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Abstract—Portfolio optimization is one of the most important
problems in the finance field. The traditional mean-variance
model has its drawbacks since it fails to take the market
uncertainty into account. In this work, we investigate a two-stage
stochastic portfolio optimization model with a comprehensive
set of real world trading constraints in order to capture the
market uncertainties in terms of future asset prices. Scenarios
are generated to capture uncertain prices of assets. Stability tests
are performed and the results confirm the effectiveness of the
scenario generation method used for this work. We propose
a hybrid combinatorial approach, which integrates a hybrid
algorithm and a linear programming (LP) solver for the problem
with a large number of scenarios, where the hybrid algorithm is
used to search for the assets selection heuristically and the LP
solver solves the corresponding sub-problems of weight allocation
optimally. The hybrid algorithm is based on Population Based In-
cremental Learning (PBIL) while local search, hash search, elitist
selection, partially guided mutation and learning inheritance are
also adopted. Comparison results against other 3 algorithms are
given. The results show that our hybrid combinatorial approach
can solve the two-stage stochastic model effectively and efficiently.
The effects of different parameter settings are also examined.

Index Terms—Hybrid Algorithm; Combinatorial Approach;
Stochastic Programming; Population-based Incremental Learn-
ing; Local Search; Learning Inheritance; Portfolio Optimization
Problem.

I. INTRODUCTION

With the advances in computing and the rise of big data,

nowadays the investment decisions are made not only by the

financial experts, but also based on sophisticated mathematical

models and number crunching by mathematicians or computer

scientists. The high yield of stock has made it a major

investment over the past decades. One typical problem in stock

market, portfolio optimization, can be described as allocating

the limited capital over a number of potential assets in order to

achieve investors risk appetites and the return objectives. The

first portfolio optimization model was proposed by Markowitz

in the 1950s [1], [2], where, the risk of the portfolio is

measured as the variance of the asset return and therefore

the problem can be viewed as a mean-variance optimization

problem. The original problem is a quadratic programming

problem, therefore it can be solved in an exact manner with a

reasonable computational time.

However, the basic Markowitz mean-variance model has

less practical utilities since it omits many constraints exist in

real world trading. By imposing more real world constraints,

for example cardinality (which specifies the total number of

the held assets in a portfolio in order to reduce the tax and

the transaction costs) and bounding (which specifies the lower

and upper bound of the proportion of each held asset in a

portfolio in order to avoid unrealistic holdings), the model

can be transformed into an NP-complete problem [3], [4].

Our previous work [5] has proposed a combinatorial algorithm

for the cardinality constrained portfolio optimization problem

using the extended mean-variance model.

Although the real world constraints have later been intro-

duced into the classic mean-variance model, there still remains

another important market factor, the uncertainty, that compli-

cates the investors making investment decisions. In the current

work of mean-variance portfolio optimization problem [5]–[9],

the mean expected return and the covariance between assets

are assumed to be static, which is often unrealistic due to the

economic turmoil and the market uncertainties in practice. It

has been pointed out in [10], [11] that the investment decisions

should be made based on the consideration of the market

uncertainties. Usually, the random uncertainty factors are taken

into account (i.e. the asset price, the currency exchange rate,

the prepayments, the external cashflows, the inflation, the

liabilities, etc.). There are also some other non-probabilistic

uncertainty factors (i.e. the vagueness and the ambiguity, etc.)

which are mainly modeled using fuzzy techniques [12]–[15].

In this work, we will focus on the random uncertainty of the

market, more specifically, we consider the future asset prices

to be uncertain.

Stochastic programming has been well studied for modeling

optimization problems with uncertain factors since late 1950s

[16]–[19]. It provides a stochastic view to replace the deter-

ministic one in the sense that the uncertain factors are repre-

sented by the assumed probability distributions. It can model

uncertainty and impose real world constraints in a flexible way
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[20]. As it has been shown in [21], stochastic programming has

been applied to many different areas successfully (finance, s-

ports, scheduling [22], telecommunications, energy, production

control and capacity planning, etc.). For this work, we propose

to use stochastic programming to model uncertain future asset

prices.

Another drawback of the mean-variance model is how it

characterizes the risk. In the classical Markowitz portfolio

optimization model, the risk is measured as the variance of

the asset returns. Because such characterization of the risk

is a measure of the dispersion of the values of the variable

around its expected value, therefore it cannot define the

direction of volatility in the sense that it penalizes the portfolio

profits and the portfolio losses at the same time. Practically,

people may only want to minimize the possibility of the

portfolio losses. Alternatively, another risk measure, namely

Value at Risk (VaR) [23], [24], is proposed to calculate the

downside risk. VaR calculates the maximum possible loss with

a specified confidence level and it is written into the industry

regulation [25], [26]. However, VaR is inadequate for market

risk evaluation since it does not satisfy the sub-additivity and

the convexity and generally it is not a coherent risk measure

[27]. Also, VaR does not take the distribution of the loss

exceeding the threshold into account and it would become

unstable if there is a sharp and heavy tail loss distribution.

Furthermore, VaR is difficult to optimize using scenarios [28].

In order to eliminate the drawbacks of VaR, Rockafella

and Uryasev [29] proposed Conditional Value at Risk (CVaR)

which calculates the expected loss for the worst case scenarios.

As it has been showed in [27], CVaR is a sub-additive and

convex risk measure, therefore it can be optimized using

stochastic programming.

Stochastic programming has been widely applied in finan-

cial optimization problems. Models for the management of

fixed income securities [30]–[32] and models for asset/liability

management [33]–[37] have been well studied in recent

decades. A more comprehensive review can be found in [38].

A wide range of approaches based on stochastic programming

for portfolio management have been developed [36], [37],

[39]–[44].

In the portfolio optimization problem domain, Gaivoron-

ski et al. [43] investigated different approaches to portfo-

lio selection based on different risk characterizations. They

proposed an algorithm to determine whether to rebalance a

given portfolio based on transaction costs and new market

condition information. Greco and Matarazzo [45] proposed an

approach for portfolio selection in a non-Markowitz way. The

uncertainties are modeled in terms of a series of meaningful

quantiles of probabilistic distributions. They proposed an In-

teractive Multiobjective Optimization (IMO) method based on

dominance-based Rough Set Approach (DRSA) to solve the

model in two phases. Chen and Wang [46] introduced a hybrid

stock trading system based on Genetic Network Programming

and mean-CVaR model (GNP-CVaR). The proposed model

combines the advantages of statistical models and artificial

intelligence in the sense that CVaR measures the market risk

and distributes the weights of capital to each asset in the

portfolio and GNP decides the trading strategies. Stochastic

programming models have also been widely used in the

portfolio optimization literature. For example Topaloglou et

al. [36] proposed a multi-stage stochastic programming model

for international portfolio management in a dynamic setting.

The uncertainties are modeled in terms of the asset prices and

exchange rates. Yu et al. [47] proposed a dynamic stochastic

programming model for bond portfolio management. They

model the uncertainty in terms of the interest rates. Stoyan

and Kwon [37] considered a stochastic-goal mixed-integer pro-

gramming model for the integrated stock and bond portfolio

problem. The uncertainties are modeled in terms of the asset

prices and the real world trading constraints are imposed. The

model was solved by a decomposition based algorithm. He

and Qu [48] proposed a two stage portfolio selection problem

with a comprehensive set of real world trading constraints.

