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Flexure-based compliant mechanisms are increasingly promising in precision engineering, robotics, and other applications,
thanks to the excellent advantages of no friction, no backlash, no wear, and minimal assembly. However, their design and analysis
are still challenging due to the coupling of kinematic-mechanical behaviors with large nonlinear deflections in comparison to their
rigid-body counterparts. Optimal design is an important aspect in the field of compliant mechanisms and has attracted much
attention during the last decades. Especially, when considering a multiobjective optimization design for compliant mechanisms,
the problem is becoming more complicated. �us, this article presents a new efficient hybrid computational method to resolve
multiobjective optimization design of compliant mechanisms. A Scott Russell compliant mechanism is employed as the design
example and to show the advantages of the proposed optimizing method. �e proposed method is developed by hybridizing the
desirability function approach, fuzzy logic system, adaptive neuro-fuzzy inference system (ANFIS), and lightning attachment
procedure optimization (LAPO). First of all, a 3D finite element model is created and central composite design is employed to
build a numerical matrix. First, design variables are refined by using analysis of variance and Taguchi approach in terms of
considerably eliminating space of design variables. Subsequently, desirability values of two objective functions are determined and
transferred into the fuzzy logic system.�e output of the fuzzy logic system is considered as a single combined objective function.
Next, modeling for fuzzy output is established via developing the ANFISmodel. At last, the LAPO algorithm is adopted for solving
the multiobjective optimization problem for the mechanism. �ree numerical examples are investigated to validate the feasibility
and the effectiveness of performance efficiency of the proposed methodology. �e results find that the proposed methodology is
more efficient than traditional Taguchi-based fuzzy logic. Besides, the performance efficiency of the proposed approach out-
performs the Jaya algorithm and TLBO algorithm through the Wilcoxon signed rank test and Friedman test. �e results of this
article give a useful approach for complex optimization problems.

1. Introduction

Scott Russell compliant mechanism (SRCM) is utilized as a
shuttle to transform two input motions into output one. It is
exerted by a piezoelectric actuator in applications of high
precision positioning systems. �e mechanism can achieve
its performances through elastic deformation of flexure
hinges [1–4]. It benefits a monolithic structure, lightweight,
and free friction. Nonlinear behaviors of the mechanism are

facing challenges for researchers in compliant mechanism.
Over the past several decades, researchers have tried to make
approaches and methods to synthesize compliant mecha-
nisms, e.g., kinematic-based methods [5–8]. �ey showed
that physical behaviors and performances of compliant
mechanism should analyze displacement, stress, frequency,
and parasitic error. Kinematic-based methods are still valid,
but some are difficult to resolve the performances of SRCM
because of their complicated applications.
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In the past decades, a lot of analytical methods and
numerical methods have been proposed for designing and
analyzing compliant mechanisms, such as the pseudorigid-
body model (PRBM) [9], Castigliano’s second theorem [10],
compliance matrix method [11], empirical method [12],
beam constraint model [13], Euler–Bernoulli beam theory
[14], and finite element method [15]. However, these
methods are useful in advancing simple compliant mech-
anisms with existing configurations. But they are critically
challenging in analyzing the static and dynamic behaviors
for complex compliant mechanisms, such as irregular shapes
of flexure hinges and complex configurations and large
deflections. It is known that the PRBM is still a valuable
technique for modeling, but it is limited in highly nonlinear
deformation of flexure hinges. For complex loads and
complicated configurations of flexure hinges, the PRBM is
not suitable. Especially, the PRBM is strongly dependent on
the location of torsional springs, the number of torsional
springs, and designer’s experiences in the field of compliant
mechanisms. Castigliano’s second theorem can analyze the
strain energies of flexure hinges such as tensile, shear, and
bending strains, but this theorem is critically complicated for
complex structures. Compliance matrix method is actually
difficult for analyzing when compliant mechanisms subject
multiple complicated actuation forces. Elastic beam theory is
related to the deformation energy of compliant mechanisms,
but it is still complicated for complex structures. Based on
the two-port dynamic stiffness model, statics and dynamics
can be effectively solved, but it becomes more complicated
for modeling irregular structures. Compliance matrix
method is used to transfer the compliance of flexure hinges
from the local coordinate frame into a reference coordinate
system. �is method is still complicated for a more complex
structure of compliant mechanisms. Empirical modeling can
analyze compliant mechanisms with high accuracy, but it is
very costly and time-consuming. It is difficult to analyze a
large deformation of flexure hinges using the beam con-
straint model. Finite element method (FEM) analyzes
complex geometric shapes of compliant mechanisms by
discretizing compliant mechanisms into elements and
nodes.

Although the previous methods are still valid, they are
still challenging to analyze the complex compliant mecha-
nisms. �e estimating accuracy of modeling are based on a
complexity degree of kinematic and mechanical coupling of
compliant mechanisms. Especially for a large nonlinear
deflections and irregular shapes, the abovementioned
methods are limited. For optimal design of multiple per-
formances of compliant mechanisms, the problem is be-
coming more complex. �erefore, data-driven approach,
computing intelligence, and machine learning have attracted
much attention to model complex systems [16–18]. Data-
driven approaches-coupled computing intelligence is an
effective tool that has not extended to the field of compliant
mechanisms yet. From reviewing the literature review, the
motivation of this article is to develop a new hybrid com-
putational method to solve the optimal design for compliant
mechanisms. �e proposed method is extended to solve for
most compliant mechanisms from a basic structure to a

complex one. Specifically, it is an efficient approach for the
SRCM. In order meet wide applications, the SRCM requires
both a large displacement, a high frequency, and a good
enough working strength. In order to solve three quality
performances simultaneously, size, shape, or topology of the
proposed mechanism can be changed. However, a such
random change spends a lot of computational time. At the
same time, a parameter optimization is conducted by re-
searchers to enhance the physical performances. Optimi-
zation problem includes a single response or more than two
ones. In the past, the structural optimization problem of a
compliant mechanism separates into three main types, e.g.,
topology optimization [19], shape optimization, and size
optimization [14, 20, 21]. In this work, size optimization is
chosen to find the best geometrical parameters of SRCM.

In order to solve multiple objective responses, a mul-
tiobjective optimization (MOO) problem is investigated.�e
aim of the MOO problem is to reach a trade-off between
characteristics. Nowadays, the MOO problem has received a
great interest for compliant mechanisms [22–24]. However,
a MOO optimal design for the proposed SRCM has not been
studied in depth. So, parameter optimization is proposed in
the present article. In a real structure of SRCM, it includes
possible design parameters affecting desired performances.
Besides, it is well-known that physical behaviors of the
SRCM are very sensitive to a change in shape, material, or
geometrical parameters. Shape and material may be directly
varied according to customer’s demands. Meanwhile,
structural parameters should be optimized to improve the
performances. �e most critical parameters strongly con-
tribute on the performances, while some nonsignificant
parameters lead high computational cost. Hence, before
implementing the MOO process, this study determines the
most significant design variables and nonsignificant
parameters.

Basically, before dealing with a MOO problem for a
specific compliant mechanism, a mathematical model is
expected to be established through kinematic-based ana-
lytical approaches such as pseudorigid-body model [25],
semianalytical model [26], and compliance matrix [27].
Although mentioned approaches are still used, they are
complicated for modeling the SRCM. In other words, an-
alytical methods are limited to feature its behaviors of more
complex structures. In order to avoid an imprecise opti-
mization solution since approximate approaches may be
complicated, data-driven approaches are more advanta-
geous to adopt for theMOO problem. Data-driven approach
is utilized to directly map the inputs and outputs data;
therefore, this approach has a good predicting accuracy in
comparison with the analytical methods. During the last
decades, a lot of methods have been developed to solve the
MOO problems, such as desirability function approach
(DFA) [28], grey relational analysis (GRA) [29], Taguchi
method-based fuzzy logic (TMFL) [30]. Both DFA and GRA
need a weight factor for each objective function, but
weighting factor is largely dependent on experience or users.
Meanwhile, TMFL is a statistical-based approach without
the weight factor. Although TMFL has more benefits, it
searches optimal values at discrete points from the Taguchi
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method. In order to avoid a local result, surrogate models are
employed to connect inputs and outputs, e.g., response
surface method (RSM) [31], Kriging technique [32], artificial
neural network (ANN) [33–35], adaptive neuro-fuzzy in-
ference system (ANFIS) [36–38], RSM-ANN [39], ANN
machine learning [40], and fuzzy logic theory [41]. Among
them, ANFIS is proved as an effective technique to modeling
and predicting, which is applied for different engineering
fields. For example, ANFIS was developed to predict for
various fields, e.g., the hydropower generation [17], the
scour hole shape [18], and mercury emissions in combustion
flue gases [42]. However, ANFIS has not extended for
modeling the Scott Russell compliant mechanism yet.

