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Abstract

Whereas accelerated attention beclouded early stages of the coronavirus spread, knowledge of
actual pathogenicity and origin of possible sub-strains remained unclear. By harvesting the
Global initiative on Sharing All Influenza Data (GISAID) database (https://www.gisaid.org/),
between December 2019 and August 20, 2020, a total of 157 human SARS-CoV-2 (complete)
genome sequences processed by gender, across 6 continents of the world, were analyzed. We
hypothesized that data speaks for itself and can discern true and explainable patterns of the
disease. Identical genome diversity and pattern correlates analysis performed using a hybrid of
biotechnology and machine learning methods corroborate multiple emergence of SARS-CoV-2
sub-strains and explained the diversity of the SARS-CoV-2. Interestingly, some viral sub-strains
progressively transformed into new sub-strain clusters indicating varying amino acid and strong
nucleotide association derived from same origin. A novel approach to cognitive knowledge
mining from enriched genome datasets and output targets labeling, helped intelligent prediction
of emerging or new viral sub-strains.

Introduction

The coronavirus disease pandemic had forced complete shutdown on all economies of the
world!2. Since then, its breadth and depth have grown exponentially, causing disruptions that
require hybrid of computational approaches—to discover the changing nature of the virus as it
transmits from country to country. While there exist claims that the virus remained unchanged, a
growing number of studies have reported the emergence of several sub-strains®*. The rapid
human to human transmission of the pathogenic SARS-CoV-2 to most parts of the world has
exhibited differences in disease severity and fatality even within a demographic region of a
country. This disparity has been attributed to factors such as gender, age, ethnicity, race and co-
morbidities. However, the dissimilarity in genome sequencing of early viral samples obtained
from infected individuals from Europe, North America, Asian and Oceanian regions disgorged
various studies aimed at analyzing and understanding the evolutionary history and relationships
among the different SARS-CoV-2 strains.



The SARS-CoV-2 is a B-coronavirus—an enveloped non-segmented positive-sense RNA
virus (subgenus—sarbecovirus, subfamily—Orthocoronavirinae)®, which proliferation begun in
December 2019 in Wuhan China. It has since been confirmed that two strains of the new
coronavirus (the L- and S-strains) are spreading around the world today®, and the fact that the L-
type is more prevalent suggests that it is “more aggressive” than the S-type. Greater proportion
of research progress on SARS-CoV-2 has taken the biotechnology dimension’?, specifically
focusing on species characterization and variants analysis through features extraction. However,
Artificial Intelligence (Al) and Machine Learning (ML) methods are expanding biotechnology
capacity into the bioinformatics realm, through intelligent genome probing for precise
classification of the virus. In general, AI/ML research on SARS-CoV-2 has permeated four key
areas namely: screening and treatment®!%!112 contact tracing!?, prediction and forecasting!#!5,
and drugs and vaccine discovery!®!713,

Mining additional knowledge from clinical/experimental data—to support intelligent
discoveries and verification could assist complete features extraction, missing information
recovery, hidden patterns understanding, and permit output targets labeling for intelligent
predictions. Most biotechnology/bioinformatics tools are ‘black boxes’ and not open to
contributions from the research community including reproducible research. Furthermore,
extracted features are incomplete to aid meaningful knowledge integration. This paper therefore
provides an open source hybrid framework with rapid prototype modules for intelligent SARS-
CoV-2 sub-strains prediction. Our framework produces intermediate data/results to aid
reproducible research and permits scalability of the design across diverse domains.

SARS-CoV-2 Sub-strains Analysis

Phylogenetic tree and genomic tree (hierarchical clustering) are common determinant measures
for representing genetic diversity and evolutionary relationships. While phylogenetic tree reflects
slow evolution within the genome (point mutations), hierarchical clustering describes major
genetic re-arrangement events (insertions or deletions). However, converting massive amount of
data such as complete genome sequences into meaningful biological representations becomes
difficult, to aid proper interpretation. Numerous algorithms/tools have evolved to target specific
gene sites/locations for “on-the-fly” or online representations such as the phylogenetic tree. But
major drawbacks of site-specific analysis include incomplete representation and clustering
errors—as different genome sites undergo different evolutionary changes, resulting in disparate
multi-dimensional patterns at different sites. Attempts at estimating phylogenies by comparing
entire genomes have been made by focusing mainly on gene content and gene order
comparisons. While early attempts concentrated on morphological characters with the premise
that direct genes comparison makes more sense. However, modern attempts use sequences from
homologous genes!® but are burdened by the fact that a gene’s evolutionary history may differ
from the evolutionary history of the organism, as some genes sufficiently conserved across the
species of interest may escape detection. Furthermore, most of their proves are still at the
modelling stage and not yet verified using clinical and experimental data. Li et. al*® for instance
investigated the angiotensin-converting enzyme 2 (ACE2)—the receptor agent for the SARS-
CoV-2 virus—a known contributor to viral infections susceptibility and/or resistance!®. ACE2
generates small proteins by cutting up larger protein angiotensinogen, in turn affecting the
nucleotide/protein. They compared ACE2 expression levels across 31 normal human tissues
between males and females and between younger and older persons using two-sided student’s t-
test. By examining the expression patterns, they found that ACE2 was similarly expressed
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between males and females or between younger and older persons in experimented tissues.
Furthermore, men showed worse prognosis than women. Their findings however lacked
experimental and clinical data validation.