The uncertainties are modeled in terms of the asset prices. A

hybrid algorithm integrating local search and a default Branch-

and-Bound method was proposed to solve the problem.

One common method used in the literature to deal with

stochastic portfolio optimization model is decomposition. Ben-

ders decomposition [44], scenario decomposition [49], time

decomposition [42] and other novel decomposition methods

[37] are proposed. The problem is simplified when it is

decomposed into different parts.

In our previous work [50], we improved the stochastic

portfolio optimization model in the literature [36], [48] and

proposed a hybrid algorithm for the two-stage stochastic port-

folio optimization problem with a comprehensive set of real

world trading constraints. A genetic algorithm (GA) together

with a commercial LP solver was used where GA is used

to search for the assets selection heuristically and the LP

solver can solve the corresponding sub-problems optimally.

The proposed hybrid genetic algorithm can solve the problem

to a good degree of accuracy, however, the full mechanisms of

a standard GA is too heavy for the two-stage stochastic model,

especially when a large number of scenarios is used. In order

to solve the two-stage stochastic model more efficiently, in this

work, we propose a light weight approach based on Population

Based Incremental Learning (PBIL). It intends to solve the

model with a larger number of scenarios. Local search, hash

search, elitist selection and partially guided mutation are also

adopted in order to enhance the evolution.

The outline of the rest part is as follows: section II in-

troduces the background information. Section III gives the

statement of the problem as well as the corresponding no-

tations. The detail description of our hybrid combinatorial

approach is given in section IV. The datasets are described in

section V. In Section VI, we introduce our scenario generation

method as well as the stability test results. Section VII gives

the parameter settings and examines the effects of different

learning rates. Experimental results are presented in section

VIII. The final conclusion and possible future direction are

given in section IX.



II. PRELIMINARIES

A. Stochastic programming

In real-world situation, many variables are not deterministic

due to the uncertain parameters involved (future events, human

errors, etc). Generally, there are two approaches to deal with

the uncertainties:

• Robust Optimization: when the uncertain variables are

given within some certain boundaries, robust optimization

is applied for such problems. The idea is to find a solution

which is feasible for all the data and optimal for the worst

case scenario.

• Stochastic Programming: when the probability distribu-

tion of the uncertain variables are known or can be

estimated, stochastic programming is applied for such

problems. The idea is to find a policy which is feasible

for all (or at least almost all) possible data instances

and maximizes/minimizes the expectation of the objective

function with the decision and random variables involved.

The decision-maker can gather some useful information

by solving such models either analytically or numerically.

For this work, we use stochastic programming to deal with

the uncertain future asset prices. The comprehensive concepts

of stochastic programming can be found in [16], [17].

B. Two-Stage Stochastic Programming Problem With Re-

course

For this work, we consider a widely applied class of stochas-

tic programming problem, namely the recourse problem. It

seeks a policy that can take the actions after some realisation of

the uncertain variables as well as make the recourse decisions

based on the temporarily available information.

The simplest case of the recourse problem have two stages:

• first stage: A decision needs to be made.

• second stage: The values of the uncertain variables are

revealed and further decisions are allowed to make in

order to avoid the constraints of the problem becoming

infeasible. Usually a decision in the second stage will de-

pend on a particular realisation of the uncertain variables.

Formally, the two-stage stochastic programming problem

with recourse can be described as the follows [38]:

min f(x) + E[Q(x, ξ)]

s.t.

Ax = b

x ∈ R
n

where ξ represents the uncertain data, x is the first-stage

decision variable vector which should be decided before the

uncertain variables are revealed and Q(x, ξ) is the optimal

value for the following nonlinear program:

min q(u, ξ)

s.t.

W (ξ)u = h(ξ)− T (ξ)x

u ∈ R
m

where u is the vector of the second-stage decision variables

which depends on the realization of the first-stage uncertain

variables. q(u, ξ) represents the second-stage cost function.

W (ξ), h(ξ) and T (ξ) are model parameters with reasonable

dimensions. As these parameters are the functions of the

uncertain data ξ, therefore they are also random. W is the

recourse matrix and h is the second-stage resource vector.

T is the technology matrix which contains the technology

coefficients, therefore it can convert the first-stage decision

variable vector x into resources for the second-stage problem.

Therefore the general two-stage stochastic programming

problem with recourse can be rewritten as follows:

min f(x) + E[min{q(u, ξ)|W (ξ)u+ T (ξ)x = h(ξ)}]

s.t.

Ax = b

x ∈ R
n

u ∈ R
m

In this formulation, a “here and now” decision x is made

before the uncertain data ξ is realized. At the second stage,

after the value of the uncertain data ξ is revealed, we can

modify our behavior by solving the corresponding optimiza-

tion problem.

The recourse problem is not restricted to the two-stage

formulation and it is possible to extend the problem into a

multistage model.

C. Scenario Tree

There are two common methods which can be used to deal

with the multistage stochastic programming problems, namely

decision rule approximation and scenario tree approximation.

For this work, we will focus on the scenario tree approximation

tree method.

A scenario is defined as the possible realisation of the

uncertain data ξ in each stage t ∈ T . An example of a scenario

tree is showed in Figure 1. The nodes in the scenario tree

represent a possible realisation of the uncertain data ξT . Each

node is denoted by n = (s, t) where s is a scenario and t
is the level of the node in the tree and the decisions will be

made at each node. The parent of the node n is represented by

at−1(n). The branching probability of the node n is denoted

by pn which is a conditional probability on its parent node

at−1(n). The path to the node n is a partial scenario with the

probability Prn =
∏

pn along the path and the sum of Prn
is up to 1 across each level of the scenario tree.

In order to apply the scenario tree approximation method

for the stochastic programming problem with recourse, the

uncertain data ξ needs to be discretized and all possible

realisations of ξ can be represented by a discrete set of

scenarios. Thus, scenario generation methods are required.

There are several scenario generation methods in the literature,

for this work, we applied a shape based method [51].



t = 0

t = 1

t = 2

Fig. 1. An example of a scenario tree. At stage t = 0 there is one scenario, at
stage t = 1 there are 4 scenarios and at stage t = 2 there are eight scenarios.
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1) Value at Risk (VaR): In the real-world situation, portfolio

managers may only need to reduce the possibility of the

high loss. Value at Risk (VaR) [23], [24] gives the maximum

possible loss α with a specified confidence level β. That is,

by the end of the investing period, the probability of the loss

exceeding the threshold α is 1− β (see Figure 2).

Formally, let f(x, ξ) be the loss function where x ∈ Z
+ is

the decision vector and ξ ∈ R is the uncertain (random) vector.

The density of the probability distribution of ξ is denoted by

p(ξ). The probability of the loss function f(x, ξ) not exceeding

a threshold α is given by:

Ψ(x, α) =

∫

f(x,ξ)≤α

p(ξ)dξ

The β-VaR for the loss random variable associated with x
and the specified probability β in (0, 1) is denoted by αβ(x)
and formally we have the following:

αβ(x) = min{α ∈ R : Ψ(x, α) ≥ β}

However, VaR is inadequate for market risk evaluation. As

it has been pointed out in [27], VaR does not satisfy the sub-

additivity and the convexity and generally it is not a coherent

risk measure (VaR is only coherent for standard deviation of

normal distributions). Also VaR is difficult to optimize using

scenarios [28]. Furthermore, VaR does not take the distribution

of the loss exceeding the threshold into account and it would

become unstable if there is a sharp and heavy tail in the loss

distribution.