Up to now, nature-based metaheuristic algorithms have
been developing very fast, e.g., genetic algorithm [43],
particle swarm optimization (PSO) [44], differential evo-
lution [45], cuckoo search algorithm [46], and other al-
gorithms [47–50]. Some of them have successfully been
applied in various fields, such as grey wolf optimization for
temperature-based oil-water relative permeability [16] and
PSO algorithm for predicting the scour depth around
bridge piers [51]. More recently, several algorithms with
less or nontuned parameters have been suggested such as
teaching learning-based algorithm (TLBO) [52, 53], Jaya
algorithm [54], and lightning attachment procedure op-
timization (LAPO) algorithm [55]. Among three less-pa-
rameter algorithms, LAPO algorithm is an effective
approach for a lot of engineering areas, but it has not been
applied for the SRCM mechanism yet. �erefore, this ar-
ticle chooses the LAPO algorithm to extend the MOO
design. In summary, highlight contributions of this study
are as follows: (i) limit nonsignificant parameters and refine
space of design variables; (ii) transfer the desirability value
of objective functions into the fuzzy logic reasoning; (iii)
develop the ANFIS structure to model the output of FIS
system; (iv) LAPO algorithm is proposed for implementing
the MOO problem to find global solution; (v) performances
of proposed methodology are compared with other algo-
rithms using statistical techniques.

�e goal of this article is to develop new hybrid com-
putational methodology to conduct MOO optimal design for
the SRCM mechanism. As mentioned above, the proposed
method is considered as statistical-based intelligent compu-
tation. A 3D model is created by the finite element method,
and central composite design is employed to make design of
experiments. Initial space of design variables is determined
and then refined via analysis of variance and Taguchi tech-
nique. New spaces of design parameters are generated
through sensitivity investigation. Next, desirability values of
quality responses are calculated and transferred into the fuzzy
logic system. ANFIS technique is developed to connect design
variables and output of the FIS. MOO problem is then solved
by using the LAPO algorithm. Numerical examples are in-
vestigated to evaluate the computational efficiency and per-
formance of proposed method. In addition, performances of
the proposed approach are compared with the ANFIS-based
Jaya and ANFIS-based TLBO by implementing the Wilcoxon
signed rank test and Friedman test.

2. Proposed Hybrid Methodology

Figure 1 describes a new computational method which is
hybridized by the integrating desirability approach, fuzzy
logic reasoning, ANFIS, and LAPO algorithm.�e proposed
method is applied to solve a MOO design for a Scott Russell
compliant mechanism. Practically, this mechanism is
combined with a piezoelectric actuator (PA) for use in ul-
trahigh precision positioning devices. Because the PA lim-
ited its travel and responding speed, the mechanism needs to
improve its displacement and a high natural frequency. In
addition, a small equivalent stress is considered as an ad-
ditional constraint to ensure a good working strength.
According to background of compliant mechanism, these
specifications are very sensitive to geometrical parameters of
flexure hinges. In other words, a change in any geometrical
factor may lead to a change in performances. In order to
achieve an improvement in performances, design parame-
ters are optimized simultaneously. Proposed hybrid meth-
odology consists of five main phases as follows: (i) design
and analysis, (ii) desirability calculation, (iii) fuzzy logic
system analysis, (iv) ANFIS modeling, and (v) conduct
MOO problem by LAPO algorithm.

2.1. Phase 1: Design and Analysis. �is phase concerns about
a mechanical design and analysis problem. In this study, a
MOO design for a SRCM is investigated. It is an example to
show effective application to validate the performance ef-
fectiveness of proposed methodology. �is phase experi-
ences the following main steps.

Step 1. Mechanical structure
As discussed above, the mechanism needs a large dis-

placement and a high frequency but must guarantee a small
stress for a long operation without plastic failure.

Step 2. Define initial design variables
Structure of the mechanism has a lot of possible geo-

metrical parameters affecting the quality responses. Such
influences must be considered before implementing further
the optimization process. Some factors with actual influ-
ences as well as no influences are evaluated through sen-
sitivity investigation in this study.

Step 3. Define quality responses
After determining the initial design variables, a large

displacement and a high frequency are assigned as two
desired outputs. In order to satisfy in terms of enough
working strength, equivalent stress is an extra constraint.

Step 4. Create 3D finite element model
A 3D finite element model (FEM) is created, and then

finite element analysis (FEA) is implemented to retrieve
numerical data. To complete this work, design variables and
quality responses are assigned to be parametric factors
during FEA simulations.
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Step 5. Central composite design
While a 3D model is created, an experimental matrix is

also initialized by using central composite design (CCD).
Face centered is used in this work.

Step 6. Run numerical data
Boundary conditions, load, and material are set up for

the 3D model. Subsequently, a set of numerical data is
collected by running simulations.

Step 7. Sensitivity analysis
�is is a critically important step. It determines several

parameters directly affecting the quality characteristics to be
design variables. Besides, some parameters with no influence

are ignored. �is process is conducted through analysis of
variance (ANOVA) and the Taguchi method.

Step 8. Eliminate design variables
�e results of sensitivity analysis in Step 7 identify some

nonsignificant parameters. And then, such parameters are
ignored or eliminated while other important factors are
defined as key design variables. �e results of refining pa-
rameters perhaps create several new population spaces for
population-based optimization metaheuristic algorithms.
�is is a preparing step for further optimization process.�e
goal of Step 8 is to determine a suitable searching space so as
to reduce the computational cost and make more reliable
solution.
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Figure 1: Flowchart of proposed hybrid methodology for multiobjective optimization design.
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Step 9. Repeat central composite design
Several new spaces of design variables are created in Step

8. Each space of refined variables is considered as a case
study. And then, Step 9 will rebuild a number of experi-
mental matrixes by using CCD.

Step 10. Refine 3D finite element model
In order to conduct the numerical simulations, a 3D

FEM model is created with respect to each case study.
Subsequently, simulations are implemented to get the nu-
merical data for each case study.

2.2. Phase 2: Desirability Calculation

Step 11. Recollect numerical data
Numerical data for each of case study are collected

through FEA simulations, individually.

Step 12. Compute desirability value for performances
According to theory of the desirability function approach

[56], the exponential type is transformed to each response
into a desirability function. Principle of this technique is to
compute the ith quality response (y∗) to become the ith
desirability (di), and then all values of desirability are com-
bined into a single desirability function (D). Desirability value
can reach unity when the response’s target is achieved, and
otherwise. Each individual desirability function is divided into
three types based on user’s specific demand. It includes three
target types, i.e., smaller-the-best, higher-the-best, and nor-
mal-the-best. Desirability for two specifications of the
mechanism is computed. Displacement is millimeter, while
natural frequency is in Hertz. Based on calculating the de-
sirability, influence and difference of units are neglected
during the optimization process. So, such difference no longer
affects later optimal solution.

2.2.1. Smaller-the-Best. �e response’s value is expected
lower than an upper limit. �e desirability function is
identified by

di � 0, y∗ ≥Ub,

di �
y∗ − Ub
Lb − Ub

( )r, Lb ≤y∗ ≤Ub,

di � 1, y∗ ≤LB,


(1)

where di is the desirability value, y∗ is the ith response, and
Lb and Ub are the lower and upper limits of the response.

2.2.2. Normal-the-Best. �e response’s value is expected
toward a target value (T). �e desirability function can be
determined by

di �
y∗ − Lb
T − Lb

( )p, Lb ≤y∗ ≤T,

di �
y∗ − Ub
T − Ub

( )q, T≤y∗ ≤Ub,

di � 0, y∗ ≤ Lb ory∗ ≥Ub,

di � 1, y∗ � T,



(2)

where p and q are specific parameters defined by users (p,
q> 0) which determine the shape of di.

2.2.3. Higher-the-Best. �e response’s value is expected
higher than a lower limit. �e desirability function can be
described by

di � 0, y∗ ≤Lb,

di �
y∗ − Lb
Ub − Lb

( )r, Lb ≤y∗ ≤Ub,

di � 1, y∗ ≥Ub,


(3)

where r is the desirability function index.
All individual desirability’s values of responses are

transformed into overall desirability, D, which is considered
as a single quality index. �is index is determined by
assigning the corresponding weight factor for different
quality responses. However, weight factor of each response is
dependent on priority or customer’s demands. A combined
desirability index is computed as

D � d1( )w1 d2( )w2
. . . dn( )wn( )1/∑wi , (4)

where D is the overall desirability index and wi is the weight
of the ith response.D is equal to one as each di is also equal to
one. Otherwise, at least, one of di is zero and D is zero.

In this paper, a larger type is used for both desired
targets (displacement and frequency). Previously, in order
to solve a MOO problem, a set of optimal parameters may
be found by maximizing the single quality index D. Al-
though this approach is still an effective tool, an optimal
result is varied when the weight factor of each response is
changed. It may result in an imprecisely optimal value. In
order to overcome this uncertainty, a fuzzy logic system is
then developed to deal with all individual values of de-
sirability of both responses since this system does not
require any weight factor.

2.3. Phase 3: Fuzzy Logic Reasoning System. A fuzzy logic
reasoning system includes knowledge base, fuzzifier, infer-
ence engine, and defuzzifier. Details can be briefly described
as follows [57].
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2.3.1. Fuzzifier. Fuzzifier plays a role to transform real value
into a fuzzy system. Inputs of the fuzzy logic system are
called as crisp values which contain precise information of a
real world. �rough the fuzzifier, real value is transformed
into linguistic variable.

Knowledge base: knowledge base consists of rule base
that forms a number of fuzzy rules (if-then). Moreover,
the knowledge base contains a database which defines
membership function (MF) of the fuzzy sets.

Inference engine system: based on fuzzy rules, fuzzy
inference system (FIS) is considered as decision-
making. It handles how the rules are combined.