In Tang et al.%, a population genetic analysis of 103 SARS-CoV-2 genomes was performed.
Their analysis revealed two dominant types of SARS-CoV-2 namely the L type (~70%) and S
type (~30%). In another study, Stefanelli et al.?! investigated the phylogenesis of 2 patients in
Italy; a Chinese tourist from Wuhan and an Italian diagnosed, isolated and hospitalized in
January and February 2020. They found the Italian patient’s strain to be different from the
tourist’s strain, as it clustered with strains from Germany and Mexico, while the Chinese tourist’s
strain was grouped with strains from Europe and Australia. Similarly, Somasundaram et al.??
systematically explored the phylogenetic and viral clade of 28 Indian isolates of SARS-CoV-2. A
total of 449 complete genome samples from USA, Europe, China, East Asia, Oceania, Middle
East (Kuwait and Saudi Arabia) and India were collected from Global initiative on Sharing All
Influenza Data (GISAID: https://www.gisaid.org/). A phylogenetic analysis by maximum
likelihood was achieved using 1Q tree. Out of the Indian isolates, 26 samples were equally
distributed into 2 clusters (A and B). Cluster A consisted of mostly Oceania/Kuwait and 13
Indian samples, while cluster B contained Europe and some of Middle East/South Asian samples
together with another 13 Indian samples. The remaining 2 Indian isolates which neither belonged
to cluster A nor cluster B, were present in the cluster with mostly China and East-Asia samples.
However, the use of small datasets and the lack of travel history made their findings inconclusive

Hybrid tools that combine biotechnology and ML/AI methodologies, have advanced
precision in approach and solution to the pandemic. Lopez-Rincon et al.? for instance, combined
molecular testing with deep learning for automatic features extraction from SARS-CoV-2
genome sequences. The network’s behavior on every sample was analyzed to discover sequences
used by the model to classify SARS-CoV-2. Experiments on data from the novel coronavirus
resource (2019nCoVR) showed that their approach could correctly classify SARS-CoV-2, and
distinguish it from other coronavirus strains, regardless of missing information and errors in
sequencing (noise). In Randhawa et al.?*, an intrinsic COVID-19 virus genomic signature was
identified and combined with a ML-based alignment-free approach to yield robust classification
of complete SARS-CoV-2 genomes. A supervised ML with digital signal processing and
decision tree augmentation was used for genome analysis and successive refinements of
taxonomic classification. Spearman’s rank correlation coefficient analysis was then used for
result validation. A large dataset of over 5000 unique viral genomic sequences were finally
mined; and their results support the bat origin hypothesis. In Khanday?*, ML and ensemble
learning models were used to classify clinical reports into four categories of SARS-related
viruses. Feature extraction was achieved and extracted features finally supplied to the ML
classifiers. They found that logistic regression and multinomial Naive Bayes yielded better
results than other ML algorithms with high testing accuracy. In Melin?%, an analysis of spatial
evolution of coronavirus pandemic around the world using self-organizing maps (SOMs) was
performed. Data was obtained from the Humanitarian Data Exchange (HDX)?’, from countries
where COVID-19 cases have occurred between January 22, 2020 and May 13, 2020. Spatially
similar countries were grouped by cases, to analyze which countries adopt similar strategies in
dealing with spread of the virus. Villmann et al.?® investigated SARS-CoV-2 sequences based on
alignment-free methods for RNA sequence comparison. Using phylogenetic trees and alignment-
free dissimilarity measures plus learning vector quantization classifiers, discrimination and
classification of viral types were performed. Learning the vector quantizers provided additional



knowledge about the classification decisions. A classifier model was finally obtained after
training the classifier with the GISAID datasets. The limitation of their study is its inability to
label the SARS-CoV-2 datasets for prediction of new/emerging mutant strains and viral types.

Results
The general workflow describing the proposed computational framework is shown in Fig. 1, and
the sequence of steps implementing the workflow is presented as Algorithm 1.
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Fig. 1. Workflow describing the proposed hybrid approach. The workflow begins with the excavation of FASTA
files of human SARS-CoV-2 genome sequences from GISAID. These files were stripped and processed into a genome
database (DB) as multiple columns of nucleotide sequence. A series of AI/ML techniques were applied to extract
knowledge from the genome datasets as follows: Using ML techniques, compute dis(similarities) scores between the
various pairs of genome sequences and obtain a genomic tree of highly dis(similar) isolates grouped in the form of a
dendrogram/phylogenetic tree. Determine the optimal number of natural clusters—to provide additional knowledge for
supervised learning. Separate the viral sub-strains using SOM component planes—for possible transmission pathways
visualization. Perform direct pairwise nucleotide alignment of the entire genome sequences—to yield a nucleotide
similarity matrix. Generate cognitive map—for intelligent sub-strains prediction. Learn and predict new/emerging sub-
strains using ANN.

Algorithm 1. Steps implementing the workflow in Fig. 1.
1. import necessary libraries
2. set path to current directory
3. #Genome nucleotide fragments processing




4. create a list of FASTA files (fasta_list) to process
5. for file name in fasta list:

6 open FASTA file for read

7. store a line of genome sequence

8 for line in file_name:

9. strip line into a list of nucleotide fragments (nucleotide fragments)
10.  for line in nucleotide fragments:

1. write nucleotide code into complete genome file (complete genome)

12.  close FASTA file

13. #Direct nucleotide alignment and similarity scores generation

14. open complete genome for read

15. store a line of nucleotide code

16. for line in complete genome:

17.  align nucleotide pair and compare nucleotide code

18. build pairwise dis(similarity) matrix using a suitable distance metric (e.g.,
Euclidean distance)

19. #AGNES/hierarchical clustering: generate phylogenomic tree and cluster plots

20. treat observations (nucleotides) as cluster points and compute AGNES
distance coefficients between clusters

21. compute scores between genome isolates clusters

22. build and visualize genomic tree

23. discover and validate optimal natural clusters (k) using any k-means based N
approaches (N>2) (elbow, silhouettes, gap-statistics etc.).

24. partition the tree into k clusters

25. #Genome expression patterns discovery

26. perform SOM clustering on complete _genome

27. obtain SOM component planes of learned genome expression patterns

28. obtain pairwise correlation coefficients

29. label target (output) classes using dis(similarity) and genome expression
clusters—indicating mutant sub-strains and viral expression patterns, to form
enriched genome datasets.

30. generate cognitive maps with embedded links of genome isolates.

