

III. ANALYSIS OF ADS-B TRAJECTORY

ADS-B connects satellites, aircraft, and ground stations to

form a comprehensive system involving three levels of space,

air, and ground. It reports the current flight parameters of the

aircraft and the specific position information of the aircraft

by sending ADS-B messages to the outside.

A. FORMAT OF ADS-B TRAJECTORY

The trajectory data returned by ADS-B is discontinuous,

it consists of a series of discrete trajectory points [38].

Let T be the historical trajectory set, which includes N

historical trajectory, expressed as

T = {T1,T2, . . .Tk , . . . ,TN } (1)

where, Tk is the kth trajectory in T .

Suppose each trajectory contains n trajectory points,

Tk = {mk1,mk2, . . . ,mki, . . . ,mkn} (2)

where, mki is the i
th trajectory point in Tk .

If each trajectory point contains p features,

mki = {rki1, rki2, . . . , rkij, . . . , rkip} (3)

where, rkij is the j
th feature of the point mki.

The features contained in each collected ADS-B historical

trajectory are shown in Table. 1.

B. PREPROCESSING OF ADS-B TRAJECTORY

Due to system errors, signal occlusion, etc., the real ADS-B

trajectory data has problems such as repeated trajectory

points and missing trajectory points. Repeated trajectory

points will affect the availability of data, and we have elim-

inated duplicate trajectory points. For trajectory with a large

number of missing trajectory points, it should be removed.

For trajectory with a relatively small number of missing

trajectory points, the problem can be solved by interpolation

methods.
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FIGURE 1. Example of trajectory interpolation.

TABLE 1. Features of one trajectory point.

According to the continuity and smoothness of the flight

trajectory, the missing points are supplemented by the cubic

spline interpolation algorithm. The specific method is to

divide the trajectory into five components related to time t

such as longitude, latitude, altitude, velocity, and heading,

and obtain their interpolation results respectively.

Fig. 1 shows an example of interpolation of the longitude,

latitude, altitude, and velocity of the trajectory. It can be seen

from Fig. 1 that the trajectory becomes more complete, and

the longitude, latitude, altitude, and velocity features of the

trajectory also become more uniform after the processing of

cubic spline interpolation. Through cubic spline interpola-

tion, the missing trajectory points are well complemented,

and sufficient preparation is made for subsequent splitting of

trajectory sample.

IV. METHODOLOGY

In this section, the Convolutional Neural Network (CNN) and

Long Short-Term Memory (LSTM) are combined to propose

a hybrid model for 4D trajectory prediction, called hybrid
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FIGURE 2. Typical structure of CNN network.

CNN-LSTM. Before that, we introduced the basic theories

of deep learning that are indispensable for data modeling,

including CNN and LSTM.

A. CNN NETWORK

CNN is a feedforward neural network with a deep

structure, which is expert in processing image-related prob-

lems [39], [40]. The general structure of CNN is shown

in Fig. 2.

Fig. 2 indicates that CNN consists of four layers, which is

data matrix input, pooling, convolution, and fully connected

layer.

The core of the CNN is the convolution operation. The

biggest difference from the fully connected structure is that

the convolution operation takes full advantage of the infor-

mation in the adjacent areas of the data matrix. The size of

the parameter matrix is greatly reduced by sparse connections

and sharing weights. The pooling layer creates its own feature

map by getting the average value or the maximum value,

which achieves the compression of features and can avoid

overfitting to a certain extent. We can construct multi-layer

convolution and pooling operations in CNN. The deeper the

layer of the network structure, the more abstract the fea-

tures it extracts. The extracted abstract features are merged

through a fully connected layer, and finally the classification

problems and the regression problems can be solved through

softmax or sigmoid activation function [41]. We just use the

one-dimensional convolution in CNN to effectively extract

the spatial feature of the trajectory dat.

B. LSTM NETWORK

Recurrent Neural Network (RNN) is a neural-network with

short-term memory, which is suitable for processing time-

series related problems. In recent years, RNN has made

great success in the prediction of time series, but it has a

Long-Term Dependencies problem in the training process of

long series [42]. LSTM is improved to solve the Long-Term

Dependencies problem. Trajectory can be considered as

multiple time series, so we can take advantage of LSTM to

process time series data and learn the Long-Term Dependen-

cies of 4D trajectory data.