2) Conditional Value at Risk (CVaR): Conditional Value at

Risk (CVaR) (also called Mean Excess Loss, Mean Expected

Shortfall, Tail VaR) is proposed in [29] in order to eliminate

the drawbacks of VaR. CVaR is a more consistent risk measure

because of its sub-additivity and the convexity [27] and it is

proven to be a coherent risk measure [52].

CVaR calculates the average value of the loss which exceeds

the VaR value (see Figure 2). Formally, CVaR is defined as

the follows [29]:

φβ(x) = (1− β)−1

∫

f(x,ξ)≥αβ(x)

f(x, ξ)p(ξ)dξ

The function above is a little bit difficult to handle because

the VaR value αβ(x) is involved in it. Alternatively, we can

have the analytical representation to replace VaR. A simpler

function can be used instead of CVaR:

Fβ(x, α) = α+ (1− β)−1

∫

f(x,ξ)≤α

(f(x, ξ)− α)p(ξ)dξ

It has been proved in [29] that Fβ(x, α) is a convex function

with respect to α and the minimum point of Fβ(x, α) is

VaR with respect to α. The CVaR value can be obtained by

minimizing Fβ(x, α) with respect to α.

3) Minimizing CVaR: From the definitions of VaR and

CVaR we can see that given a specified probability level β,

β-CVaR should always be greater or equal to β-VaR. In fact,

we can optimize CVaR and obtain VaR simultaneously by

minimizing the function Fβ(x, α) [53]. Suppose we have the

solution of the minimization of Fβ(x, α), (x
∗, α∗), then the

optimal CVaR value equals to Fβ(x
∗, α∗) and the correspond-

ing VaR value equals to α∗.

We can minimize the function Fβ(x, α) by introducing an

auxiliary function Z(ξ) such that Z(ξ) ≥ f(x, ξ) − α and

Z(ξ) ≥ 0. Formally we have the following:

min α+ (1− β)−1E(Z(ξ))

s.t.

Z(ξ) ≥ f(x, ξ)− α

Z(ξ) ≥ 0

α ∈ R

Now let us consider the portfolio optimization problem.

Here the uncertain data ξ can be referred to the future

asset prices. Normally the analytical representation of density

function p(ξ) is not available but instead the scenarios can

be generated from the historical observations of each asset

price. The scenario generation can use the property matching

method [54], [55] or even simply Monte Carlo simulations.

Suppose we have generated N scenarios from the density p(ξ),
yn where n = 1, . . . , N . Function Fβ(x, α) can be therefore

calculated as the follows:



Fβ(x, α) = α+ (1− β)−1
N
∑

n=1

pn(f(x, yi)− α)+

where f(x, yn) is the portfolio loss function in scenario n
and it is defined as the negative of the total portfolio return.

pn is the probability of scenario n and (f(x, yi) − α)+ =
max(0, (f(x, yi) − α)). By introducing the auxiliary func-

tion Z(ξ) and we can have the auxiliary variable zn where

zn ≥ f(x, yn) − α, zn ≥ 0, n = 1, . . . , N . Therefore the

minimization of the function Fβ(x, α) can be reduced to the

simplified form:

min α+ (1− β)−1
N
∑

n=1

pnzn

s.t.

zn ≥ f(x, yn)− α n = 1, . . . , N

zn ≥ 0 n = 1, . . . , N

α ∈ R

x ∈ R
n

It has been showed in [29], [56], [57] that such formulation

can provide the numerically stable technique to the problem

with large number of scenarios.

III. MODEL STATEMENT

A. Notations

The notations we used in this work are given in Table I.

B. Two-stage stochastic portfolio optimization model with

recourse

The model we used for this work is the same with our

previous work [50]. Inspired by [36], the original form of the

model was proposed in [48]. Although [48] is formulated as a

two stage model, it did not include a possibility that the costs

and values change after the recourse decision is enacted. Hence

the recourse it that model could have no monetary effect, and

so would obtain the same decisions as a simpler single stage

formulation. A contribution of our work is to extend the model

so that values can change after the recourse, and non- trivial

recourse decisions can improve the portfolio performance. The

proposed model is divided into two stages.

min



α+ (1− β)−1
∑

j∈Nr

pjzj



 (1)

s.t .

First Stage - Portfolio Selection:

wi = w0
i + bi − si, ∀i ∈ A (2)

h+
∑

i∈A

(siP
0
i )−

∑

i∈A

(ηsgi + siρsP
0
i )

=
∑

i∈A

(biP
0
i ) +

∑

i∈A

(ηbfi + biρbP
0
i ) (3)

∑

i∈A

ci = K (4)

wminci ≤ wi ∀i ∈ A (5)

tminfi ≤ bi ∀i ∈ A (6)

tmingi ≤ si ∀i ∈ A (7)

fi + gi ≤ 1 ∀i ∈ A (8)

fiM ≥ bi ∀i ∈ A (9)

giM ≥ si ∀i ∈ A (10)

biM ≥ fi ∀i ∈ A (11)

siM ≥ gi ∀i ∈ A (12)

wi, bi, si ∈ R (13)

ci, fi, gi ∈ B (14)

Second Stage - Recourse:

wj
i = wi + bji − sji ∀i ∈ A, ∀j ∈ Nr (15)

∑

i∈A

(sjiP
j
i )−

∑

i∈A

(ηsg
j
i + sjiρsP

j
i )

=
∑

i∈A

(bjiP
j
i ) +

∑

i∈A

(ηbf
j
i + biρbP

j
i ) ∀j ∈ Nr (16)

∑

i∈A

cji = K ∀j ∈ Nr (17)

wminc
j
i ≤ wj

i ∀i ∈ A, ∀j ∈ Nr (18)

tminf
j
i ≤ bji ∀i ∈ A, ∀j ∈ Nr (19)

tming
j
i ≤ sji ∀i ∈ A, ∀j ∈ Nr (20)

f j
i + gji ≤ 1 ∀i ∈ A, ∀j ∈ Nr (21)

f j
i M ≥ bji ∀i ∈ A, ∀j ∈ Nr (22)

gjiM ≥ sji ∀i ∈ A, ∀j ∈ Nr (23)

bjiM ≥ f j
i ∀i ∈ A, ∀j ∈ Nr (24)

sjiM ≥ gji ∀i ∈ A, ∀j ∈ Nr (25)

V j =
∑

i∈A
e∈Nj

e

p(j,e)P
(j,e)
i wj

i ∀j ∈ Nr (26)

Rj = V j − V 0 ∀j ∈ Nr (27)

zj ≥ −Rj − α ∀j ∈ Nr (28)

zj ≥ 0 ∀j ∈ Nr (29)
∑

j∈Nr

pjR
j ≥ µ (30)

wj
i , b

j
i , s

j
i ∈ R (31)

cji , f
j
i , g

j
i ∈ B (32)

α, zj ∈ R (33)