31. learn and classify genome (isolate) patterns characterized by (generated)
cognitive maps, using 3-layered artificial neural network (ANN).

32. predict SARS-CoV-2 sub-strain

33. close complete genome.

Hierarchical Clustering Analysis (Agglomerative Nesting: AGNES)

Results of the distance measures show that the ward method has the highest agglomerative
coefficient of (male=0.9936; female=0.9880), indicating more compact clusters; closely
followed by complete (male=0.9882; female=0.9754); average (male=0.9874; female=0.9694);
and single (male=0.9776; female=0.9392) methods. The HCA or AGNES plots (see Fig. 2 of the
methods section) therefore suggests an inevitable sub-strains (independent) mutant accumulation
in different countries, while few mild divergent strains with specific mutations are
geographically different. To determine if differences exist in the genome sequences between



genders, an independent t-test was run on the AGNES dis(similarity) scores. Results showed that
males had statistically insignificantly longer genome sequences (0.9727 + 0.0376) compared to
females (0.9673 + 0.0341), t(515) = 1.71, p = 0.087. However, there was no statistically
significant difference in mean similarity between the nucleotide structures of the two groups at
95% confidence interval, hence, no significant genetic variations were observed. This result
corroborates the findings in Ke et al.?? and validates their claim that no significant genetic
variation exists in human SARS-CoV-2 genomes for both groups.

SOM Pattern Analysis

Component planes visualization reveals the distribution of single feature values on a SOM map.
Fig. 2 shows SOM component planes generated to study genome dissimilarities between selected
countries, for both genders; and was achieved by classifying observed pattern varieties of the
main cluster groups. We observe that patients with prolonged prognosis (hospitalized, alive,
released) present sharp pattern clusters with well separated boundaries indicating large variance
between nucleotide sequences. This implies that, about 50% of the GISAID datasets excavated
for this study were severe (late) cases of COVID-19, identified by sharp cluster patterns. Early
symptomatic and asymptomatic cases however exhibit no defined cluster patterns, indicating
small variance between nucleotide sequence and possible mild mutation®. The component
planes permit an investigation of continents that share similar sub-strain(s) of SARS-CoV-2 and
which sub-strain(s) permeate the different regions.

Viral Sub-strains Discrimination

To compare inter-continent pattern varieties exhibited by male and female genomes, SOMs with
dis(similar) pattern characteristics were filtered and presented in Fig. 3. Although both genders
exhibit near-dissimilar patterns, some of the viral sub-strains progressively transformed into a
next sub-strain indicating the presence of amino acid variants and strong nucleotide association
derived from same origin. Aside the general claim that patients with co-morbidities, aged, males
have worse prognosis during COVID-19 infections*®, evidence of immune tolerance of females
and slow prognosis®! corroborates our claim of slow pattern transformation for female cases. A
distribution of sub-strain clusters across the genome datasets for both genders, explains the
diversity of SARS-CoV-2. The arrangement of clusters in this case is not relevant, as some sub-
strains evolved from a previous strain(s) showing similar genetic/genomic patterns (Fig. 3). By
decoupling the SOMs, we were able to group the SOMs by dominant clusters. Results obtained
indicate the presence of 2 dominant clusters for both genders (male vs. female), i.e., (trace 1: 38
[48.10%] vs. trace 1: 37 [47.44%]) and (trace 2: 19 [24.05%] vs. trace 2: 13 [16.67%)]).
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Fig. 2. SOM component planes visualization. Maps are ordered by countries using Alpha-3 code (ISO 3166)
representation, with at least 1 isolate per country. We observe single-, double- and multiple-source transmissions
and discuss the transmission routes in a combinatorial manner (i.e., order is not a factor). In the African region,
females show fewer country transmissions, as 7 out of 12 countries have similar pattern correlates with genomes
from the South Asian; West Europe; Asian/Europe and Central American regions; compared to males, where 9 out
of 12 countries show similar pattern correlates with genomes from the Southeast and West Asia; Southeast, South-
Central and Western Europe; South and Central American; and the Oceanian regions. Furthermore, while male
genomes show moderately weak pattern correlates with genomes from Germany, female genomes show very strong
pattern correlates, and moderately weak pattern correlates with genomes from Belgium. Genome pattern correlates
of males and females in the Asian region are consistent with patterns from Southeast and South-Central Europe;
Eastern Mediterranean; North and South American; save Asia/Europe and Oceanian regions, which genome pattern
correlates are similar for Asian males and females, respectively. Genome pattern correlates of males and females in
South America are consistent with patterns from the North American and the Oceania regions, while genome
patterns in the North America are consistent with those from South American and the Oceanian regions.
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Fig. 3. SARS-CoV-2 sub-strains clusters. We observe 7 distinct sub-strain clusters in both cases, with 4 of the sub-
strains having more than 2 transitions before yielding sharp distinct clusters/patterns. While male SOM component
planes exhibit rapid transitions unto sharp, distinct clusters (Fig. 3a), female SOM plots show slow transitions (Fig.
3b) and a late appearance of sharp, distinct clusters.

Cognitive knowledge extraction for intelligent sub-strains prediction

To intelligently predict the viral sub-strains for both genders, novel cognitive maps that preserve
chains of similar sub-strains isolates were generated from SOM component planes using the
Python programming language (Fig. 4 and Fig. 5). For male patients, 2 more clusters, 1 and 9
(Fig. 4b), derived from isolates [(1,2), 18, 33, (52,53), 60, (62, 63), 66] and [38, 41, 66],
respectively (Fig. 4a) were further separated; where (x,y) are similar isolate pairs from same
country, and which countries are as ordered in Fig. 2. For females, 3 more clusters, 1, 2 and 8
(Fig. 5b), derived from isolates [1, 3, 5, 9, 10, 21, 27, 31, 36, 38, 39, 47, 51, 54, 59, (61,62), 63,
70, 72, 751; [2, (18,19), 29, 35] and [32, 57, 71, 76], respectively (Fig. 5a) were further
separated. Additionally, females have fewer inter-similarity links, confirming fewer transmission
routes, compared to males, an evidence that our cognitive solution can not only separate hidden
or evolving SARS-CoV-2 patterns for precise sub-strains prediction, but also enables efficient
inter-country contact tracing. Data file storing generated cognitive maps are found in Data S4
(SupplData4.xIsx).