2.3.2. Defuzzifier. It transfers the output of the FIS system
into a crisp value. In the defuzzificationmethod, the centroid
method is used to the transformation. �e output of the FIS
system, a nonfuzzy value, is called as a multicharacteristic
performance index (MPCI).

In order to implement the FIS system, the Mamdani
method is employed in the present paper. Subsequently,
trapezoidal MFs are adopted for the inputs and outputs of
the FIS so as to form fuzzy sets. MFs are in the range from
zero to one, andMFs can describe the way a variable matches
a fuzzy set. Inputs and outputs of fuzzification system are
then transformed into linguistic variables. �e trapezoidal
MFs are defined as

μA(x, k, l, m, p) �

(x − k)

(l − k)
, k≤x≤ l,

1, l< x<p,

(x −m)

(p −m)
, p≤ x≤m,

0, x≤ k orm≤ x,



(5)

where μA denotes theMFs while k, l,m, and p are parameters
and x is a variable.

In this study, desirability of frequency and desirability of
displacement are calculated, and then they are considered as
two input variables for the FIS. �ese linguistic input var-
iables will be combined into an output for the FIS. �e
trapezoidal MFs are employed for both the fuzzification and
defuzzification. �e following fuzzy rules are briefly
described.

Fuzzy rule: if x1i is A1 and x2i is B1i, then yi is Ci else (i� 1,
2, 3, . . ., n), where x1i and x2i are the two ith inputs and yi is
the ith output. Ai, Bi, and Ci are defined by corresponding
MFs (μAi, μBi, and μCi), and these parameters are regarded as
fuzzy subsets.

In order to compute the fuzzy logic reasoning, max-min
operation of Mamdani is adopted. Subsequently, the FIS
output is retrieved. �e MFs of the FIS output can be de-
scribed by

μci yi( ) � max min μA1i
x1( ), μA2i

x2( ), . . . , μAsi xs( ){ }
j

 , i � 1, 2, . . . , n.

(6)
At last, the FIS output is transformed into real values

through the defuzzification. Subsequently, a nonfuzzy value
y0, which is called as MPCI, is defined by

y0 �
∑yiμC0i yi( )
∑ μC0i yi( ) . (7)

Based on the theory of FIS system, the best solution for
overall responses and a set of optimal design variables can be
found by maximizing the MPCI index through the Taguchi
method.�is technique is divided into three types such as (i)
higher-the-better, (ii) normal-the-best, and (iii) smaller-the-
better. �e larger-the-better type is chosen for maximizing
the MPCI, which is described as

η � −10 log
1

n
∑n
i�1

1

MPCI2i

 , (8)

where MPCIi is the ith MPCI index and n is the number ith
experiment’s repetition.

A Taguchi-based fuzzy logic can find optimal candidates
in a MOO problem, but this approach may be a local op-
timum solution.�e reason is because the Taguchi technique
is employed to minimize or maximize a single fitness
function in terms of discrete values. Meanwhile, a real
problem desires to search a global optimum solution. In
order to overcome such situation, ANFIS is then extended to
model the MPCI, and the MOO design for the SRCM
mechanism can be effectively solved by using the LAPO
algorithm.

2.4. Phase 4: Adaptive Neuro-Fuzzy Inference System. As
aforementioned, the FIS system is a modeling technique in
terms of linguistic variables where the Mamdani method is
used for the FIS. Meanwhile, ANFIS is an artificial technique
which is developed by integrating neural network and the
FIS. Nowadays, ANFIS is considered as an intelligent
modeling which creates a connection between inputs and
outputs. In theory of ANFIS, the Sugeno model is employed
to create fuzzy rules [58]. �e fuzzy rules for the ANFIS
model can be defined as

if x1 isA1 andx2 isA2, then y � a × x1 + b × x2 + c,

(9)
where x1 and x2 are inputs with respect to A1 and A2 term
sets, y is the output, and a, b, and c are constant values.

Figure 2 illustrates the ANFIS structure which consists of
five-layer feed-forward neural network.

Layer 1 is the fuzzification layer that assigns the
membership degrees for input factors based on the given
MFs. �e output of layer 1 can be described as

Mi
1 � μAi(x), (10)
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where x is the input with respect to node ith and Ai is a
linguistic label. Mi

1 is the MF of Ai.
Layer 2 includes the fuzzy rule and a rule node which gets

inputs and identifies firing strength of the rule. Each node is
labeled as a circle node, U. Each node output can be defined
as

wi � μAi(x) × μAi(y), i � 1, 2, 3, . . . , n. (11)

Layer 3 is a normalized layer which is used to estimate a
ratio of firing strength of a given rule to total of firing
strengths of all rules. Every node is labeled as a circle node,
N. In this layer, w is named for normalized firing strength of
rules and defined as

w �
wi

w1 + w2 + w3, . . . ,+wn
, i � 1, 2, 3, . . . , n. (12)

Layer 4 is the defuzzification process, and the ith node is
labeled as square node by

Mi
1 � wifi(ax + by, . . . , c), i � 1, 2, 3, . . . , n. (13)

Layer 5 is an overall output and sum of all signals, which
is defined as

Mi
5 �∑

i

wifi
∑iwifi
wi

. (14)

In this article, the trapezoidal MFs are adopted for the
ANFIS system as well.

2.5. Phase 5: Lightning Attachment Procedure Optimization
Algorithm. LAPO is a new algorithm based on a physically
lightning phenomena [59]. It is one of the most nontuned
parameter algorithms. LAPO algorithm can solve a lot of
different engineering problems, and it is superior to other

metaheuristic algorithms [60]. �erefore, this study adopts
the LAPO algorithm to expand its application capacity for
the MOO design for the bridge amplification compliant
mechanism. Readers can find details in literatures [59, 60]. It
consists of five substeps as follows.

Step 1. Initialization
�e algorithm needs an initial population in a search

space of design variables. Unlike previous studies, the
present work evaluates and refines the search spaces in
which a set of decision variables are defined based on sta-
tistical analysis. In the LAPO, some test points are assigned
in the cloud and ground surface, which can be defined as

xitestpoint � x
i
min + ximax − x

i
min( ) × rand[0, 1], (15)

where ximin and ximax denote the upper and lower bounds of
design variables. Rank is a randomly given parameter in
range from zero to one. Fitness of the solution is defined as

Fitestpoint � obj xitestpoint( ). (16)

Step 2. Next jump determination
�e average value of the overall test points and the value

of fitness of the points are computed as in equations (17) and
(18), respectively:

xaverage � mean xtestpoint( ), (17)

faverage � obj xaverage( ), (18)

where xaverage and faverage denote the average value and value
of fitness of the points.

If the electric field, fitness function, of potential point h is
greater than the average value of the test points, it is cal-
culated as

xitestpoint_new � x
i
testpoint + rand[0, 1] × xaverage + rand[0, 1](

× xhpotential point( )).
(19)

Otherwise, it is calculated as

xitestpoint_new � x
i
testpoint − rand[0, 1] × xaverage + rand[0, 1](

× xhpotential point( )).
(20)

Step 3. Branch fading
If the fitness function of new test point is better than the

previous point, the branch sustains; otherwise, the branch
fades as

xitestpoint � x
i
testpoint_new, fitestpoint_new <fitestpoint,

xitestpoint_new � x
i
testpoint, otherwise.

 (21)

�is step is carried out for overall the test points so as to
rest points moving down.
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Figure 2: �e proposed ANFIS system.
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Step 4. Upward leader movement
Upward leader movement calculates an exponent factor

based on the charge of downward leader as

S � 1 −
noi

noimax

× exp −
noi

noimax

( ), (22)

where noi and noimax denote a number of iterations and
maximum number of iterations, respectively. �e upward
leaders are defined for the next strategy of test point as

xtestpoint_new � xtestpoint_new + rand[0, 1] × S xmin − xmax( ),
(23)

where xminand xmax denote the best value and the worst
solution of the population.

Step 5. Final jump
�e process is ended when the upward leader meets the

downward leader to each other. It is noted that the opti-
mization process is ended if stop criterion is achieved. In
addition, the maximum iteration is met, and the process is
ended herein.

3. Case Studies: MOO Design for Scott Russell
Compliant Mechanism

MOO design of the Scott Russell compliant mechanism is
studied.�is article considers three numerical examples, and
the obtained results are to evaluate application’s capability
and effectiveness of the proposed hybrid computational
method.

3.1. Structural Description and Problem Statement.
Figure 3 describes a structural design of the Scott Russell
compliant mechanism (SRCM). Bottom end of the mech-
anism is fixed by screws, and top end is output. �e
mechanism is a type of bridge amplifier, but four bridge legs
are alternated by using four Scott Russell mechanisms. �e
purpose of alternative is to enhance stiffness of traditional
bridge mechanism. Each Scott Russell mechanism includes
four flexure hinges and rigid links, as shown in Figure 3. �e
output, end effector, is at the middle rigid link. Based on
symmetry, the end effector can move along the y-axis by
exciting two input loads from a piezoelectric actuator. Based
on this design, the mechanism can amplify a large working
stroke along the y-direction, but its natural frequency is
decreased. Another problem is how to ensure an enough
working strength, i.e., a long fatigue working life without
plastic failure. In a such situation, this study proposes a new
optimal design methodology to resolve a balance between
displacement and frequency. �e main parameters of SRCM
are illustrated, as given in Figures 3 and 4. In this article, AL
T73-7075 material is chosen for the mechanism. In this
structure, some parameters are design variables and others
are constant values.