TABLE I
NOTATIONS IN THE MODEL

Type of Data Notation Meaning

Set A The set of assets

Set Nr The set of recourse nodes. One node corresponds to one recourse portfolio

Set Nj
e The set of evaluate nodes on recourse node j where j ∈ Nr

User-specific parameter µ The target return

User-specific parameter β Quantile (percentile) for VaR and CVaR

User-specific parameter M The big constant

Deterministic input data h The initial cash to invest

Deterministic input data w0
i The initial position of asset i (in number of units)

Deterministic input data ηb The fixed buying cost

Deterministic input data ηs The fixed selling cost

Deterministic input data ρb The variable buying cost

Deterministic input data ρs The variable selling cost

Deterministic input data K The number of asset held in the portfolio (cardinality)

Deterministic input data wmin The minimum holding position

Deterministic input data tmin The minimum trading size

Scenario dependent data pj The probability of recourse node j in the second stage

Scenario dependent data p(j,e) The probability of evaluate node e of recourse node j in the second stage

Scenario dependent data P 0
i The price of asset i in the first stage (per unit)

Scenario dependent data P
j
i

The price of asset i on recourse node j in the second stage (per unit)

Scenario dependent data P
(j,e)
i

The price of asset i on evaluate node e of recourse node j in the second stage (per unit)

Scenario dependent data V 0 The initial portfolio wealth

Scenario dependent data V j The final portfolio wealth on recourse node j
Auxiliary variable zj Portfolio shortfall in excess of VaR at recourse node j
Auxiliary variable α The optimal VaR value

Decision variable bi The number of units of asset i purchased in the first stage

Decision variable si The number of units of asset i sold in the first stage

Decision variable wi The final position of asset i in the first stage

Decision variable b
j
i

The number of units of asset i purchased on recourse node j in the second stage

Decision variable s
j
i

The number of units of asset i sold on recourse node j in the second stage

Decision variable w
j
i

The final position of asset i on recourse node j in the second stage

Decision variable ci The binary holding decision variable in the first stage

Decision variable fi The binary buying decision variable in the first stage

Decision variable gi The binary selling decision variable in the first stage

Decision variable c
j
i

The binary holding decision variable on recourse node j in the second stage

Decision variable f
j
i

The binary buying decision variable on recourse node j in the second stage

Decision variable g
j
i

The binary selling decision variable on recourse node j in the second stage

The objective function (1) calculates the β-percentile CVaR

of the portfolio loss at the end of the second stage where α is

the corresponding optimal VaR value. Eq. (2) is the first stage

asset balance condition and Eq. (15) is the second stage asset

balance condition. Equations (3), (16) are the cash balance

conditions for the first and second stage respectively. We

apply a fixed transaction cost and a linear variable transaction

cost to both buying and selling an asset. The idea is that

the cash inflows should equal to the cash outflows in both

stages (i.e. no cash left). Equations (4), (17) are the cardinality

constraints for the first and second stage respectively where

K is the desired number of the assets held within a portfolio.

Equations (5) and (18) put the restrictions on the minimum

holding size of an asset in order to prevent very small asset

positions for the first and second stages. Equations (6),(7),

are the minimum trading conditions for the first stage and

equations (19),(20), are the minimum trading conditions for

the second stage. The idea is to prevent it from trading a

very small proportion of an asset. Buying and selling the

same asset at the same time is not allowed, this is given in

equation (8) for the first stage and in equation (21) for the

second stage. The big-M formulations are used in the model

in order to bound the decision variables and the binary decision

variables (constraints (9), (10), (11), (12) for the first stage and

constraints (22), (23), (24), (25) for the second stage). The idea

is, if the decision variables for buying/selling an asset is greater

than 0, then the corresponding binary decision variables should

equal to 1; if the decision variables for buying/selling an

asset is 0, then the corresponding binary decision variables

should be 0 and vice versa. Equations (26), (27) calculate the

portfolio return on each recourse node by using a different set

of evaluate scenarios in order to have a better reflection of

changing price scenarios in the reality. Equations (28), (29)

define the excess shortfall zj of the recourse portfolio where

zj = max[0,−Rj −α] for each recourse node. The minimum

portfolio target return µ is given in equation (30). The decision

variables wi, bi, si, w
j
i , b

j
i , s

j
i specify the exact amount of the

units for an asset to buy or sell and in a real-world situation,

these decision variables should be integers. As they increase

the computational difficulty significantly, we took the same

method suggested in [48], [58] to relax these decision variables

as continuous variables.

C. Computational complexity

The deterministic problems are generally in NP, however,

the stochastic versions can be of even harder complexity

classes; for example, it has been shown in [59] that linear

two-stage stochastic programming problems are #P-hard. For

multistage stochastic programming problems, it is generally

computationally intractable even for the medium-accuracy

solutions [60].



IV. THE PROPOSED HYBRID COMBINATORIAL APPROACH

Exact methods and metaheuristic approaches are two suc-

cessful streams for solving combinatorial optimization prob-

lems. Over the last few years, many works have been develope-

d on building hybrids of exact methods and metaheuristic ap-

proaches. In fact, many real-world problems can be practically

solved much better using hybrid strategies since the advantages

of both types of methods are simultaneously exploited. For

this work, we integrate metaheuristic approaches with exact

methods. The idea is, we divide the two-stage stochastic

problem into two parts. The first part is to determine the asset

combination while the second part is to calculate the optimal

weights of the selected assets correspondingly. The first part

is searched by the hybrid algorithm and the second part is

solved by a LP solver. In our previous work [50], we proposed

a hybrid genetic algorithm which can solve the problem to a

good degree of accuracy. However, the full mechanisms of GA

is too heavy (i.e. computationally expensive) for the two-stage

stochastic model especially when a large number of scenarios

are used. In this case, we propose a lighter approach which

is based on Population Based Incremental Learning (PBIL). It

intends to solve the two-stage stochastic model with a larger

number of scenarios. Local search, hash search, elitist selection

and partially guided mutation are also adopted in order to

enhance the evolution.

A. Overview of PBIL

Population Based Incremental Learning (PBIL) was origi-

nally introduced by Baluja [61], [62]. It is one of the simplest

form of Estimation of Distribution Algorithms (EDAs). It

combines genetic algorithms and competitive learning for

function optimization. It evolves the entire population rather

than each single individual members. The idea is, a probability

vector is used to represent the distribution of all individuals.

After evaluating each individuals, the probability vector is

updated by learning from the best and the worst solutions.

Mutation is also performed on the probability vector in order to

help preserve diversity. Then the new generation of population

is created based on the updated probability vector. PBIL is

closely related to GA, but it is simpler and more efficient since

it does not require all the mechanisms of a standard GA.

B. Problem representation

In this work, PBIL-based hybrid algorithm is utilized to

evolve best values for discrete variables in the stochastic

model. The search space is different for different benchmark

datasets (characterized by Q, see Section V). The objective is

to find the best K items from Q possible assets for a given

target return µ specified by the investor. The details of problem

representation are as follows:

• One probability vector v = (v0, v1, ..., vQ) of size Q
represents the possibility of each asset to be chosen in

the portfolio.

• One binary vector t = (t0, t1, ..., tQ) of size Q is used

to denote if asset is chosen in the portfolio.