Learning the enriched genome datasets using a 3-layered ANN, characterized by the
generated cognitive maps produced Table 1. In table 1, the ANN was more accurate in predicting
female isolates, as the MSE performances for both train and test datasets yield better
performance than male isolates. Defuzzification of confusable SOM patterns for performance
comparison with our cognitive solution and an intra-country sub-strains prediction are possible
future research directions of this paper.
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Fig. 4. Derived SOM component planes and cognitive map for male genome isolates. The map provides
cognitive solution for sub-strains link modeling and reveal hidden structures which hitherto were subsumed in
previously large cluster groups (Fig. 3a), hence, corroborating the possibility of confusable clusters?.

cluster4 cluster5 cluster6 cluster 7

(b) Cognitive map
Fig. 5. Derived SOM component planes and cognitive map and for female genome isolates. The map provides
cognitive solution for sub-strains link modeling and reveal hidden structures which hitherto were subsumed in

previously large cluster groups (Fig. 3b), hence, corroborating the possibility of confusable clusters?.

Table 1. ANN performance analysis

MSE Performance

1 0
Enriched Genome Datasets Overall Train Test Validation Overall Accuracy (%)
Male patients 0.0056 0.0033 0.0024 0.0210 97.50
Female patients 0.0047 0.0025 0.0021 0.0184 98.70
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Methods

Data Source and Genome Sequences Selection

Publicly available datasets of coronavirus cases around the globe deposited between December
2019 and August 20, 2020 were excavated from GISAID (a database of SARS-CoV-2 partial and
complete genome compilations distributed by clinicians and researchers, the world over), for the
purpose of this study. Four complete genome sequences of human SARS-CoV-2 isolates (2
males, 2 females) from selected countries of the world, across 6 continents, Antartica exempt (as
no deposit of SARS-CoV-2 data was found as at the time of excavation), were collected. Useful
metadata on the extracted genome sequences (Continent, Region, Country, Abbreviation,
Accession No., Length, Gender, Age, Specimen source, Status, Submitting Lab, Authors) were
documented (see Data S1: SupplDatal.xlsx). No information about the travel history of the
patients for extracted genomes were sieved as most of the excavated data lacked this very
information. The preprocessed FASTA files of genome isolates excavated from GISAID, striped
and dumped as column sequences for male and female patients are found in (Data S2:
SupplData2) and (Data S3: SupplData3), respectively. Although incomplete data for some of the
datasets such as age, specimen source and status were noticed, gender was a compulsory
criterion for profiling the excavated genomes. Aside Tunisia, which had informative deposit
about gender of patients for only one pair (1 male, 1 female) and Algeria for (2 males, 1 female),
other SARS-CoV-2 isolates had complete pairs (2 males, 2 females). A total of 157 genome
sequences (79 males, 78 females) with genome lengths of over 29000 nucleotides, were
excavated from 40 different countries distributed across the following continents: Africa, Asia,
Europe, North America, South America and Oceania. Specimen sources include swabs (nasal,
oral, throat, nasal and oral); fluids (bronchoalveolar lavage, saliva, sputum) and unknown. Status
of patients include hospitalized, not hospitalized, acute bronchitis, symptomatic, asymptomatic,
alive and unknown. Age range of 2 months and 99 years were considered, although the ages of 7
patients from Africa and 3 patients from Asia/Europe were unknown. Finally, about 0.70% and
0.79% of errors in sequencing (noise) were noticed in the male and female genome datasets,
respectively.

Configuration of Computing Device

A HP laptop 15-bs1xx with up to 1TB storage running on Windows 10 Pro Version 10.018326
Build 18362 was used for processing the excavated genome sequences, algorithms/programs and
other ancillary data. The system had an installed memory (RAM) of 16 GB with the following
processor configuration: 1.60 GHz, 1801 MHz, 4 Core(s) and 8 logical processors. Although our
system performed satisfactorily and produced the desired results, higher system configurations
would improve the computational speedup.

Genomic Epidemiology of SARS-CoV-2

Due to the naturally expanding genetic diversity of COVID-19, GISAID introduced a
nomenclature for grouping major clades based on marker mutations within 6 high-level
phylogenetic groupings from the early split of S and L, to the further evolution of L into V and G
and later of G into GH and GR; augmented with more detailed lineages assigned by PANGOLIN
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(Phylogenetic Assignment of Named Global Outbreak LINeages) tool, to aid the understanding
of patterns and determinants of the global spread of the pandemic strain causing COVID-19.
Showing 5029 genomes sampled between December 2019 and August 2020, the GR and GH are
becoming more dominant with sparse concentration of new deposits, lately, indicating reduced
spread of the virus (see Fig. 1a). A more recent effort uses a Year-Letter nomenclature to
facilitate the large-scale pattern diversity of COVID-19 and label clades that persist for at least
several months with significant geographic spread (see Fig. 1b). Fig 2 reveals that SARS-CoV-2
mutation rate has remained low, signifying good news for vaccine developers.

Comparing genome content has become commonplace but associating its order presents a
wider range of problems. Hence, methods for complete genome phylogenetic analysis should
show some evidence of robustness against incomplete or inaccurate information. Complete
genome-based phylogenetic trees appear not widely used because of computational difficulties
(massive data and limited processing infrastructure). In this paper, we exploit complete genome
sequences to construct hierarchical cluster structures (dendrograms) that discriminate inter-
genetic diversity of SARS-CoV-2 among male and female patients.