Table 1 gives geometrical factors and material properties
of the proposed mechanism. According to the designer’s
experiences and expert’s knowledge in the field, spaces of

design variables are determined based on a capacity of
fabrication device.

�e purpose of this study is to develop a new hybrid
computational approach to deal with the MOO problem for
compliant mechanisms. �e SRCM is an application ex-
ample. Numerical investigations are carried out to validate
the proposed hybrid computational method. To address
about the MOO problem for the SRCM, the design variables,
objective functions, and constraints are firstly identified.
According to the theory and investigations on compliant
mechanisms [10, 61–64], geometry and locations of flexure
hinges mainly contribute on the performances. As seen in
Figures 3 and 4, the dimensional parameters are represented
as a vector X� [θ, L0, L1, L2, L3, L4, L5, L6, D, T, R, H, L,W]T

in which the key design variables are affecting the perfor-
mances, including θ, L1, L2, L3, L4, and D. Regarding ob-
jective functions and constraints, the SRCM is expected to
achieve a fast speed, a large working space, and a good
strength. In order to reach a desired speed, the first natural
frequency of the SRCM must be improved accordingly.
Meanwhile, a large displacement of the SRCM can help
toward a large working stroke. At last, a good strength can be
gained if the resulting equivalent stress of SRCM is under the
yield strength of material [10, 61–64]. In addition, based on
the experiences in designing and analyzing kinematics of
compliant mechanisms, the mentioned parameters (θ, L1, L2,
L3, L4, and D) are very sensitive to the performances. �ey
can be chosen properly to improve the performances. �e
formulation of the optimization problem of the SRCM is
briefly stated as follows.

Find vector of design variable: X� [θ, L1, L2, L3, L4, D]
T

MaximizeF1(X)

MaximixeF2(X).
(24)

Subject to constraints:

F3(X)≤
σa
SF
. (25)

Initial space of design variables:

12.5° ≤ θ ≤ 16.5°,
4.9mm≤ L1 ≤ 7.7mm,

14.5mm≤L2 ≤ 18.7mm,

8.5mm≤ L3 ≤ 11.825mm,

14mm≤ L4 ≤ 18.7mm,

2.25mm≤D≤ 3.5mm,


(26)

where F1(X), F2(X), and F3(X) denote the frequency, dis-
placement, and equivalent stress, respectively. σa is the yield
stress of proposed Al T73-7075. Specifically, F1(X) and F2(X)
are two objective functions, while F3(X) is regarded as the
constraint. SF is the safety factor that is chosen as 1.5.

3.2. Numerical Simulation. A 3D FEMmodel is created, and
numerical experiments are formulated via the CCD. Nu-
merical data are then collected by implementing FEA
simulations. �e boundary conditions and loads are given
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Figure 4: 3D model of the Scott Russell compliant mechanism (unit: mm).

Table 1: Design parameters and material properties of the SRCM mechanism.

Parameter Symbol Value

Incline angle θ 12.5° ≤ θ≤ 16.5°
Width of rigid link 1 L1 4.9mm≤L1 ≤ 7.7mm
Length of segment 1 L2 14.5mm≤L2 ≤ 18.7mm
Distance from actuator to rigid link L3 8.5mm≤ L3 ≤ 11.825mm
Length of segment 2 L4 14mm≤ L4 ≤ 18.7mm
Distance between circle’s centers D 2.25mm≤D≤ 3.5mm
Width of shuttle link L0 8mm
Width of rigid link 2 L5 7mm
Width of input link L6 10mm
Radius of flexure hinge R 1mm
�ickness of flexure hinge T (D-R) mm
Width of the mechanism W 10mm
Height of the mechanism H 40mm
Length of the mechanism L 100mm
Total size of the mechanism S 100∗ 40∗ 10mm3

Mechanical properties of Al T73-7075
Density 2810 kg/m3

Young’s modulus 71700MPa
Yield strength 503MPa
Poisson’s ratio 0.33
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from Figure 3. A force, F, of 70N is applied toward an end of
inputs, and the output response is measured. Automatic
technique is utilized for meshing. Meshing of flexure hinges
is refined again in order to achieve accurate analysis, as
shown in Figure 5. �e meshing results give a number of
elements of 1544 and a number of nodes of 9897. Skewness
criteria, metric performance, are used to evaluate the quality
of meshing. Its value is in the range from zero to one. �e
results found that the average value of skewness is ap-
proximately 0.3745, as given in Figure 6. On the contrary,
this value guarantees the quality of meshing is a relatively
good result.

4. Results and Discussion

4.1. Sensitivity Investigation and Refinement of Design
Variables. �e CCD is utilized to build the numerical
matrix by using space of all initial design variables. And
then, the most critical important parameters and suppress
nonsignificant parameters are identified. Secondly, this
analysis refines space of design variables prior to imple-
ment the MOO problem of proposed mechanism. In this
article, six factors are divided into three levels, as given in
Table 2. Each numerical experiment retrieves two quality
specifications and one constraint, including natural fre-
quency (F1(X)—Hz), displacement (F2(X)—mm), and
equivalent stress (F3(X)—MPa). Forty-five experiments
are generated, and the numerical results are given, as in
Table 3.

As mentioned above, this article considers displacement,
frequency, and stress for MOO design of the Scott Russell
compliant mechanism. Geometrical parameters directly
affecting those specifications are identified and may be
suppressed for further optimization process. Sensitivity
investigation of design variables with respect to the three
specifications is analyzed, individually. In this study, analysis
of variance and Taguchi approach are used and implemented
by using Minitab software 18.

Case 1, considering the displacement, ANOVA is uti-
lized to analysis of sensitivity at 95% confidence interval.�e
result of ANOVA in Table 4 found that the contribution of
parameters θ (the-ta), L1, and L2 on this quality response is
about 0.03%, 0.02%, and 0.01%, respectively. �ese contri-
butions are too small compared to remaining parameters. It
means that the contributions of θ, L1, and L2 can be ignored
in further modeling and optimization process. In addition,
the Taguchi method with the larger-the-better type is used
for the displacement, as shown in Figure 7. �e results also
found that factors θ, L1, and L2 are also two nonsignificant
factors because the displacement is a little change when
those parameters are varied. Meanwhile, other parameters
are very sensitive to the displacement which are taken as key
variables for case study 1.

Considering the frequency, the ANOVA results in Ta-
ble 5 reveal that parameters L3 and L4 have a lowest con-
tribution on the displacement with respect to 0.09% and
0.22%, respectively. As a result, these two factors are non-
significant variables that can be neglected in modeling and
optimization process for case study 2.

Figure 8 describes the sensitivity of full variables on the
frequency via using the Taguchi method with the larger-the-
better type. It also notes that the parameters L3 and L4 have a
very small influence on this response compared to other
parameters. On the contrary, if these parameters are varied,
the frequency is somehow changed. Meanwhile, a change in
the other parameters has a sharp change.

Case 3 considers the equivalent stress, and the ANOVA
results in Table 6 indicate that three parameters θ, L2, and L4
have the lowest contribution on the stress with 0% contri-
bution. �ese three factors are nonsignificant and can be
suppressed in further modeling and the MOO process. A
smaller-the-better type is utilized for the stress.�e results of
the Taguchi analysis show that three parameters also have a
very small contribution on the stress response, as shown in
Figure 9.

4.2. Optimization Implementation

4.2.1. Selection of Membership Functions. Each real value of
physical response is transformed into linguistic variables
which are assigned for the fuzzy reasoning inference process.
�e linguistic variables are determined based on expert’s
knowledge and designer’s institution. Table 7 gives the
linguistic variables, including tiny, very small, small, small-
medium, medium, medium-large, large, very large, and
huge.

In this article, two inputs of FIS structure consist of
desirability of frequency and desirability of displacement.
�e MFs for desirability of frequency are divided into three
levels such as small, medium, and large, as illustrated in
Figure 10(a). Meanwhile, the MFs of the desirability of
displacement are separated into seven levels, including tiny,
very small, small-medium, medium, medium-large, large,
very large, and huge, as depicted in Figure 10(b). At last, the
MFs of the output MPCI also include seven levels, as shown
in Figure 11. All the MFs are defined by trapezoidal shape
because this is a popularMF type for both the FIS and ANFIS
models.

�e results of sensitivity analysis are used to decrease
space of design variables. �rough this analysis, computa-
tional time is lowered and reliable solution is increased.
Particularly, some parameters may be redundant, while
others are critically important factors. Based on the sensi-
tivity results, initial design variables are eliminated. From

Refined meshCourse mesh

Figure 5: Meshing model of Scott Russell compliant mechanism.
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that, three following numerical examples are considered to
evaluate the performance effectiveness of proposed com-
putational methodology.

If full initial space is used, it may take a long time to
search for optimum solutions. �erefore, this study limits
design space and following case studies are separated to
investigate and evaluate the efficiency of the proposed hybrid
approach.

4.2.2. Case Study 1. By using the results of sensitivity analysis
in Table 4 and Figure 7, some nonsignificant factors are
suppressed since their influences are very small on the dis-
placement. Real influencing factors with large contributions
are taken in account as key design variables. Case study 1 takes
two objective functions to be optimized simultaneously with
the spaces of design variables being relatively reduced. In
order to solve the MOO problem, the desirability of dis-
placement and the desirability of frequency are transformed
into a single combined objective function, which is called as
the MPCI of the FIS system. Subsequently, the MPCI is
maximized by using the proposed hybrid approach. �e
optimization problem of case study 1 is stated as follows.