Compared with standard RNN, the main improvement of

LSTM is the introduction of gating mechanism, namely input

gate, forget gate and output gate, so as to control the informa-

tion transmission in neural networks. The key to LSTM is

the cell state. The first is to determine what and how much

information we will discard from the cell state. This discard

action is done through the forget gate. The next step is to

determine what new information will be sent into the cell

state. This operation is done through the input gate. Finally,

the output gate determines what information is output. The

architecture of the LSTM unit is illustrated in Fig. 3.

FIGURE 3. Standard structure of LSTM unit.

On the basis of the original short-term memory unit ht , the

LSTM model adds a memory unit Ct to maintain long-term

memory, that is, the state of the cell. As can be seen from

Fig. 3, an LSTM unit receives three inputs at each time step,

the input xt at the current moment, the state Ct−1 and the

output ht−1 from the last moment. Among them, xt and ht−1

are used as inputs of three gates at the same time. The update

process of the LSTM network is as follows.

ft = σ (Wf · [ht−1, xt ] + bf ) (4)
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FIGURE 4. The proposed CNN-LSTM hybrid model architecture.

it = σ (Wi · [ht−1, xt ] + bi) (5)

C̃t = tanh(Wc · [ht−1, xt ] + bc) (6)

Ct = ft × Ct−1 + it × C̃t (7)

ot = σ (Wo · [ht−1, xt ] + bo) (8)

ht = ot × tanh(Ct ) (9)

where, Wf , Wi, Wc, Wo are the coefficient matrix, bf , bi,

bc, bo are the bias matrix, σ represents a sigmoid activation

function. ft represents forget gate and it represents input gate.

At each moment, the forget gate controls how much memory

is forgotten at the last moment, and the input gate controls

how much new memory C̃t is written to the long-term mem-

ory. ot represents the output gate, which controls how short-

term memory is influenced by the long-term memory.

C. 4D TRAJECTORY PREDICTION MODEL BASED ON

CNN-LSTM

CNN is more suitable for spatial expansion and can extract

local spatial features very effectively [41], while LSTM has a

certain memory capacity and is mostly used for processing

time series data. Combining the advantages of CNN and

LSTM, we propose a 4D trajectory prediction model that

can effectively express the spatial-temporal features of the

trajectory. The overall architecture of the model is shown in

Fig. 4.

The model reflects the entire process of trajectory predic-

tion: input of trajectory data, training of trajectory data by the

model, and output of predicted trajectory. We will describe

the three parts in the following section.

The input to the model is ADS-B trajectory data. ADS-B

trajectory data is composed of a series of trajectory points

that change with time, which has rich spatial-temporal infor-

mation. Features of each trajectory at the time of t are defined

as

X (t)
def
={t, lon, lat, alt, vel, h} (10)

where t, lon, lat, alt, vel, h respectively refer to the time,

longitude, latitude, altitude, velocity, heading of the aircraft

at time t . We need to perform preprocessing such as supple-

menting the missing trajectory point on the input data, and

we need to normalize it before sending it to the model. The

input data of a traditional neural network is a vector, while

the input data of CNN and LSTM is a tensor containing time

series, that is, the time_step dimension is added. In order to

facilitate CNN’s convolution operation, time_step is set to 6,

that is, the trajectory characteristic data of 6 consecutive time

is used to predict the trajectory data at the next time. So, each

of our samples is a 6 × 6 square matrix.

The core part of the model includes 1D CNN, LSTM and

a fully connected layer. We use one-dimensional convolution

to extract the spatial feature of the trajectory. The process is as

follows. The trajectory data first pass through a convolution

layer (convolution1D), the number of 1×3 convolution kernel

is 32, the activation function is Relu, and then through a max

pooling layer with a window size of 2. Then, the processed

data is sent to the LSTM module after repeating the same

convolution, activation, and pooling operations. We design

two layers of LSTMs to mine the temporal features, and the

output dimension of each layer of LSTM is 50, and each

layer of LSTM uses dropout to avoid overfitting. Dropout

randomly resets part of the weight or output of the hidden

layer to zero to reduce the interdependence between the nodes

of the neural network, so as to achieving the purpose of

avoiding overfitting. The first LSTM layer takes the output

at all moments, and the second LSTM layer takes the output

at the last moment of the hidden layer. Finally, the trajectory

data processed by CNN and LSTM will be sent to a fully

connected layer.