Hierarchical Agglomerative Clustering (HAC)
The dataset is configured with observations (nucleotides) represented in rows, while columns are
variables (genome sequences ordered by countries). The number of columns corresponds to
selected countries while the sequences have varying lengths. The data table is further converted
into as.matrix format where all values of raster layers objects have columns for each layer and
rows for each cells with numeric (continuous) values. In order to make the variables comparable
through the elimination of arbitrary variable units, they are transformed (standardized) such that
they have mean of zero and standard deviation of unity®2, using equation (1).

mean(x)
B sd(x) ’
where sd(x) represents the standard deviation of the feature values.

The procedure for implementing the HAC are as follows: Compute all the pairwise
similarities (distances) between observations in the dataset and represent the result as a matrix.
The resultant matrix is square and symmetric with diagonal members defined as unity—the
measure of similarity between an element and itself. The matrix elements are computed by
iterating over each element and calculating its (dis)similarity to every other element. Suppose A
is a similarity matrix of size N X N, and B, a set of N elements. A;; is the similarity between
elements B; and B; using a specified criterion (Euclidean distance, squared Euclidean distance,
manhattan distance, maximum distance, Mahalanobis distance, cosine similarity). The selected
criterion however depends on the nature of the experimental datasets. This paper adopts the
standardized Euclidian distance criterion, as this measure is widely used and has shown good
performance in the modeling variances in biological sequences.

x(s) = x;

(1)

HAC Visualization

After calculating the distance between every pair of observation point, the result is stored in a
distance matrix. Then, (i) every point is put in its own cluster (i.e., the initial number of clusters
corresponds to the number of variables); (i) the closest pairs of points are merged based on the
distances from the distance matrix as the number of clusters reduces by 1; (iii) the distance
between the new cluster and the previous ones is recomputed and stored in a new distance
matrix; (iv) steps (ii) and (iii) are repeated until all the clusters are merged into one single cluster.
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The distance separating the clusters is specified via linkage methods*? which includes,
complete, average, single, and ward. Complete linkage computes the similarities and uses the
maximum distance between clusters for merging while calculating cluster distances and adopting
minimum inter-cluster distance merging. Average linkage calculates the average distance
between groups of genome sequence before merging; while the total within-cluster variance is
minimized with ward’s method and the pair of clusters with minimum between-cluster distance
are merged. We rely on all the four techniques for assessment and adopt the distance measure
with the highest agglomerative coefficient for cluster formation. The resultant cluster solution is
finally visualized as a tree structure called a dendrogram (or phylogenetic) tree. As the tree is
traversed upwards, observations that are similar to each other are combined into branches, which
are themselves fused at a higher height. The height of the fusion, provided on the vertical axis,
indicates the (dis)similarity between two observations. The higher the height of the fusion, the
less similar the observations are. Fig. 2. show cluster plots and genomic plots generated using the
ward minimum variance criterion.

Optimal Natural Clusters Selection
While there are natural structural entities in some datasets that provide information on the
number of clusters or classes, others including the dataset containing genome sequences are
structured without boundaries. Cluster validation (an unsupervised methodology aimed at
unravelling the actual count of clusters that best describes a dataset without any priori class
knowledge) is therefore essential. This paper adopts three widely used criteria to validate the
number of clusters in the genome sequence dataset namely, silhouette, elbow??, and gap-statistics
with the aim of minimizing the total intra-cluster variation (total within-cluster sum of square) as
given in equation (2).

minimize(Y, w(cy)) (2)
where ¢y, is the kth cluster, and, w(cy,) is the within-cluster variation. The total within-cluster
sum of squares (wss) measures the compactness of the clustering solution. The following steps
are applied to achieve the optimal clusters: (i) Compute clustering algorithm (e.g., k-means
clustering) for different values of k; by varying k from 1 to 10 clusters, for instance. (ii) For
each k, calculate wss. (iii) plot the curve of wss according to the number of clusters k. (iv) the
location of a bend (knee) in the plot is generally considered as an indicator of the appropriate
number of clusters.

Silhouette criterion is used to validate the clustering solution using pair-wise difference
between the within-cluster distances, and by maximizing the value of this index to arrive at the
optimal cluster number®*34. Elbow criterion plots the variance resulting from plotting the
explained variation as a function of the number of clusters and picking the elbow of the curve as
the number of clusters to use. Gap-statistics compares the total intra-cluster variation for
different values of k with their expected values under null reference distribution of the data. The
reference dataset is generated using Monte Carlo simulations of the sampling process. The
silhouette, elbow and gap-statistics methods rely on k-mean algorithm®. In this paper, the k-
means algorithm is implemented in R script consisting of R functions for the silhouette, elbow
and gap-statistics implementation. The decision on the choice of the optimal number of clusters
is based on the results of the three methods. The clustering solution is visualized using the
fviz_cluster function in R programming language for the grouping and extraction of genome
sequences and finally represented in tree format using dendrogram.



Direct Sequence Alignment

Several techniques for biological sequence alignment (multiple or pairwise) have flourished the
literature® and are continually being refined, but most of these techniques suffer from the lack of
accuracy and partial interpretations. We perform (direct) pairwise genome sequence alignments
that match each nucleotide pair at the exact nucleotide positions of the SARS-CoV-2 genome,
extending the alignments across other genome pairs. The results are a set of similarity matrices
for male and female patients (Fig. 3a and Fig 3b). The direct sequence alignment algorithm is
embedded in Algorithm 1.