• One vector k = (k0, k1, ..., kK) of size K is used to

represent the selected K assets of the portfolio where

ki ∈ {1, 2, . . . , Q} and i = 1, . . . ,K.

• The evaluation of vector k is done by calculating a fitness

function F which is implemented using a standard LP

solver. It maps from a list of K integers and a target

return µ to a real number: F (ZK , µ) → R.

• The probability vector is updated by learning from the

best and the worst solutions obtained from the population

at the end of each generation.

• Elitist selection is used in our PBIL-based hybrid algo-

rithm, i.e., we keep the best solution in each generation.

• The global best solution xgb is recorded such that

F (xgb, µ) ≤ F (xi, µ) for all xi at the given return level

µ.

The procedure of PBIL-based hybrid algorithm used in this

work is given as Algorithm 1 and the parameters are given in

section VII.

Algorithm 1: PBIL-based hybrid algorithm for searching

the set of assets

1 for i = 1 to Q do

2 vi = 0.5;

3 while stopping criteria are not met;

4 do

5 Generating individuals: Create a population of

individuals (see IV-D);

6 for each individual generated do

7 Hash search: Search the infeasible solution hash

table and bad solution hash table, if it is very

similar to the entries of the hash table,

re-generating (see IV-E);

8 Evaluation: Evaluate each individual’s fitness by

using CPLEX LP solver (see IV-F);

9 Local Search: Perform the local search for the top

20% individuals (see IV-G);

10 Archive: Keep the record of the current best solution,

the current worst solution and the infeasible solution

(see IV-H);

11 Update: Update v by learning from the current best

and the current worst solution (see IV-I);

12 Mutation: Mutate v by using partially guided

mutation (see IV-J);

13 Elitism: Select the best individual from the current

generation and insert it into the next new generation;

C. The reduced sub-problem

In this work, the sub-problems are generated by dropping

all the non-selected assets. Each individual is fixed in both the

first and second stage (i.e. ci = cji = 1 if hybrid algorithm

picks asset i). The recourse are limited to asset rebalancing,

but not swapping the assets and therefore we can call such sub-

problem the reduced sub-problem. As the transaction costs and



the minimum holding constraint are considered in the model,

the cost of buying an entirely new asset is probably signifi-

cantly higher than just adjusting the holding of an existing one.

We use CPLEX to solve a full problem on a small instance

using a small number of scenarios with different transaction

costs and minimum holding constraint. For each different

set of transaction costs and minimum holding constraint, we

count the number of occurrences that the selection of assets

in the second-stage is not the same as in the first-stage (i.e.

cji 6= ci). The results are shown in Table II. We can see

that when the transaction costs are bigger than 0.4% and the

minimum holding constraint is bigger than 0.8%, the assets in

the second-stage remain unchanged. For this work, we use

the parameter settings ρb, ρs = 0.5% wmin = 1.0% (see

section VII) therefore adding or dropping the rebalance-only

condition should not make a significant difference. We do not

claim this is an optimal approximation. The reason of using

the reduced sub-problem is to reduce the computation time by

the LP solver.

TABLE II
THE NUMBER OF OCCURRENCES THAT c

j
i 6= ci FOR THE SOLUTION OF

THE FULL PROBLEM ON A SMALL INSTANCE USING 100 POSSIBILITIES OF

SCENARIOS WITH DIFFERENT MODEL PARAMETERS

# of times that c
j
i 6= ci

Model parameters Q Nr N
j
e

ρb, ρs = 0.5% wmin = 1.0% 31 20 5 0
ρb, ρs = 0.4% wmin = 0.8% 31 20 5 0
ρb, ρs = 0.3% wmin = 0.6% 31 20 5 7
ρb, ρs = 0.2% wmin = 0.4% 31 20 5 16
ρb, ρs = 0.1% wmin = 0.2% 31 20 5 32

D. Generating individuals

The probability vector v is used to determine whether asset

i is chosen in the portfolio. Initially vi is set to 0.5 where

i = 1, . . . , Q so that every asset can have an equal chance to

be chosen. The binary vector t is created according to v, if

asset i is selected, ti = 1 and if asset i is not selected, ti = 0.

Then vector k which is used to represent the chosen asset in

the portfolio is generated according to vector t. The idea is

to chose exact K number of assets to form the portfolio in

order to satisfy the cardinality constraint. Suppose there are

K ′ assets selected in t, if K ′ ≥ K, we randomly choose K
among K ′ assets and insert them into k. If K ′ < K, we

first insert K ′ assets into k, then we randomly choose another

K−K ′ assets which are different from the existing K ′ assets

and insert them into k. The procedure is given as Algorithm

2. For each generation, a population of such individuals is

created.

E. Hash search

By using our two-stage stochastic model, for any given

asset combination, it does not necessarily always lead to a

feasible solution. We maintain a hash table to keep all the

infeasible solutions explored. We also have a hash table to

keep all the worst feasible solutions of each generation (see

Algorithm 2: Generating individuals

1 for i = 1 to Q do

2 if random(0, 1) < vi then

3 ti = 1;

4 else

5 ti = 0;

6 K ′ = 0;

7 for i = 1 to Q do

8 if ti == 1 then

9 K ′ = K ′ + 1;

10 if K ′ ≥ K then

11 randomly choose K among K ′ assets and insert them

into k;

12 if K ′ < K then

13 insert K ′ assets into k;

14 randomly choose another K −K ′ assets which are

different from the existing K ′ assets and insert them

into k;

IV-H). Each time when a new individual is generated, we

check its similarity with the existing entries in the hash tables.

If it is very similar to the existing entries, we discard it

and re-generate the individual. As it has been pointed out

in [63], good solutions tend to have similar structures and

bad solutions also tend to have the similar structures. There

are two advantages of performing the hash search. Firstly the

computational cost of the hash table lookup is amortized O(1)
(O(1) on average, O(n) for the worst case), which is cheaper

than calling the LP solver, therefore it improves the efficiency;

secondly it can explore different areas of the solution space

by avoiding the unnecessary search, and it may explain why,

in Figure 3, PBIL with the hash search tends to obtain better

global solutions. The details of the hash search are given as

Algorithm 3 and 4.

Algorithm 3: SimilarityCheck(String Str1, String Str2)

1 count = 0;

2 for each character char1 in Str1 do

3 for each character char2 in Str2 do

4 if char1 == char2 then

5 count = count + 1 ;

6 return count ;

F. Evaluation

The fitness of the individual generated is evaluated by

solving the corresponding sub-problem using an LP solver

in order to get the weight allocation of the selected assets.

We can control the numerical properties of the solutions to

the sub-problems by setting up different Markowitz threshold
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Fig. 3. Comparative results of PBIL with and without hash search for 5 general market instances.

Algorithm 4: Hash search

1 for each new individual h generated do

2 for each key ky1 in HashtableInfeasibleSolution do

3 if SimilarityCheck(h, ky1) ≥ K − 1 then

4 re-generate individual h;

5 break ;

6 for each key ky2 in HashtableBadSolution do

7 if SimilarityCheck(h, ky2) ≥ K − 2 then

8 re-generate individual h;

9 break ;

(which is used to control the kinds of pivots permitted) and the

time allowed for each fitness calculation. That means we do

not need to compute the optimal values for every individual.