Find vector of design variable: X� [D, L3, L4]
T:

MaximizeMPCI(X)case study 1 (27)

s.t.

F3(X) ≤
σa
SF
,

2.25mm≤D≤ 3.5mm,

8.5mm≤ L3 ≤ 11.825mm,

14mm≤ L4 ≤ 18.7mm.


(28)

Case study 1 evaluates three design variables (D, L2, and
L1) and two objective functions and one constraint. Such
design variables and both responses are set as parametric
variables in the FE model. Based on the number of design
variables and their levels, CCD is used again to build 15
experiments. �e results of frequency, displacement, and
equivalent stress are collected, simultaneously.

Next, desirability of frequency and desirability of dis-
placement are calculated, as given in Table 8. Real values of
two responses have different units, and it is a main cause
resulting in unprecise solutions. �erefore, desirability
function approach is proposed to overcome this limitation
because desirability has no unit and its value is from zero to
one. �e results found all stress values are satisfied in terms
of allowable stress of material.

In order to conduct the MOO problem for case study 1,
the MFs for desirability of frequency include three levels and
the desirability of displacement is divided into seven levels,
while theMFs of fuzzyMPCI output are separated into seven
levels, as given in Table 9. Subsequently, matrix of fuzzy rules
is built in this table.

In this study, center of gravity method is employed for
defuzzification and Mamdani method is utilized for fuzzy
operation. �e FIS is implemented in Matlab R2015a.
Figure 12 illustrates a relation of the fuzzy MPCI with the
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Figure 6: Quality distribution of meshing elements by skewness criteria.

Table 2: Level of design variables.

Symbol Value Level 1 Level 2 Level 3

θ 12.5° ≤ θ≤ 16.5° 12.5 14.5 16.5
L1 4.9mm≤L1 ≤ 7.7mm 4.9 6.3 7.7
L2 14.5mm≤L2 ≤ 18.7mm 14.5 16.6 18.7
L3 8.5mm≤L3 ≤ 11.825mm 8.5 10.1625 11.825
L4 14mm≤L4 ≤ 18.7mm 14 16.35 18.7
D 2.25mm≤D≤ 3.5mm 2.25 2.825 3.5
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Table 3: Initially numerical results: frequency, displacement, and equivalent stress.

No.
Design variables Frequency Displacement Stress

θ (degree) L1 (mm) L2 (mm) L3 (mm) L4 (mm) D (mm) F1(X) (Hz) F2(X) (mm) F3(X) (MPa)

1 14.5 6.3 16.6 10.1625 16.35 2.875 144.8765116 0.0131662 20.2101534
2 12.5 6.3 16.6 10.1625 16.35 2.875 145.6511486 0.0100512 17.3713011
3 16.5 6.3 16.6 10.1625 16.35 2.875 142.7061870 0.0124471 21.6504283
4 14.5 4.9 16.6 10.1625 16.35 2.875 144.5375979 0.0111032 19.3343769
5 14.5 7.7 16.6 10.1625 16.35 2.875 147.0998526 0.0101186 22.7858141
6 14.5 6.3 14.5 10.1625 16.35 2.875 153.7702955 0.0089541 14.8769691
7 14.5 6.3 18.7 10.1625 16.35 2.875 138.4140708 0.0104084 18.2311317
8 14.5 6.3 16.6 10.1625 16.35 2.25 29.1033323 0.2783916 413.3649425
9 14.5 6.3 16.6 10.1625 16.35 3.5 247.7177837 0.0042301 9.1823943
10 14.5 6.3 16.6 8.5 16.35 2.875 151.3503923 0.0132612 20.5864700
11 14.5 6.3 16.6 11.825 16.35 2.875 139.8224967 0.0132187 19.7278662
12 14.5 6.3 16.6 10.1625 14 2.875 158.4167103 0.0106565 18.8481276
13 14.5 6.3 16.6 10.1625 18.7 2.875 137.7014871 0.0139512 19.6035371
14 12.5 4.9 14.5 8.5 14 2.25 35.2827371 0.0126286 41.9016251
15 16.5 4.9 14.5 8.5 18.7 2.25 29.7282702 0.0319123 68.4134201
16 12.5 7.7 14.5 8.5 18.7 2.25 30.3150364 0.0440975 83.1659146
17 16.5 7.7 14.5 8.5 14 2.25 35.2125256 0.0541169 118.3677978
18 12.5 4.9 18.7 8.5 18.7 2.25 26.5880362 0.0605043 110.0556179
19 16.5 4.9 18.7 8.5 14 2.25 30.2587478 0.0314902 81.1699723
20 12.5 7.7 18.7 8.5 14 2.25 31.1153254 0.0262748 63.8299904
21 16.5 7.7 18.7 8.5 18.7 2.25 661.0920453 0.0000156 8.3148176
22 12.5 4.9 14.5 8.5 18.7 3.5 236.4448793 0.0020741 7.3108765
23 16.5 4.9 14.5 8.5 14 3.5 284.3688928 0.0034154 11.4796060
24 12.5 7.7 14.5 8.5 14 3.5 296.0385722 0.0028695 10.0679057
25 16.5 7.7 14.5 8.5 18.7 3.5 722.6186705 0.0000161 2.3844190
26 12.5 4.9 18.7 8.5 14 3.5 249.2833206 0.0037318 9.8955675
27 16.5 4.9 18.7 8.5 18.7 3.5 216.1175651 0.0056673 10.8787519
28 12.5 7.7 18.7 8.5 18.7 3.5 660.5761253 0.0000153 2.4110693
29 16.5 7.7 18.7 8.5 14 3.5 723.9722661 0.0000184 2.3225403
30 12.5 4.9 14.5 11.825 18.7 2.25 26.7029456 0.0095992 28.5990240
31 16.5 4.9 14.5 11.825 14 2.25 32.3612774 0.0773006 175.6411982
32 12.5 7.7 14.5 11.825 14 2.25 33.5994617 0.0998207 203.6469876
33 16.5 7.7 14.5 11.825 18.7 2.25 26.4888400 0.2497774 343.3155557
34 12.5 4.9 18.7 11.825 14 2.25 28.9826859 0.2040589 377.6240900
35 16.5 4.9 18.7 11.825 18.7 2.25 22.7266747 0.1692049 257.2457599
36 12.5 7.7 18.7 11.825 18.7 2.25 23.4218271 0.1117737 173.0523059
37 16.5 7.7 18.7 11.825 14 2.25 671.0395540 0.0000197 8.0316806
38 12.5 4.9 14.5 11.825 14 3.5 254.0503542 0.0020926 8.4557853
39 16.5 4.9 14.5 11.825 18.7 3.5 222.0867129 0.0038711 11.9575653
40 12.5 7.7 14.5 11.825 18.7 3.5 226.4134777 0.0034449 8.6649529
41 16.5 7.7 14.5 11.825 14 3.5 728.8362254 0.0000215 2.0182197
42 12.5 4.9 18.7 11.825 18.7 3.5 200.9526441 0.0042152 10.8241011
43 16.5 4.9 18.7 11.825 14 3.5 237.2856932 0.0032948 10.7328140
44 12.5 7.7 18.7 11.825 14 3.5 668.7600073 0.0000200 1.9910749
45 16.5 7.7 18.7 11.825 18.7 3.5 610.9395221 0.0000201 2.3080380

Table 4: ANOVA results for the displacement.

Source DF Seq. SS Adj. SS Adj. MS Contribution (%)

Model 6 0.073316 0.073316 0.012219 38.01
Linear 6 0.073316 0.073316 0.012219 38.01
θ 1 0.000060 0.000060 0.000060 0.03
L1 1 0.000033 0.000033 0.000033 0.02
L2 1 0.000018 0.000018 0.000018 0.01
L3 1 0.012798 0.012798 0.012798 6.64
L4 1 0.000935 0.000935 0.000935 0.48
D 1 0.059470 0.059470 0.059470 30.83
Error 38 0.119565 0.119565 0.003146 61.99
Total 44 0.192880 100.00
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desirability of displacement and desirability of frequency.
�e value of inputs and outputs of the FIS is in range from
zero to one. In this study, the weight of each rule is assumed
to be unity.

Based on 27 fuzzy rules in Table 9, the output of FIS
system is computed, as shown in Figure 13.

�e results of MPCI output are determined with respect
to each value of desirability of frequency and desirability of
displacement, as given in Table 10.

By taking the values of design variables in Table 8 and the
MPCI value in Table 10, a proper ANFIS model is developed
for modeling the MPCI. Modeling is coded in Matlab. �e
results of ANFIS parameters are given in Table 11. In this
study, 75% of data and the remaining 25% of data are utilized
for the training and testing, respectively.

In order to evaluate the built ANFIS model, some
performances metrics are employed, such as mean absolute

percentage error (MAPE), root mean square error (RMSE),
and correlation coefficient (R2) [18, 65]. Mathematical
equations of MAPE, RMSE, and R2 are described by

MAPE �
100%

n
∑n
i�1

yi − ŷi
yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, (29)

RMSE �

������������
1

n
∑n
i�1

yi − ŷi( )2
√√

, (30)

R2
� 1 −

∑ni�1 yi − ŷi( )2∑ni�1 yi − yi( )2, (31)

where yi is the ith of the measured result,ŷi is the ith of the
predicted result, y is the mean value of measured results, and
n is the number of observations.