The output of the prediction model is the time, longitude,

latitude, and altitude information of the aircraft at future

moments.

V. EXPERIMENTS

In this section, we use real ADS-B historical trajectory data

from Qingdao to Beijing route for experiments. These tra-

jectories are time series of varying lengths. The model is
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implemented on the Keras deep learning platform based on

TensorFlow. The whole process of the experiment is shown

in Fig. 5.

FIGURE 5. The Flow chart of experimental steps.

We first preprocess the ADS-B trajectory data, normalize

it and send it to the network for training. Then the vali-

dation set is simulated, and the predicted and actual tra-

jectories are compared. If the error is within the specified

range, the model is tested through the test set, otherwise

the model continues to be trained until the requirements are

met.

In order to be able to fully test the performance of

our proposed model, the prediction results of CNN-LSTM

are compared with a single LSTM network and BP net-

work respectively. In addition, we performed single-step and

multi-step prediction on trajectory respectively, in which

3 and 5 are selected as the step length in the multi-step

prediction. Therefore, we construct three data sets D1, D2

and D3.The sample division of the three data sets is shown

in Table 2. As can be seen from Table 2, each data set is

divided into a training set and a test set, and 10% of the

training set for each data set is selected as the validation set

to verify and adjust of the model. Finally, the test set is used

to evaluate the performance of our model.

TABLE 2. Sample division.

A. DATA PREPARATION

We use the trajectory data collected and decoded by ADS-B

from February to May 2017. For reasons of privacy protec-

tion, flight numbers have been omitted.

1) CONSTRUCTION METHOD OF TRAJECTORY SAMPLES

4D trajectory prediction is a supervised learning problem, and

the trajectory data needs to be split into training samples and

labels. We take a single-step prediction as an example to give

the sample construction method, as shown in Fig. 6.

FIGURE 6. Illustration of sample splitting.

In Fig. 6, the rows represent time steps and columns repre-

sent training features. We start from the first trajectory point

and go down in time sequence, selecting the time, longitude,

latitude, altitude, velocity and heading of the first 6 trajectory

points to predict the time, longitude, latitude and altitude of

the next trajectory point (y1 in the figure). Then, starting from

the second trajectory point (to ensure the continuity of the

samples in time, the separation interval S is selected as 1),

the same method is used to select the training samples. The

constructed sample (Sample1 in Fig. 6), as described in Part C

of Section IV, is a 6 × 6 square matrix.

2) SAMPLE NORMALIZATION

The trajectory data needs to be normalized before entering

it into the model. We refer to the method of Dispersion

Normalization in literature [43], which is defined as

N =
X − min

max − min
(11)
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where, X is the original sample data, max represents the

maximum value of the sample, min represents the minimum

value of the sample, and N is the normalized sample.

B. EVALUATION METRICS

Root Mean Square Error (RMSE), Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE) are the

most commonly used evaluation indicators for regression

problems. RMSE is the expected value of the square of the

difference between the predicted result and the actual target,

and then takes the square root operation. MAE is the average

of the absolute errors between predicted and observed values.

MAPE is a process of comparing with the original data,

considering the ratio between the error and the actual value.

We use the above three indicators to evaluate the effectiveness

of CNN-LSTM model. The calculation formulas of the three

indicators are shown in equations (12) to (14).

RMSE =

[

1

n

n
∑

i=1

(Pi − Ri)
2

]
1
2

(12)

MAE =
1

n

n
∑

i=1

|Pi − Ri| (13)

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

Pi − Ri

Pi

∣

∣

∣

∣

× 100% (14)

where, Pi represents the predicted trajectory at time i, and Ri
represents the actual flight trajectory at time i . The smaller

the values of the three-error metrics, the closer the predicted

trajectory is to the actual trajectory, which also indicates that

the model’s prediction accuracy is higher.

C. COMPARATIVE ANALYSIS OF EXPERIMENTAL RESULTS

BP model, LSTM model and the proposed CNN-LSTM

hybrid model are used to carry out experimental simulation

on the same data set. Therefore, we compare and analyze

the models from the following three aspects: model structure

and parameters, 4D trajectory prediction curve, and the error

values of the predictive measures of different models.