Unsupervised Genome Clustering
Several mathematical techniques have been deployed for identifying underlying patterns in
complex data. These techniques, which cluster data points differently in multidimensional space
are important to discover fundamental patterns of gene expression inherent in data. The
clustering technique adopted in this paper is the self-organizing map (SOM) and has been used
extensively in the field of bioinformatics, for visual inspection of biological processes, genes
pattern expressions—as maps of (input) component planes analysis. SOM is a neural-network that
projects data into a low-dimensional space’’, by accepting a set of input data and then mapping
the data onto neurons of a 2D grid (see Fig. 4). The SOM algorithm locates a winning neuron, its
adjusting weights and neighboring neurons. Using an unsupervised, competitive learning
process, SOMs produce a low-dimensional, discretized representation of the input space of
training samples, known as the feature map. During training, weights of the winning neuron and
neurons in a predefined neighborhood are adjusted towards the input vector using equation (3),
widt =wiy +1f({,qQ)(xqg —wiy); 1<d <D. 3)
where 7 is the learning rate and f (i, q) is the neighborhood function, with value 1 at the winning
neuron q; and decreases as the distance between i and g increases. At the end, the principal
features of the input data are retained, hence, making SOM a dimension reduction technique. The
batch unsupervised weight/bias algorithm of MATLAB (#rainbu) with mean squared error
(MSE) performance evaluation, was adopted to drive the proposed SOM. This algorithm trains a
network with weight and bias learning rules using batch updates. The training was carried out in
two phases: a rough training with large (initial) neighborhood radius and large (initial) learning
rate, followed by a finetuned training phase with smaller radius and learning rate. The rough
training phase can span any number of iterations depending on the capacity of the processing
device. In this paper, we kept the number of iterations at 200 with initial and final neighborhood
radius of 5 and 2, respectively, in addition to a learning rate in the range of 0.5 and 0.1. The fine
training phase also had a maximum of 200 epochs, and a fixed learning rate of 0.2. Selection of
best centroids of the genome feature within each cluster was based on the Euclidean distance
criterion. The algorithm configures output vectors into a topological presentation of the original
multi-dimensional data, producing a SOM in which individuals with similar features are mapped
to the same map unit or nearby units, thereby creating smooth transition of related genome
sequences to unrelated genome sequences over the entire map.

Pattern Correlates Generation: Comparing component planes help detect similar patterns in
identical positions indicating correlation between the respective components. Local correlations
can also occur if two parameter planes are similar in some regions. Both linear and non-linear
correlations including local or partial correlations between variables are possible (34). We
achieve the correlation hunting automatically, by decoupling the SOM correlations, to explore
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patterns among the pairwise genome samples for distinct identification of transmission pathways
or routes. The extracted correlation matrices showing pairwise relatedness of the viral sub-
strains’ transmissions with related pairs (12 = 0.60) colored in green, for male and female
patients are presented in Fig. 5a and Fig. 5b, respectively.

Cognitive Knowledge Mining: Knowledge mining has served huge benefits for quick learning
from big data. We apply Natural Language Processing of the genome datasets to extract
knowledge of similar strains of the virus. A simple iteration technique is imposed on the SOM
isolates (i = 1,2,3, ..., n), where n is the maximum number of isolates, as follows: For each
isolate pattern, compile similar patterns with the rest of the isolates (i.e., i + 1,i + 2, ..., n).
Concatenate compiled isolate(s) into a list (jy, j2,. .., j;m) Where j is an element of the list. Dump
the compiled list into CogMap (k; € ji,J25---> jm)-

Neural Network Design: Artificial Neural Networks (ANNs) are networks inspired by the
neurological structure of the human brain. They are complex computer code written with simple,
highly interconnected processing elements inspired by human biological brain structure for
simulating the human brain and processing data/information models. Although five core ANN
areas have been explored, namely: Multi-Layer Perceptron, Radial Basis Network, Recurrent
Neural Networks, Generative Adversarial Networks, and Convolutional Neural Networks; this
paper adopts the Multi-Layer Perceptron model (MLP)-a class of feedforward ANNs, with at
least three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input
nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised
learning technique called backpropagation for training®.

Fig. 6 shows our ANN architecture. A minimal number of 7 and 5 neurons for hidden layer 1
and hidden layer 2, respectively, is used in this study. The decision for choosing 7 and 5 neurons
was informed by the total number of output targets and the evidence that a dropout of neurons
represents computationally cheap and remarkably effective regularization method to reduce
overfitting and improve generalization error in neural networks of all kinds. The output classes
(C1-C7) were derived from the sub-strains discovered from learning the SOM. In training the
ANN, the batch training with weight and bias learning rules ‘trainb’ with the Mean Squared
Error (MSE) performance function, was adopted. The ‘trainb’ trains a network with weight and
bias learning rules by continuous batch updates. The weights and biases are updated at the end of
an entire pass over the input data. Training progresses according to trainb’s training parameters,
with a maximum of 1000 training epochs and 1e~® minimum performance gradient.
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(a) Male patients (b) Female patients
Fig. 1. Phylogeny of SARS-CoV-2 genomic epidemiology. The original L strain surfaced in Wuhan in December
2019, with its first mutation, the S strain, appearing at the beginning of 2020; while strains V and G appeared in the
mid of January 2020. Currently, strain G which mutated into strains GR and GH at the end of February 2020 are by
far most prevalent, presenting 4 different mutations, two of which can change the RNA polymerase and Spike proteins
sequence of the virus—a probable characteristic that facilitates the virus spread. Globally, strains G, GH and GR are
becoming more dominant, while strain S, L and V are fast disappearing.
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Fig 2. Cluster plots and genomic trees. Notice 2 distinct groups A and B separated between closely similar and
dissimilar isolates, with the A group having heavy isolates concentration compared to the B group. For males (Fig.
2b), group A consists of 72 isolates with 3 sub-groups. The first sub-group contains 59 isolates from Europe, Africa,
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Asia, South America, North America and Oceania. The second sub-group contain 10 isolates from Europe, Africa and
Asia. The third sub-group contains 3 isolates from Africa. Cluster B consists of 7 isolates distributed among 4 sub-
groups namely Africa (2); Africa and Asia (2); Europe (1); and Europe and North America. For females (Fig. 2d),
cluster A consists of 70 isolates with 3 sub-groups. The first sub-group contains 59 isolates from Europe, Africa, Asia,
South America, North America and Oceania. The second sub-group contain 2 isolates from Africa and Asia. The third
sub-group has 9 isolates distributed between North America, South America, Africa, Asia, Europe and Oceania.
Cluster B consists of 8 isolates distributed among 4 sub-groups with the first 3 isolates groups from the African region,
while the fourth isolate group comes from Africa and Europe regions.