As the discussion in Section 3.1, a high frequency, a large
displacement, and a minimal stress are desired simulta-
neously. According to the fuzzy logic theory [30], the largest
value of the MPCI is expected to achieve the optimal so-
lution. In other words, theMPCImust bemaximized so as to
achieve a global optimal solution for the SRCM. �e results
found that the MAPE and RMSE are close to zero, while R2

reaches one. It means that the built ANFISmodel is relatively
good. In order to evaluate the effectiveness and robustness of
the proposed hybrid approach, the optimal results are
compared with those obtained from a traditional combi-
nation of the Taguchi method and fuzzy logic (TMFL), and
the optimal parameters from the TMFL are determined at
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Figure 7: Effect plot of design variables on the displacement.

Table 5: ANOVA results for the frequency.

Source DF Seq. SS Adj. SS Adj. MS Contribution (%)

Model 6 1465058 1465058 244176 62.89
Linear 6 1465058 1465058 244176 62.89
Θ 1 145431 145431 145431 6.24
L1 1 475254 475254 475254 20.40
L2 1 98197 98197 98197 4.22
L3 1 2079 2079 2079 0.09
L4 1 5138 5138 5138 0.22
D 1 738958 738958 738958 31.72
Error 38 864635 864635 22754 37.11
Total 44 2329692 100.00
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D� 2.25mm, L3� 8.5mm, and L4�18.7mm, as given in
Table 12. �e optimal results of TMFL find that the fre-
quency and displacement are approximately 24.4574Hz and
0.1691mm with a small equivalent stress of 251MPa, re-
spectively. It also ensures a high safety factor. However, these
optimal values are found at discrete points according to
theory of the Taguchi approach. Such points can lead to local
optimum solutions. To overcome this limitation, LAPO
algorithm is used to search a global optimum solution. Based
on the established ANFIS modeling, a pseudoobjective
function of MPCI is well established. And then, a LAPO
programming is implemented in Matlab R2019b, and the
results of the proposed approach found that the optimal
design parameters are at D� 2.30mm, L3� 8.5mm, and
L4�18.7mm. By using proposed methodology, the optimal
solutions find the frequency and displacement are about
26.592Hz and 0.1539mm, respectively.�e equivalent stress
is also lower than the yield strength of Al material. It permits
a good enough working condition with a safety factor of

1.98. Moreover, the MPCI predicted from the TMFL is
smaller than that predicted from the proposed hybrid
methodology. According to a larger-the-better value is best
for theMPCI, the proposed approach is efficient, robust, and
better than the TMFL. �e optimal results are satisfied with
initial requirements.

4.2.3. Case Study 2. Based on the results of sensitivity
analysis in Table 5 and Figure 8, some unimportant factors
are neglected in modeling and optimization problem. �e
factors with actual contributions are considered as key
design variables. �e space of design parameters is de-
creased, accordingly. Similarly, case study 2 also maximizes
F1(X) and maximizes F2(X), simultaneously. Two objective
functions are transferred into desirability values and then
transformed to theMPCI value.�e optimization problem is
briefly expressed as below.

Find design variable X� [θ, L1, L2, D]
T:
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Figure 8: Effect plot of design variables on the frequency.

Table 6: ANOVA results for the equivalent stress.

Source DF Seq. SS Adj. SS Adj. MS Contribution (%)

Model 6 204005 204005 34001 43.37
Linear 6 204005 204005 34001 43.37
Θ 1 15 15 15 0.00
L1 1 1005 1005 1005 0.21
L2 1 2 2 2 0.00
L3 1 28901 28901 28901 6.14
L4 1 0 0 0 0.00
D 1 174082 174082 174082 37.01
Error 38 266343 266343 7009 56.63
Total 44 470348 100.00
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MaximizeMPCI(X)case study 2 (32)

s.t.

F3(X) ≤
σa
SF
,

12.5° ≤ θ≤ 16.5°,

4.9mm≤ L1 ≤ 7.7mm,

14.5mm≤L2 ≤ 18.7mm,

2.25mm≤D≤ 3.5mm.



(33)

Case study 2 considers two design variables and two
objective functions and three constraints. CCD is also used to
build 25 numerical experiments. �e results of frequency,
displacement, and equivalent stress are collected by simula-
tions. And then, desirability of displacement and desirability
of frequency are calculated, as given in Table 13.�e resulting
stress values are under the allowable stress of Al T73-7075.

Next, the MFs for desirability of frequency also are
divided into three levels, and the desirability of displacement
is seven levels, while the MFs of fuzzy MPCI output are
separated into seven levels, as given in Table 9. Subsequently,
matrix of fuzzy rules is built in Table 14.

�e results of MPCI output are calculated corre-
sponding to the desirability two responses, as given in
Table 15.

By taking the values of design variables in Table 13 and the
MPCI value of Table 15, ANFISmodel is formed for modeling
the MPCI. �e ANFIS parameters for case study 2 are de-
veloped, as given in Table 16. �e predicting accuracy of the
ANFIS model is well evaluated through equations (29) and
(31) before conducting the MOO problem for the SRCM.

By using the TMFL, the optimal parameters are deter-
mined at θ� 16.5°, L1� 7.7mm, L2�18.7mm, and
D� 2.25mm, as given in Table 17. Based on the TMFL, the
optimal frequency and displacement are found at
28.94823Hz and 0.1527mm, respectively. Subsequently,
LAPO algorithm is used to search a global optimum value.
�e results of the proposed hybrid approach determined that
the optimal design parameters are θ� 16.5°, L1� 8.0mm,
L2�14.5mm, and D� 2.25mm. Using the proposed
methodology, the optimal results found that the frequency
and displacement are about 651Hz and 0.1981mm, re-
spectively. Finally, the predicted MPCI from the proposed
approach is greater than that predicted from the TMFL. It
means that the estimated solution from the proposed
methodology is robust and better than that from the TMFL.
Moreover, it finds that the equivalent stress is under the
allowable stress of Al T73-7075. �e optimal results are
satisfied with design constraints.
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Figure 9: Effect plot of design variables on the stress.

Table 7: Linguistic variables for the fuzzy reasoning process.

Symbol T VS S SM M ML L VL H

Linguistic variables Tiny Very small Small Small-medium Medium Medium-large Large Very large Huge
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4.2.4. Case Study 3. Based on the results of sensitivity
analysis in Table 6 and Figure 9, the space of design variables
is relatively shortened. Case study 3 also simultaneously

maximizes F1(X) and maximizes F2(X). �e computational
principle is similar to previous cases. �e statement of
optimization is stated as follows.
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Figure 10: Membership functions plot: (a) frequency; (b) displacement.
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Table 8: Desirability results of the case study 1.

No.
Design variables (unit: mm) Frequency Frequency Stress Desirability of F1(X) Desirability of F2(X)

D L3 L4 F1(X) (Hz) F2(X) (mm) F3(X) (MPa) D1 D2

1 2.875 10.1625 16.35 145.7347 0.010851 18.4667631 0.167540611 0.032475676
2 2.25 10.1625 16.35 27.81286 0.079585 147.3155439 0.004206109 0.51031939
3 3.5 10.1625 16.35 684.6259 1.93E− 05 2.059713964 0.91132379 0
4 2.875 8.5 16.35 152.266 0.010928 17.72299244 0.186110214 0.065979996
5 2.875 11.825 16.35 139.8676 0.010781 18.28006101 0.149565911 0.067869119
6 2.875 10.1625 14 156.5233 0.007468 16.80767677 0.190016733 0
7 2.875 10.1625 18.7 136.4378 0.01453 23.57711698 0.146800947 0.230293298
8 2.25 8.5 14 32.2812 0.036407 85.94278072 0.008724268 0.218602991
9 3.5 8.5 14 749.2335 1.84E− 05 2.584933531 0.993446922 0.051737375
10 2.25 11.825 14 29.85823 0.036103 84.18491871 0.006099755 0.219639916
11 3.5 11.825 14 685.0373 2.24E− 05 2.116902014 0.91388315 0.047684449
12 2.25 8.5 18.7 26.21778 0.178381 262.0338394 9.3986E− 05 0.93699663
13 3.5 8.5 18.7 680.4317 1.69E− 05 2.38866496 0.906545952 0
14 2.25 11.825 18.7 24.3866 0.18053 265.9814502 0.006569152 0.9448278
15 3.5 11.825 18.7 628.8354 2.03E− 05 2.115335728 0.836081859 0

Table 9: Fuzzy rules matrix for case 1.

No. Desirability for F1(X) Desirability for F2(X) MPCI

1 S T T
2 M T VS
3 L T S
4 S VS VS
5 M VS S
6 L VS SM
7 S S S
8 M S SM
9 L S ML
10 S SM S
11 M SM SM
12 L SM M
13 S M SM
14 M M M
15 L M ML
16 S ML SM
17 M ML M
18 L ML ML
19 S L ML
20 M L ML
21 L L L
22 S VL ML
23 M VL L
24 L VL VL
25 S H ML
26 M H L
27 L H H
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Find design variable X� [L1, L3, D]
T:

MaximizeMPCI(X)case study 3 (34)

s.t.