We only need to calculate the optimal value once for the

global best solution after the search of the hybrid algorithm is

finished. This will help improve the efficiency.

G. Local search

After the evaluation is done, top 20% individuals with

the smallest fitness value of the generation are selected and

the local search are applied to them in order to seek for

the better solutions and evolve better individuals within a

neighbourhood. Each time we replace one asset with a neigh-

bourhood asset and then re-evaluate the new portfolio. The

neighborhood relation of an asset is defined as the asset with

the closest probability. If a better solution is obtained, the

current best solution is updated. For each asset, we search na
neighbours (i.e. na closest probability successors). The local

search applied here is the incomplete neighbourhood search.

It aims to seek for the possible improvement of the current

solution. Figure 4 shows that the local search can indeed help

the algorithm find better global solutions. The details of the

local search are given as Algorithm 5.

Algorithm 5: Local search

1 Select the top 20% individuals of the generation;

2 for each selected individual do

3 for i = 1 to K do

4 for j = 1 to na do

5 Replace asset i with a neighbourhood asset to

form a new portfolio;

6 Evaluate the new portfolio;

7 if The fitness value of the new portfolio is

smaller than the current best solution then

8 Update the current best solution;

H. Archive

As mentioned in section IV-E, during the evolution, it is

possible to obtain infeasible solutions. It’s important to keep

an archive of them. We use a hash table to record all the

infeasible solutions obtained. Similarly we use a hash table
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Fig. 4. Comparative results of PBIL with and without local search for 5 general market instances.

to keep all bad solutions of every iteration. The purpose of

maintaining the two hash tables is to avoid unnecessary search

so that better solutions can be explored. We also keep a record

of the best solutions obtained at each iteration to ensure that

the good solutions found by the algorithm are not lost (i.e.

elitist selection).

I. Update

In PBIL, the probability vector v can be considered as

a prototype vector which is used to store the knowledge

collected during the evaluation of current generation in order

to guide the following population generations. v is updated by

learning from the current best solution scbesti and the current

worst solution scworst
i using a positive learning rate lr and a

negative learning rate nelr correspondingly. Both the positive

learning rate and the negative learning rate are used to control

the speed of the prototype vector shifting to the better solution

vector and the portions of exploration of the search space

[61], [64]. The details of the probability updated are given

as Algorithm 6.

Algorithm 6: Probability update

1 for i = 1 to Q do

2 vi = vi × (1− lr) + scbesti × lr;

3 if scbesti 6= scworst
i then

4 vi = vi × (1− nelr) + scbesti × nelr;

J. Mutation

At the end of each iteration, the probability vector v is

mutated according to a certain mutation probability mp. In

this work, we use a mutation strategy, namely partially guided

mutation [9]. It gives the equal chance to mutate v either

randomly or based on the global best solution using a mutation

rate mr. The advantage of doing this is that it can exploit

the good structures in the current best solutions as well as

exploring other regions of the search space at the same time.

The details of the partially guided mutation are given as

Algorithm 7.

Algorithm 7: Mutation (Partially guided mutation)

1 for i = 1 to Q do

2 if rand(0, 1] < mp then

3 if rand(0, 1] < 0.5 then

4 r = Rand[0, 1];
5 vi = vi × (1−mr) + r ×mr ;

6 else

7 vi = scbesti ;

V. DATA SETS

In this work, we use the five benchmark instances which

extend from the OR-library [65]. It contains 261 weekly

historical price data for each asset of the following five

different capital market indices:



• Hang Seng in Hong Kong, Q = 31.

• DAX 100 in Germany, Q = 85.

• FTSE 100 in UK, Q = 89.

• S&P 100 in US, Q = 98.

• Nikkei 225 in Japan, Q = 225.

where Q is the number of assets available for each market

index. The weekly historical price data are used for generating

the scenarios for the two-stage stochastic portfolio optimiza-

tion model.

VI. SCENARIOS

A. Scenario generation

The scenarios need to be generated in order to represent

the uncertain asset prices. The model has two stages. We use

the price information on the recourse nodes to form the initial

portfolio and use the price information on the successor evalu-

ate nodes to perform the portfolio rebalancing actions. In this

case, the 261 weekly historical price data from the OR-library

cannot be used directly as it would lead to a prohibitively huge

multi-stage problem. Instead, we have the following: we take

the week 1 data q11 , . . . , q
Q
1 as the initial price for the assets.

Start from week 2, we compute the ratio between the price

of the assets of two consecutive weeks ∆t = qit+1/q
i
t where

i = 1 . . . Q, t = 1 . . . 260. Then we can obtain 260 new price

data by computing qi1 ∗ (1 + ∆t)∀i ∈ Q, t = 1, . . . , 260.

Then we apply the copula scenario generation method [51]

using the 260 new price data as the inputs to generate 400

recourse node scenarios. The evaluate nodes should be only

dependent on their predecessor recourse node. Therefore, for

each recourse node, we use the price scenario on that node

and multiply a random coefficient within (0.9, 1.1) to produce

40 corresponding scenarios for each of the evaluate nodes.

The random coefficients are used to simulate the fluctuation

of asset price in the second stage. We do not claim they

are the optimal choices. There will be 400 × 40 = 16000
possibilities of scenarios in total and the evaluate scenarios are

different for each different recourse node. By performing some

experiments, we find the computational results are sensitive

to the scenarios generated, especially for the evaluate node

scenarios. Again, we do not claim the scenario generation

methods we used are the best choices. Our primary aim is

rather to develop an efficient method that can solve the two-

stage stochastic portfolio optimization problem with a larger

number of scenarios and to test the effectiveness of our hybrid

combinatorial approach.

B. Stability

In stochastic programming, scenario generation methods are

used to create a limited discrete distribution from the input

data. The statistical properties of the scenario sets created

should match the corresponding values estimated from the

input data and the scenario generation method should not

lay bias on the results by causing instability of the solutions.

Usually, the stability tests are performed [66], [67] and there

are two types of stability.

• In-sample stability: The scenario generation method is

assessed in terms of its ability to match the benchmark

distribution. We generate several scenario sets of a given

size using the same input data. The idea is, no matter

which scenario set we choose, the optimal objective value

of the model should be approximately the same. The

objective values should not vary across scenario sets.

For this work, we use copula-based scenario generation

method to generate 25 different scenario trees with the

size 400 using the same input data. Then we use CPLEX

to compute the optimal objective value of a same target

return level for each scenario tree and compare the results.

Ideally these results should be equal.

• Out-of-sample stability: The scenario generation method

is assessed in terms of its ability to provide the stable

results with respect to the benchmark distribution. We

generate several scenario sets of a given size using the

same input data and solve the model with each scenario

set. The idea is, if we simulate the solutions obtained for

each scenario set on the benchmark distribution, the value

of the true objective function should be approximately

the same. For this work, we use copula-based scenario

generation method to generate 25 different scenario trees

with the size 400 using the same input data and then use

CPLEX to solve the model with a same target return level

for each scenario tree. After that we simulate the solutions

obtained for each scenario tree on the benchmark distribu-

tion to compute the true objective function. It is important

that the benchmark distribution is not generated by the

same method we are using and in our case, we use the

input data directly as our benchmark distribution. Finally

we compare the results, ideally these results should be

equal, they should be also equal to the in-sample values

(approximately).