(a) Male patients (b) Female patients
Fig. 3. Inter-continent nucleotide similarity matrices. Green colored cells are regions of high similarity that may
indicate functional, structural and/or evolutionary relationships between nucleotide sequences.
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Fig. 4. SOM showing the map topology and interactions between nodes. Each neuron is assigned a vector of
weights (W = Wy, Wi, .. W;y ) with dimension similar to the input vector i (i = 1, 2, ..., L); where L is the total number
of neurons in the network. The input nodes have p features, and the output nodes, g prototypes, with each prototype
connected to all features. The weight vector of the connections consumes the prototype of each neuron and has same
dimension as the input vector. SOMs differ from other artificial neural networks as they apply competitive learning,
against error correction learning such as backpropagation, and the fact that they preserve the topological properties of
the input space using a neighborhood function.
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a) Male patients b) Female patients
p

Fig. 5. Correlation matrices showing pairwise relatedness of the viral sub-strains’ transmissions. Isolate pairs
showing viral sub-strains’ transmissions (r? = 0.60) are colored in green.

Input layer | Hidden layers i Output layer

Fig. 6. ANN architecture. A 3-layered network, with one output layer and two hidden layers. The input layer
consumes the knowledge-enriched genome datasets comprising of extracted patterns of SOM learning of the
respective genome isolates and additional knowledge sieved from analysis of the genome sequences (i.c., number of
natural clusters discovered from the genomic tree, discovered SOM sub-strain clusters, and link sequences derived
from cognitive maps of the various isolates)
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Figure 1

Workflow describing the proposed hybrid approach. The workflow begins with the excavation of FASTA
files of human SARS-CoV-2 genome sequences from GISAID. These files were stripped and processed
into a genome database (DB) as multiple columns of nucleotide sequence. A series of Al/ML techniques



were applied to extract knowledge from the genome datasets as follows: Using ML techniques, compute
dis(similarities) scores between the various pairs of genome sequences and obtain a genomic tree of
highly dis(similar) isolates grouped in the form of a dendrogram/phylogenetic tree. Determine the optimal
number of natural clusters—to provide additional knowledge for supervised learning. Separate the viral
sub-strains using SOM component planes—for possible transmission pathways visualization. Perform
direct pairwise nucleotide alignment of the entire genome sequences—to yield a nucleotide similarity
matrix. Generate cognitive map—for intelligent sub-strains prediction. Learn and predict new/emerging
sub-strains using ANN.

DZA DRC2 EGY1 2 GHA1 DZA1 DRC1 DRC2 GY‘I EGY2 GM‘] GMB2 GHA1 GHA
TR EL Rl KL 1T KK B KL K ELE
0120 0120 010 010 010 010 010 010 010 01@0 010 010 010 010 010 010
GHA2 KEN1 KEN2 ML MLI2 MAR! MAR2 NGA1 NGA2 KEN1 KEZ MLIT  MLI2 Mﬁ1 ME NGA1 NGA2 SEN1
8 (B R G (E G B G jEE| |G O (BN G GE GE 9 Ue E
010 010 010 0100 0120 010 010 010 01020 010 01020 010 010 0120 01020 0100 010 010
SEN1 SEN2 ZAF1 ZAF2 TUN1 BGD1 BGD2 CHN1 CHN2 SEN2 ZAF1 TUN1 BGD1 BGD2 CHN1 CHN2 GEO1
i | e R [ ] e
NN OE GO TR RN N G GEN GE| (0O G GEE G GEE GER GER GER G
01020 010 0100 01020 01020 010 01020 o100 0120 01020 01020 01020 01020 010 01020 01020 01020 01020
GEO1 GEO2 HKG1 HKG2 IDN1 IDN2 IND1 LBN GEO2 HKG1 HKG2 IDN1 IDN2 IND1 IND2 LBN1 LBN2
i s HE (]
A 9 N G G G GE G GED| | (M 96 GE G G GE GE G
01@0 01@0 01@0 010 01@ee 010 01e0 0120 0120 01E0 010 01@0 010 010 01020 01RO 01020 01020
CYP1

LBN2 MYS1 MYS2 SGP1 SGP2 BEL1 BEL2 CHEt1 CHE2 MYS1 MYS2 SGP1 SGP2 BEL1 BEL2 CHE1

BEE PR G R TEE UM OON GEE G| |%EE 9 EE BN N i i i GER
0120 01020 01020 01020 01(R0 01020 01020 01RO 01020 01020 01(BO 01020 0120 0120 01020 01(E0 01020
CYP1 CYP2 ENG1 EN2 GER1 GER2 ISL1 ISL2  ITA1 CYP2 EN1 ENG2 GER1 GER2 ISL1 ISL2  ITA1  ITA2

I S P R G OEN GEE G G| |GER GE GE GEE A G YN GER G
01RO 01RO 010 0120 010 01R0 010 0120 01020 0120 0120 010 0120 010 0120 010 0120 010