F3(X)≤
σa
SF
,

4.9mm≤L1 ≤ 7.7mm,

8.5mm≤L3 ≤ 11.825mm,

2.25mm≤D≤ 3.5mm.


(35)

Case study 3 regards three design variables and two
objective functions and one constraint. CCD is used to build
15 numerical experiments. �e results of frequency, dis-
placement, and equivalent stress are collected. And then,
desirability of two responses is calculated, as given in Ta-
ble 18.�e results found all stress values are smaller than the
allowable stress of the proposed material.

�e MFs for desirability of frequency include three
levels, and the desirability of displacement is consisted of
seven levels, while theMFs of fuzzyMPCI output are divided
into seven levels. Subsequently, a matrix of fuzzy rules is
built in Table 19.�e value of MPCI is determined according
to each value of desirability for objective functions, as given
in Table 20.

Subsequently, using the values of design variables in
Table 18 and theMPCI value of Table 20, the ANFISmodel is

formed for mapping the design variables and the MPCI. �e
ANFIS parameters for case study 2 are given in Table 21.�e
predicting accuracy of the ANFIS model is well confirmed
through equations (29) and (31) prior to implement the
MOO problem for the SRCM.

By using the TMFL, the optimal parameters are deter-
mined at L1� 7.7mm, L3�10.1625mm, andD� 2.25mm, as
shown in Table 22. Based on the TMFL, the optimal fre-
quency and displacement are found at 158.970Hz and
0.0957mm, respectively. Such optimal points are local op-
timum solutions. Subsequently, the results of proposed
hybrid methodology found that the optimal design pa-
rameters are at L1� 6.3793mm, L3� 9.73mm, and
D� 2.25mm. Using these, the proposed approach, the op-
timal frequency, and displacement are found at 27.006Hz
and 0.2203mm, respectively. At last, the predicted MPCI
from the proposed methodology is effective and better than
that from the TMFL. In addition, the equivalent stress is also
lower than the allowable stress. �e optimal results are
satisfied with designer’s requirements.

5. Results and Discussion

As discussed above, three cases studies are taken as nu-
merical examples to describe application capacity and ef-
fectiveness of the proposed method. �e performances of
proposed methodology are compared with the TMFL. Ta-
ble 23 summarizes all the optimal solutions for this com-
parison. In each case study, the optimal parameters are used
to create a 3D model in SolidWorks 2018 software and then
imported into ANSYS 2018 software to evaluate the ro-
bustness of the proposed hybrid approach by calculating the
relative error. �is error is calculated as follows:

ε(%) �
Rp − Ra

Ra
− 1( )∗ 100, (36)

where ε, Rp, and Ra represent the relative error, predicted
result from proposed method, and actual result, respectively.

Case study 1: using the TMFL, the results found the
optimal frequency and displacement are 24.4574Hz and
0.1691mm, respectively. Meanwhile, the proposed hybrid
approach predicts the frequency and displacement are about
26.592Hz and 0.1679mm, respectively. By using the pro-
posed method, the relative errors between predicted values
and FEA values are very small (around 5%), while the error
value is around 7% via using TMFL. Both the proposed
methods are reliable tools in this case. According to the
Taguchi method, a larger-the-better value of MPCI is a
desired value for the MOO problem. On the contrary, the
proposed hybrid approach has a better performance than the
TMFL because the MPCI from the proposed method is
higher than that from the TMFL.

Case study 2: through the TMFL, the results found the
optimal frequency and displacement are 28.9482Hz and
0.1527mm, respectively. By using the proposed hybrid in-
tegration, the optimal frequency and displacement are found
at 651.08Hz and 0.1981mm, respectively. By using the
proposed hybrid approach, the relative errors between

Table 10: Results of fuzzy MPCI for case 1.

No. Desirability of F1(X) Desirability of F2(X) MPCI

1 0.167540611 0.032475676 0.107
2 0.004206109 0.51031939 0.375
3 0.91132379 0 0.25
4 0.186110214 0.065979996 0.133
5 0.149565911 0.067869119 0.114
6 0.190016733 0 0.0779
7 0.146800947 0.230293298 0.24
8 0.008724268 0.218602991 0.222
9 0.993446922 0.051737375 0.301
10 0.006099755 0.219639916 0.223
11 0.91388315 0.047684449 0.297
12 9.3986E− 05 0.93699663 0.625
13 0.906545952 0 0.25
14 0.006569152 0.9448278 0.625
15 0.836081859 0 0.235

Table 11: ANFIS parameters for case 1.

Number of nodes 78
Number of linear parameters 108
Number of nonlinear parameters 27
Total number of parameters 135
Number of training data pairs 15
Number of testing data pairs 0
Number of fuzzy rules 27
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predicted values and simulated values are around 4.65%,
while the error between the predicted value by the TMFL
and FEA value is around 9.5%. In addition, the MPCI
predicted by the proposed hybrid approach is greater than
that from TMFL. In other words, the performance and
prediction accuracy of proposed methodology outperforms
the TMFL.

Case study 3: the results found the optimal frequency
and displacement are 158.970Hz and 0.0957mm, respec-
tively, by using TMFL. Meanwhile, the proposed hybrid
approach finds the optimal frequency and displacement
approximately 651.08Hz and 0.1981mm, respectively. �e
relative errors between predicted values and simulated
values are around 6%, while the error between the TMFL and
FEA is about 484%. Moreover, the MPCI predicted by the
proposed hybrid approach is higher than that from TMFL. It
can conclude that the performance and precision of the
proposed approach outperforms the TMFL.

�e results of three numerical examples show that the
proposed optimization scheme is better than the traditional
TMFL. Among three numerical examples, case study 3 may
be chosen as an optimal solution for MOO design of the
SRCM because the MPCI is the highest value. �e optimal
design variables are at L1� 6.3793mm, L3� 9.73mm, and
D� 2.25mm. Other remain parameters are constant values.
It concludes that the proposed hybrid approach is a robust
optimization tool and effectiveness for solving the MOO
design for the mechanism and related complex optimization
fields.

6. Comparison with Metaheuristic
Optimization Algorithms

As discussed above, the proposed method outperformed the
traditional TMFL to solve MOO design for the mechanism.
Continuously, the proposed algorithm is compared with

Table 12: Comparison of different methods for case study 1.

Method
Optimal

parameters

Optimal results

Frequency
(Hz)

Displacement
(mm)

Stress
(MPa)

SF MPCI

Hybrid of Taguchi method and fuzzy logic
D� 2.25mm

24.4574 0.1691 251.463 2 0.510L3� 8.5mm
L4�18.7mm

Proposed approach of desirability, fuzzy-ANFIS-
LAPO algorithm

D� 2.30
26.592 0.1539 253.847 1.98 0.570L3� 8.5mm

L4�18.7mm

Table 13: Desirability results of the case study 2.

No.
Design variables (unit: mm) Frequency displacement Stress Desirability of F1(X) Desirability of F2(X)

θ L1 L2 D F1(X) mm F2(X) (Hz) F3(X) (MPa) D1 D2

1 14.5 6.3 16.6 2.875 140.2838 0.013508 20.136932 0.126042291 0.102725633
2 12.5 6.3 16.6 2.875 141.5087 0.010046 17.092119 0.089296146 0.049191484
3 16.5 6.3 16.6 2.875 139.9513 0.013255 20.756254 0.264504072 0.098396331
4 14.5 4.9 16.6 2.875 139.9384 0.010927 18.907122 0.016411556 0.055559464
5 14.5 7.7 16.6 2.875 142.1834 0.010787 20.473748 0.338359234 0.081632844
6 14.5 6.3 14.5 2.875 148.7576 0.008941 13.90206 0.105418876 0.070044602
7 14.5 6.3 18.7 2.875 133.6071 0.011627 18.555608 0.249708039 0.059644029
8 14.5 6.3 16.6 2.25 54.02425 0.091965 155.65601 0 0.520514669
9 14.5 6.3 16.6 3.5 224.1544 0.004473 12.163485 0.375575312 0.106083045
10 12.5 4.9 14.5 2.25 29.63534 0.010148 31.923139 0.036724691 0.150747816
11 16.5 4.9 14.5 2.25 30.0422 0.040185 87.9122 0.013316419 0.413327968
12 12.5 7.7 14.5 2.25 30.81703 0.055528 108.84574 0 0.456367237
13 16.5 7.7 14.5 2.25 28.94823 0.152702 249.32714 0.214726673 0.70638882
14 12.5 4.9 18.7 2.25 26.82343 0.086202 160.20452 0.022707379 0.504418284
15 16.5 4.9 18.7 2.25 24.99238 0.0898 160.62031 0.05839604 0.461010103
16 12.5 7.7 18.7 2.25 25.76424 0.065583 119.20462 0.19869231 0.36014185
17 16.5 7.7 18.7 2.25 649.3008 1.78E− 05 7.9628582 0.632518439 0.304175099
18 12.5 4.9 14.5 3.5 238.0543 0.002067 7.4382126 0.393236144 0
19 16.5 4.9 14.5 3.5 235.5158 0.003742 12.915726 0.309825869 0
20 12.5 7.7 14.5 3.5 245.0752 0.003262 8.3554397 0.463009101 0.033847584
21 16.5 7.7 14.5 3.5 706.8922 1.89E− 05 2.0140876 0.777736293 0.175665459
22 12.5 4.9 18.7 3.5 212.0324 0.004153 11.315538 0.264022704 0.206278396
23 16.5 4.9 18.7 3.5 211.4283 0.004882 10.593629 0.239709361 0.054666508
24 12.5 7.7 18.7 3.5 648.699 1.77E− 05 2.1232273 0.706507805 0
25 16.5 7.7 18.7 3.5 646.6069 1.97E− 05 1.998213 1 0
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recent less-parameter optimization algorithms such as Jaya
algorithm and TLBO algorithm. Case 3 is chosen as the final
optimal candidate for the proposed mechanism. �erefore,

the ANFIS structure of case 3 is then coupled with Jaya and
TLBO algorithms for this comparison. �e results indicated
that the optimal frequency and displacement predicted by

Table 14: Fuzzy rules matrix for case 2.