For this work, the copula-based scenario generation method

is only used to create the scenario sets for the recourse

nodes. The scenarios for the evaluate nodes are dependent on

their predecessor nodes and the random coefficients are also

involved. Therefore, we only examine the stability tests on

the single-stage model (i.e. without rebalancing actions). The

purpose of performing the stability tests here is to show the

copula-based scenario generation method will not influence

the results and it is a suitable scenario generation method for

this work.

The results are shown in Figure 5. Table III,IV calculate the

mean value, the median value and the standard deviation of

in-sample and out-of sample results respectively. The standard

deviation of both in-sample and out-of-sample results are

small, indicating that the scenario generation method we use

is effective, in the sense that it will not cause instability in the

solutions of the model.

VII. PARAMETER SETTINGS

The parameter settings used in this work are shown as

follows:
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Fig. 5. Stability test results for 5 general market instances of the one-stage model using 400 scenarios.

TABLE III
IN-SAMPLE STABILITY TEST RESULTS FOR 5 GENERAL MARKET

INSTANCES USING 400 SCENARIOS

Instance
Mean(%) Median(%) stdev(%)

Index Q Nr

Hang Seng 31 400 25.8579 25.8947 0.2408
DAX 100 85 400 16.3507 16.4025 0.4873
FTSE 100 89 400 11.9221 11.9367 0.1805
S&P 100 98 400 16.2933 16.3385 0.2646

Nikkei 225 225 400 2.7621 2.7564 0.0321
Average 0.2411

TABLE IV
OUT-OF-SAMPLE STABILITY TEST RESULTS FOR 5 GENERAL MARKET

INSTANCES USING 400 SCENARIOS

Instance
Mean(%) Median(%) stdev(%)

Index Q Nr

Hang Seng 31 400 26.7367 26.6460 0.5159
DAX 100 85 400 17.8633 17.8262 0.3993
FTSE 100 89 400 12.5446 12.5495 0.3330
S&P 100 98 400 18.0863 18.1676 0.2857

Nikkei 225 225 400 2.5850 2.5751 0.0610
Average 0.3190

A. Model parameters

For each given target expected return µ, we set the critical

percentile level of CVaR β = 95%, fixed buying cost ηb = 0.5,

variable buying cost ρb = 0.5%, fixed selling cost ηs = 0.5,

variable selling cost ρs = 0.5%, cardinality K = 10, minimum

holding position wmin = 1%, minimum trading size tmin =
0.1%. The initial portfolio only involves cash and we set the

initial cash h = 100000. We assume the probability of each

scenario is equal and therefore pj = 1/Nr, p(j,e) = 1/N j
e .

B. Algorithmic parameters

We set population size Po = 200, the number of generations

Ge = 50, mutation rate mr = 0.05, mutation probability

mp = 0.05 and the number of neighbourhood assets na = 15.

The learning rates has a big effect on our hybrid algorithm.

The algorithm will focus on searching using the information

gained about the search space by using a larger learning rate,

this is called exploitation. On the other hand, the algorithm

will jump to other areas in the search space by using a lower

learning rate, this is called the exploration. In order to choose

the suitable learning rates, we test 4 different sets of learning

rates and run a simple ranking test (if one set of learning rates

obtains the best (minimum) CVaR value, we rank it as 1; if

one set of learning rates obtains the second-best CVaR value,

we rank it as 2 and so on). The results are shown in Table V.

TABLE V
AVERAGE RANKS OF THE HYBRID COMBINATORIAL ALGORITHM WITH

DIFFERENT SETS OF LEARNING RATES FOR 5 GENERAL MARKET

INSTANCES USING 16000 POSSIBILITIES OF SCENARIOS

Instance
lr= 0.001 0.01 0.1 1

Index Q Nr Nj
e nelr= 0.00075 0.0075 0.075 0.75

Hang Seng 31 400 40 aveRk 1.1429 1.1429 1.0000 1.0000

DAX 100 85 400 40 aveRk 1.4545 1.3636 1.1818 1.3636

FTSE 100 89 400 40 aveRk 1.6000 1.5000 1.4000 2.1000

S&P 100 98 400 40 aveRk 1.9286 1.2143 1.9286 2.1429

Nikkei 225 225 400 40 aveRk 2.0000 2.2500 2.7500 3.0000

Average aveRk 1.6252 1.4942 1.6521 1.9213



There is always a trade-off between exploitation and ex-

ploration. In our context, exploitation refers to the ability of

our hybrid algorithm to fully search the entire market instance

while exploration refers to the ability of our hybrid algorithm

to use the knowledge learned about the assets to narrow

the future search. The higher the learning rates are set, the

more areas of the instance will be searched. The lower the

learning rates are set, the more exploration will take place.

For this work, the search space of each market instance is

different from each other. We can see from Table V that, the

bigger learning rates have a better performance for the smaller

instances. lr = 1, nelr = 0.75 and lr = 0.1, nelr = 0.075
have the best average rank for Hang Seng index (with Q = 31)

and lr = 0.1, nelr = 0.075 has the best average rank for

DAX 100 index (with Q = 85) and FTSE 100 index (with

Q = 89). As the size of the instance increases, the smaller

learning rates tend to perform better. lr = 0.01, nelr = 0.0075
has the best average rank for S&P 100 index (with Q = 89)

and lr = 0.001, nelr = 0.00075 has the best average rank for

Nikkei 225 index (with Q = 225).

As we discussed in section VIII-B before, the information

gained from the previous return levels can be used in the

next following return levels. Therefore we can set the lower

learning rates in the first half of the return levels in order

to have a better exploration and set the lower learning rates

in the second half of the return levels in order to have a

better exploitation. For Hang Seng, DAX 100 and FTSE 100

instances, we set the positive learning rate lr = 0.1, the

negative learning rate nelr = 0.075 for the first 10 return

levels and then change to lr = 1, nelr = 0.75 for the last 10

return levels. For S&P 100 and Nikkei 225 instances, we set

the positive learning rate lr = 0.001, the negative learning rate

nelr = 0.00075 for the first 10 return levels and then change

to lr = 0.01, nelr = 0.0075 for the last 10 return levels.

Please note that as our main purpose is to test the effective-

ness of our hybrid combinatorial approach, we do not claim

these parameter settings are the optimal choices. Our primary

aim is rather to develop an efficient method that can solve

the two-stage stochastic portfolio optimization problem with

a larger number of scenarios.

VIII. EXPERIMENTAL RESULTS

A. Comparison of computational results for the five general

benchmark instances

The main idea of our combinatorial approach is the decom-

position of the two-stage stochastic model into two parts. The

first part is to search for the selection of assets and the second

part is to determine the corresponding weights of the selected

assets. The first part is solved by using PBIL-based hybrid

algorithm and the second part can be solved by a standard LP

solver.

Considering the time limitation, we choose 20 equally

spaced return levels and for each different return level, we

run our hybrid algorithm to obtain a portfolio. The set of the

portfolios obtained can form a frontier which represents the

trade-offs between the expected return and the CVaR value

which is a risk indicator.