1) COMPARISON OF MODEL SRTUCTURE AND PARAMETER

Fig. 7 shows the structure and parameters of the three models.

The BP model designed in this paper includes an input layer,

two hidden layers and a fully connected output layer. Since

time_step is set to 6, and the number of training features is 6,

the input is a vector of length 36, which corresponds to the

first six trajectory point. The number of nodes in each hidden

layer is 50, and a dropout layer is added behind it to prevent

overfitting. The number of output nodes is 4, corresponding

to the trajectory feature at the next moment. The LSTM

network model includes an input layer, two LSTM hidden

layers, and a fully connected layer. The time_step in the input

layer is selected as 6, which indicates that the scale of input

data for training and testing is a 6 × 6 matrix, which also

corresponds to the first six trajectory point. The number of

nodes in each hidden layer of the LSTM is also set to 50.

Similarly, a dropout is added after each hidden layer. The

number of LSTM output nodes is 4, which corresponds to

the trajectory feature at the next moment.

The structure of the second half of the CNN-LSTM

network model is the same as the LSTM model. Before

the data enters the LSTM unit, the data is subjected to

one-dimensional convolution and pooling processing. Tak-

ing the CNN-LSTM model as an example, the dimensional

changes of the input and output data of each layer of the

model are described in detail. The input data is a three-

dimensional tensor (None, 6, 6), and None represents the

number of batch samples during model training. The data

first passes through a one-dimensional convolution layer

(conv1D) containing 1×3 convolution kernels, the number of

which is 32. Currently, the dimension of the tensor becomes

(None, 6, 32). Then after activated by Relu, passing a max

pooling layer (maxpooling1D) with a window size of 2,

the tensor dimension becomes (None, 3, 32). Then after the

same round of processing as above, the tensor shape becomes

(None, 1, 32). After processing by CNN, the tensor passes

through the first LSTM layer with output dimension of 50

(take the output at all times), the shape becomes (None, 1,

50). After the first layer of dropout, the shape remains the

same. After passing the second layer of LSTM (take the

output of the last moment) and dropout, the tensor dimension

becomes (None, 50). Finally, the tensor passes through a

fully connected layer with 4 nodes, and the output dimension

becomes (None, 4).

2) COMPARISON OF PREDICTED AND ACTUAL TRAJECTORY

Taking into account two actual flights (the flight number is

replaced by A and B here) as examples to give the model’s

single-step prediction result, as illustrated in Fig. 8-Fig. 9.

Fig. 8 is the prediction result of flight A, and Fig. 9 is the

prediction result of flight B. Fig. 8 (a) is a two-dimensional

graph of the predicted and the actual trajectory in latitude and

longitude coordinates. Fig. 8 (b) is a three-dimensional dis-

play of the predicted and the actual trajectory. As can be seen

from Fig. 8 (a) that the longitude and latitude prediction of the

three models can keep the same trend with the actual trajec-

tory, but the prediction curve of the BP model deviates signif-

icantly from the actual trajectory compared with the other two

models. LSTM and CNN-LSTM models have smaller errors

for the prediction of latitude and longitude. We can also see

from the three-dimensional figure that the altitude prediction

error of the models is slightly larger than the latitude and

longitude. Compared with the actual altitude, the predicted

trajectory points of the BP model have large fluctuations at

each position. Although the altitude prediction error of the

LSTMmodel is within an acceptable range, it can still be seen

directly from Fig. 8 (b) that it has larger prediction error than

the CNN-LSTM model. It can also be seen from Fig. 9 that

the trajectory predicted by the proposed CNN-LSTM model

is closest to the actual trajectory, with the smallest error,

followed by LSTM and BP. The prediction error of BP model
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FIGURE 7. Structure and parameters of each model.

is greatest. So, in general, the prediction accuracy of the

models is ranked as CNN-LSTM> LSTM> BP.

3) COMPARISON OF METRICS ERROR VALUES

Based on the predicted and actual trajectory, the values of

the three-evaluation metrics of RMSE, MAE and MAPE

can be obtained. We conduct statistical analysis on the sin-

gle feature (time, longitude, latitude, and altitude) errors in

the single-step prediction, and the results are illustrated in

Fig. 10-Fig. 12. We can see from Fig. 10-Fig. 12 that the

three-evaluation metrics of CNN-LSTM on a single feature

prediction of the trajectory is better both than LSTM and BP.