ITA2 POL1 POL2 ROU1 ROU2 RUS1 RuUS2

15“ ’lgm 15” 1;” ig ] ig 13-

POL1 POL2 ROU1 ROU2 RUS1 RUS2 TUR1 TUR2 CRNi

O R EL R KRR KL

01020 01020 01020 01020 01020 01020 01Q20 01020 01020

01020 01020 010 01020 0100 01020 01020 01020

CRIt CRI2 <CAN1 CAN2 JAM1 JAM2 USA1 USA2 ARG! CRI2 CAN1 CAN2 JAM1 JAM2 USA1 USA2 ARG1 ARG2
et { & { A [ A 7o B A

R R G R Y R SO TR RE e GER 30 ER GER IER GEE G I

UIED 0300 C01R0: TG0 OUE0. 01080 TR - GAGERt 01E) 0120 01@0 010 01R0 0120 01R0 01@0 01@0 010

ARG2 ECU1 ECU2 BRA1 BRA2 AUS1 AUS2

45 ?g. 15“ 1;“ 15 ?gn 15-

01020 01020 010 010 01020 01020 010

BRA2 AUS1 AUS2

15 A3 lg o

010 0120 01020

(a) Male patients (b) Female patients

Figure 2

SOM component planes visualization. Maps are ordered by countries using Alpha-3 code (ISO 3166)
representation, with at least 1 isolate per country. We observe single-, double- and multiple-source
transmissions and discuss the transmission routes in a combinatorial manner (i.e., order is not a factor).
In the African region, females show fewer country transmissions, as 7 out of 12 countries have similar
pattern correlates with genomes from the South Asian; West Europe; Asian/Europe and Central American
regions; compared to males, where 9 out of 12 countries show similar pattern correlates with genomes
from the Southeast and West Asia; Southeast, South-Central and Western Europe; South and Central
American; and the Oceanian regions. Furthermore, while male genomes show moderately weak pattern
correlates with genomes from Germany, female genomes show very strong pattern correlates, and
moderately weak pattern correlates with genomes from Belgium. Genome pattern correlates of males and
females in the Asian region are consistent with patterns from Southeast and South-Central Europe;



Eastern Mediterranean; North and South American; save Asia/Europe and Oceanian regions, which
genome pattern correlates are similar for Asian males and females, respectively. Genome pattern
correlates of males and females in South America are consistent with patterns from the North American
and the Oceania regions, while genome patterns in the North America are consistent with those from

South American and the Oceanian regions.
Trace 2

Trace |

(a) Male patients (b) Female patients

Figure 3

SARS-CoV-2 sub-strains clusters. We observe 7 distinct sub-strain clusters in both cases, with 4 of the
sub-strains having more than 2 transitions before yielding sharp distinct clusters/patterns. While male
SOM component planes exhibit rapid transitions unto sharp, distinct clusters (Fig. 3a), female SOM plots
show slow transitions (Fig. 3b) and a late appearance of sharp, distinct clusters.
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Figure 4

Derived SOM component planes and cognitive map for male genome isolates. The map provides
cognitive solution for sub-strains link modeling and reveal hidden structures which hitherto were
subsumed in previously large cluster groups (Fig. 3a), hence, corroborating the possibility of confusable

clusters22.
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Figure 5

(b) Cognitive map

Derived SOM component planes and cognitive map and for female genome isolates. The map provides
cognitive solution for sub-strains link modeling and reveal hidden structures which hitherto were
subsumed in previously large cluster groups (Fig. 3b), hence, corroborating the possibility of confusable

clusters22.
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Methods Fig. 1. Phylogeny of SARS-CoV-2 genomic epidemiology. The original L strain surfaced in
Wuhan in December 2019, with its first mutation, the S strain, appearing at the beginning of 2020; while
strains V and G appeared in the mid of January 2020. Currently, strain G which mutated into strains GR
and GH at the end of February 2020 are by far most prevalent, presenting 4 different mutations, two of
which can change the RNA polymerase and Spike proteins sequence of the virus—a probable
characteristic that facilitates the virus spread. Globally, strains G, GH and GR are becoming more
dominant, while strain S, L and V are fast disappearing.
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Figure 7

Methods Fig 2. Cluster plots and genomic trees. Notice 2 distinct groups A and B separated between
closely similar and dissimilar isolates, with the A group having heavy isolates concentration compared to
the B group. For males (Fig. 2b), group A consists of 72 isolates with 3 sub-groups. The first sub-group
contains 59 isolates from Europe, Africa, Asia, South America, North America and Oceania. The second
sub-group contain 10 isolates from Europe, Africa and Asia. The third sub-group contains 3 isolates from
Africa. Cluster B consists of 7 isolates distributed among 4 sub-groups namely Africa (2); Africa and Asia



(2); Europe (1); and Europe and North America. For females (Fig. 2d), cluster A consists of 70 isolates
with 3 sub-groups. The first sub-group contains 59 isolates from Europe, Africa, Asia, South America,
North America and Oceania. The second sub-group contain 2 isolates from Africa and Asia. The third
sub-group has 9 isolates distributed between North America, South America, Africa, Asia, Europe and
Oceania. Cluster B consists of 8 isolates distributed among 4 sub-groups with the first 3 isolates groups
from the African region, while the fourth isolate group comes from Africa and Europe regions.

(a) Male patients | (b) Female patients

Figure 8

Methods Fig. 3. Inter-continent nucleotide similarity matrices. Green colored cells are regions of high
similarity that may indicate functional, structural and/or evolutionary relationships between nucleotide
sequences.
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Figure 9

Methods Fig. 4. SOM showing the map topology and interactions between nodes. Each neuron is
assigned a vector of weights (w=w_i1,w_i2,..w_iN) with dimension similar to the input vectori (i=1,2,...L);
where L is the total number of neurons in the network. The input nodes have p features, and the output
nodes, q prototypes, with each prototype connected to all features. The weight vector of the connections
consumes the prototype of each neuron and has same dimension as the input vector. SOMs differ from
other artificial neural networks as they apply competitive learning, against error correction learning such
as backpropagation, and the fact that they preserve the topological properties of the input space using a
neighborhood function.



(b) Female patients

(a) Male patients

Figure 10

Methods Fig. 5. Correlation matrices showing pairwise relatedness of the viral sub-strains’ transmissions
Isolate pairs showing viral sub-strains’ transmissions (r*2>0.60) are colored in green.
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Figure 11

Methods Fig. 6. ANN architecture. A 3-layered network, with one output layer and two hidden layers. The
input layer consumes the knowledge-enriched genome datasets comprising of extracted patterns of SOM



learning of the respective genome isolates and additional knowledge sieved from analysis of the genome
sequences (i.e., number of natural clusters discovered from the genomic tree, discovered SOM sub-strain
clusters, and link sequences derived from cognitive maps of the various isolates)
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