In order to test the effectiveness of our proposed hybrid

algorithm, we compare our results with three other different

approaches. These three approaches use GA mutation only,

PSO and random search for the first part respectively while the

second part is solved by the same LP solver. The comparative

results can be found in Figure 6.

We run each of different algorithms 10 times and take the

simple ranking test. The final average ranks of the 5 different

algorithms for 20 return levels are shown in Table VI.

TABLE VI
AVERAGE RANKS OF THE 4 DIFFERENT ALGORITHMS FOR 5 GENERAL

MARKET INSTANCES USING 16000 POSSIBILITIES OF SCENARIOS

Instance
Hybrid GA PSO Random

Index Q Nr Nj
e -Algorithm -Mutation -Search

Hang Seng 31 400 40 aveRk 1.0000 1.8571 3.1429 3.7857

DAX 100 85 400 40 aveRk 1.0000 1.9091 3.0000 4.0000

FTSE 100 89 400 40 aveRk 1.0000 2.0000 3.0000 4.0000

S&P 100 98 400 40 aveRk 1.0000 2.0000 3.0000 4.0000

Nikkei 225 225 400 40 aveRk 1.0000 2.0000 3.0000 4.0000

Average aveRk 1.0000 1.9532 3.0286 3.9571

From Figure 6 and Table VI we can see that our hybrid

combinatorial algorithm outperforms all the other 3 algorithms

on all 5 instances.

B. Portfolio composition

As we mentioned previously, good solutions tend to have

the similar structures. In fact, for this two-stage stochastic

model, good solutions for two consecutive return levels also

share some similarities. For each market instance, we run our

hybrid algorithm for 10 equally spaced return levels to obtain

the assets selections. The results are shown in Figure 7. We

calculate the average similarities for two consecutive return

levels and the results are shown in Table VII. We can see that

for two consecutive return levels, there are approximately 6.53

out of 10 identical asset choices on average.

TABLE VII
AVERAGE SIMILARITIES FOR TWO CONSECUTIVE RETURN LEVELS OF 5

GENERAL MARKET INSTANCES USING 16000 POSSIBILITIES OF

SCENARIOS

Instance
Average similarities

Index Q Nr N
j
e

Hang Seng 31 400 40 6.78
DAX 100 85 400 40 6.11
FTSE 100 89 400 40 6.78
S&P 100 98 400 40 6.11

Nikkei 225 225 400 40 6.89
Average 6.53

This is a useful observation which can be used to guide our

search. The idea is, we keep the best solution of one return

level and use it as the starting search point of the next return

level. This mechanism can be adopted in all 5 algorithms

mentioned in section VIII-A. Another important component

in our hybrid algorithm, the probability vector, also contains
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Fig. 6. Comparative results of the hybrid algorithm with 3 other different approaches for 5 general market instances using 16000 possibilities of scenarios.
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Fig. 7. Portfolio composition results of our hybrid algorithm for 5 general market instances using 16000 possibilities of scenarios. Each column represents
the assets selection of the best portfolio obtained for one specified return level. One portfolio is composed of 10 different assets which are represented by 10
different color sectors. The same asset is represented by the same color sector in each market instance.



useful information. Derived from the ideas used in competitive

learning, the whole population is defined as the probability

vector representation. Therefore the good asset tends to have

a high probability to be selected. The knowledge learned in

one return level can be transferred to the next return level. The

probability vector is adjusted accordingly in each generation

and in each return level and it is gradually shifted towards

representing better solutions.

C. Performance

All the algorithms for the two-stage stochastic portfolio

optimization model mentioned in section VIII-A were imple-

mented in C# with concert technology in CPLEX on top of

CPLEX 12.4 solver. All the tests were run on the same Intel(R)

Core(TM) i7-4600M 2.90GHz processor with 16.00 GB RAM

PC and Windows 7 operating system. For a given return level

of each different market instance, the computational time is

given in table VIII.

TABLE VIII
COMPUTATIONAL TIME OF THE 4 DIFFERENT ALGORITHMS FOR 5

GENERAL MARKET INSTANCES USING 16000 POSSIBILITIES OF

SCENARIOS

Instance
Hybrid GA PSO Random

Index Q Nr Nj
e -Algorithm -Mutation -Search

Hang Seng 31 400 40 min 17 15 15 11

DAX 100 85 400 40 min 31 30 30 23

FTSE 100 89 400 40 min 32 30 31 23

S&P 100 98 400 40 min 35 34 34 24

Nikkei 225 225 400 40 min 56 54 54 45

Average min 34.2 32.6 32.8 25.2

In order to conduct fair comparisons between the algorithm-

s, all the tests were run under the same condition (i.e. the same

number of generations). The performance of 4 algorithms are

shown in Figure 8. As we can see that uur hybrid algorithm

converges within less than 50 generations for all 5 market

instances while the other 3 algorithms fail to converge within

100 generations. In fact, our hybrid algorithm can achieve bet-

ter results with less time compared to the other 4 algorithms.

According to the No-Free-Lunch theorem [68], there is no

best optimization algorithm for all possible problems. The best

algorithm for one problem should be specifically designed for

that problem. For this work, we implement a model-specific

hybrid combinatorial algorithm for the two-stage stochastic

portfolio optimization problem. The hybrid algorithm is based

on PBIL which has an important component, the probability

vector. It enables learning during the whole execution in the

sense that the knowledge from the previous return levels can

be inherited to problems with the similar return levels.

A concern is that, the local search adopted in our hybrid

algorithm, can be also adopted in GA with mutation only

and PSO. The idea is, the probability vector in our hybrid

algorithm can provide a more meaningful neighbourhood

structure, therefore the local search are much more effective

compared to using a random neighbourhood structure (i.e.

replace an asset with a random one).

IX. CONCLUSION AND FURTHER WORK

In this work, we investigate a two-stage stochastic portfolio

optimization model which minimizes the Conditional Value at

Risk (CVaR) of the portfolio loss with a comprehensive set of

real world trading constraints. The two-stage stochastic model

can capture the market uncertainty in terms of future asset

prices therefore it enables the investors rebalancing the assets.

Stability tests are performed and the results confirm that the

scenario generation method used for this work is effective.

A model-specific hybrid combinatorial approach is proposed

for the two-stage stochastic model. It integrates a hybrid

algorithm and an LP solver in the sense that hybrid algorithm

can search for the assets selection heuristically while the

LP solver can solve the corresponding reduced sub-problems

optimally. The hybrid algorithm for assets searching is based

on PBIL while local search and hash search are adopted in

order to solve the two-stage stochastic model with a larger

number of scenarios effectively and efficiently. Elitist selection

and partially guided mutation are also adopted in order to

enhance the evolution.

Comparison results against the other 3 algorithms are given

for 5 general market instances and our hybrid combinatorial

approach outperforms the 3 algorithms on all instances. We

also investigate the structure of the solutions obtained and we

demonstrate that the knowledge learned in one return level

can be inherited to the next following return levels. This can

enhance the search process and makes the whole execution

more efficient. The effects of different learning rates are also

examined in order to choose for the better settings for the

hybrid algorithm.

This work is mainly focus on the algorithmic part. The

scenarios which represent the possible future asset prices are

highly depend on the historical data. In order to make the

model more practical, the alternative representation of the

possible future asset prices might be required. This can be

the possible future research direction.
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