In addition, the three-evaluation metrics of the LSTM model

on a single feature are better than the BP model, indicating

that LSTM is more suitable for processing time series data

than BP.

We have also separately calculated the average error

of the predicted time, predicted longitude, predicted lati-

tude, and predicted altitude features of models in the case

of single-step and multi-step prediction, which are shown
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FIGURE 8. Prediction result of flight A.

FIGURE 9. Prediction result of flight B.

in Table 3. By analyzing the contents of Table 3, we can

draw the following conclusions. The prediction error of the

CNN-LSTM model is much smaller than that of LSTM and

BP in the single-step prediction. While in the multi-step pre-

diction, as the number of selected prediction steps increases,

the prediction error of the LSTMmodel gradually approaches

the CNN-LSTM model. On the D3 dataset, although the

CNN-LSTM model is better than the LSTM on the RMSE

and MAE indicators, there is not much difference between

both of them. In addition, whether it is a single-step prediction

or a multi-step prediction, the prediction error of the BP

model is much larger than the CNN-LSTMmodel and LSTM

model. Based on theMAPE indicator, we can also see that the

accuracy (1-MAPE) of the CNN-LSTM model in the three

prediction tasks can reach as low as 91% and as high as 95%,

indicating that the prediction performance is relatively stable.

While the prediction accuracy of the LSTM and BP models

decrease greatlywith the increase of selected prediction steps.

The prediction accuracy of the BP model on the D3 dataset

has even dropped below 80%. Therefore, the prediction per-

formance of the CNN-LSTM model is superior to the LSTM

and BP models.

For further comparison, in the single-step prediction, the

prediction error of the CNN-LSTM model is 29.06% lower

than the LSTM model on average, and 59.72% lower than

the BP model on average. In the three-step prediction, the

prediction error of the CNN-LSTM model is reduced by

an average of 24.31% compared to the LSTM model and

is reduced by an average of 50.42% compared to the BP

model. In the five-step prediction, the prediction error of

the CNN-LSTM model is reduced by an average of 11.50%

compared to the LSTM model, and 47.20% compared to the
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TABLE 3. Comparison of the Three Metrics for different models.

FIGURE 10. RMSE metrics for single feature.

FIGURE 11. MAE metrics for single features.

BP model. Based on the combined single-step prediction and

multi-step prediction, the prediction error of the CNN-LSTM

model is reduced by an average of 21.62% compared to the

single LSTMmodel, and is reduced by an average of 52.45%

compared to the single BP model. It can be seen from the

above analysis that compared with the single BP and LSTM

model, the prediction result of the CNN-LSTM hybrid model

FIGURE 12. MAPE metrics for single features.

is more accurate and can better meet the requirements of

aircraft 4D trajectory tracking.

VI. CONCLUSION

This paper proposes a hybrid model for 4D trajectory pre-

diction of aircraft. We combined CNN and LSTM in deep

learning to effectively extract the spatial-temporal features of

the trajectory. The proposed method solves the problems of

low prediction accuracy, insufficient prediction dimensions,

and insufficient extraction of trajectory features in the exist-

ing trajectory prediction methods. We used RMSE, MAE,

and MAPE indicators to measure the model. Based on this,

we compared the proposed model with a single LSTMmodel

and BP model. Experimental results demonstrate that the

proposed CNN-LSTM model can more precisely predict the

4D trajectory of the aircraft, and the prediction accuracy is

much higher than that of a single model.

However, the method proposed in this paper also has the

following disadvantages: (i) The model’s prediction of the

4D trajectory is short-term, not long-term. (ii) The ADS-B

historical trajectory data used in our model is only on a single

route, which has a limited scope of application. (iii) The

trajectory of the aircraft is also affected bymany other factors,

such as meteorological conditions and control orders. Due

to the limited trajectory information received by ADS-B,

the model does not consider the influence of such factors. 4D
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trajectory prediction in the airspace has a variety of situations,

and the influencing factors are also random. Corresponding

prediction models need to be established for different scenar-

ios. In the future, further research on 4D trajectory prediction

can be made from the above aspects.
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