No. Desirability for F1(X) Desirability for F2(X) MPCI

1 S T T
2 M T VS
3 L T S
4 S VS VS
5 M VS S
6 L VS SM
7 S S S
8 M S SM
9 L S ML
10 S SM S
11 M SM SM
12 L SM M
13 S M SM
14 M M M
15 L M ML
16 S ML SM
17 M ML M
18 L ML ML
19 S L ML
20 M L ML
21 L L L
22 S VL ML
23 M VL L
24 L VL VL
25 S H ML
26 M H L
27 L H H

Table 15: Results of fuzzy MPCI for case 2.

No. Desirability for F1(X) Desirability for F2(X) MPCI

1 0.126042291 0.102725633 0.123
2 0.089296146 0.049191484 0.0934
3 0.264504072 0.098396331 0.19
4 0.016411556 0.055559464 0.099
5 0.338359234 0.081632844 0.204
6 0.105418876 0.070044602 0.109
7 0.249708039 0.059644029 0.17
8 0 0.520514669 0.375
9 0.375575312 0.106083045 0.238
10 0.036724691 0.150747816 0.146
11 0.013316419 0.413327968 0.286
12 0 0.456367237 0.333
13 0.214726673 0.70638882 0.517
14 0.022707379 0.504418284 0.375
15 0.05839604 0.461010103 0.338
16 0.19869231 0.36014185 0.284
17 0.632518439 0.304175099 0.375
18 0.393236144 0 0.125
19 0.309825869 0 0.12
20 0.463009101 0.033847584 0.156
21 0.777736293 0.175665459 0.445
22 0.206278396 0.264022704 0.261
23 0.054666508 0.239709361 0.163
24 0 0.706507805 0.164
25 0 1 0.25
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the proposed algorithm are better than those estimated by
the Jaya and TLBO algorithms, as given in Table 24. On the
contrary, the proposed methodology has a prediction ac-
curacy better than other metaheuristic optimization
algorithms.

In order to evaluate and validate the effectiveness of
three abovementioned algorithms, the nonparametric tests
are used for comparing the performances of the proposed
hybrid approach with other algorithms [66, 67]. �e Wil-
coxon’s rank signed test and Friedman test, two performance
metrics, are utilized as the nonparametric tests. Both these
statistical techniques consider that both different algorithms
behave unsimilarly. Recently, the nonparametric tests have
been widely applied in comparing the performances between

algorithms, e.g., [68, 69]. �e comparing results are almost
based on the p value. In the present article, the computa-
tional simulations are conducted with 60 runs for each al-
gorithm. �e Wilcoxon’s rank signed test is performed for
frequency and displacement at 5% significant level and 95%
confidence intervals. �e statistical analysis is implemented
in Minitab 18 software. �e results in Tables 25 and 26 show
that the p value is less than 0.05 (5% significance level).
According to nonparametric tests [66, 67], it reveals that
there is a statistical difference between the proposed ap-
proach and other algorithms. Besides, the results confirm
that the proposed hybrid algorithm has a performance ef-
fectiveness greater than ANFIS-based Jaya and ANFIS-based
TLBO algorithms.

Table 16: ANFIS parameters for case 2.

Number of nodes 92
Number of linear parameters 192
Number of nonlinear parameters 30
Total number of parameters 222
Number of training data pairs 27
Number of testing data pairs 0
Number of fuzzy rules 32

Table 17: Comparison of differential methods for case study 2.

Method
Optimal

parameters

Optimal results

Frequency
(Hz)

Displacement
(mm)

Stress
(MPa)

SF MPCI

Hybrid of Taguchi method and fuzzy logic

θ� 16.5°

28.94823 0.1527 7.9628 63.16 0.375
L1� 7.7mm
L2�18.7mm
D� 2.25mm

Proposed approach of desirability, fuzzy-ANFIS-
LAPO algorithm

θ� 16.5o

651.08 0.1981 4.4641 112.67 0.517
L1� 8.0mm
L2�14.5mm
D� 2.5mm

Table 18: Desirability results of the case study 3.

No.

Design variables (unit:
mm) Frequency Displacement Stress Desirability of F1(X) Desirability of F2(X)

L1 L3 D F1(X) (Hz) F2(X) (mm) F3(X) (MPa) D1 D2

1 6.3 10.1625 2.875 142.1428 0.013839 20.34068 0.257697 0.159738122
2 4.9 10.1625 2.875 135.4637 0.01317 21.402 0.327272 0.085867476
3 7.7 10.1625 2.875 684.347 1.76E− 05 2.829244 0.752914 0
4 6.3 10.1625 2.25 27.02455 0.242625 365.8681 0 0.726699252
5 6.3 10.1625 3.5 260.1458 0.004596 10.77186 0.434028 0.240793486
6 6.3 8.5 2.875 147.0101 0.013744 20.2492 0.158614 0.030275021
7 6.3 11.825 2.875 135.084 0.013954 20.45499 0.133502 0.032371983
8 4.9 8.5 2.25 29.8364 0.134483 238.4694 0 0.609908353
9 7.7 8.5 2.25 28.4018 0.044736 83.66811 0.090806 0.265631968
10 4.9 8.5 3.5 235.2483 0.00462 12.88278 0.242549 0
11 7.7 8.5 3.5 708.6937 1.64E− 05 2.275569 1 0
12 4.9 11.825 2.25 27.5078 0.137112 235.3041 0 0.617415632
13 7.7 11.825 2.25 26.37316 0.044389 85.38369 0.074579 0.266912238
14 4.9 11.825 3.5 221.0946 0.004669 12.09392 0.208551 0
15 7.7 11.825 3.5 653.4564 1.98E− 05 2.137794 0.952076 0
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Another way, the Friedman test, is used for the behavior
comparison of the abovementioned algorithms. �e results
find that the p value is less than 0.05. �erefore, it confirms
that there the proposed hybrid approach differs from two
other algorithms, as given in Tables 27 and 28. Moreover, the
effectiveness of the proposed hybrid algorithm is better than
ANFIS-based Jaya algorithm and ANFIS-based TLBO al-
gorithm. Besides, the median responses for the proposed
algorithm are greater than those of two other algorithms. So,

Table 19: Fuzzy rules matrix for case 3.

No. Desirability for F1(X) Desirability for F2(X) MPCI

1 S T T
2 M T VS
3 L T S
4 S VS VS
5 M VS S
6 L VS SM
7 S S S
8 M S SM
9 L S ML
10 S SM S
11 M SM SM
12 L SM M
13 S M SM
14 M M M
15 L M ML
16 S ML SM
17 M ML M
18 L ML ML
19 S L ML
20 M L ML
21 L L L
22 S VL ML
23 M VL L
24 L VL VL
25 S H ML
26 M H L
27 L H H

Table 20: Results of fuzzy output for case 3.

No. Desirability for F1(X) Desirability for F2(X) MPCI

1 0.257697 0.159738122 0.237
2 0.327272 0.085867476 0.205
3 0.752914 0 0.189
4 0 0.726699252 0.585
5 0.434028 0.240793486 0.375
6 0.158614 0.030275021 0.0958
7 0.133502 0.032371983 0.0741
8 0 0.609908353 0.375
9 0.090806 0.265631968 0.25
10 0.242549 0 0.105
11 1 0 0.25
12 0 0.617415632 0.375
13 0.074579 0.266912238 0.25
14 0.208551 0 0.0886
15 0.952076 0 0.25

Table 21: ANFIS parameters for case 3.

Number of nodes 34
Number of linear parameters 32
Number of nonlinear parameters 18
Total number of parameters 50
Number of training data pairs 15
Number of testing data pairs 0
Number of fuzzy rules 8
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the proposed approach is a more effective tool than the other
algorithms.

Although the proposed hybrid computational method
has specific advantages in terms of solving MOO design of

the SRCM, it has still some drawbacks: the running time is
also long because the datasets are transferred into different
stages. �is may take a long time and high computational
cost for more complex structures. It is known that the time

Table 22: Comparison of differential methods for case study 3.

Method
Optimal

parameters

Optimal results

Frequency
(Hz)

Displacement
(mm)

Stress
(MPa)

SF MPCI

Hybrid of Taguchi method and fuzzy logic
L1� 7.7mm

158.970 0.0957 155.800 3.22 0.496L3�10.1625mm
D� 2.25mm

Proposed approach of desirability, fuzzy-ANFIS-
LAPO algorithm

L1� 6.3793mm
27.006 0.2203 332.8096 1.511 0.611L3� 9.73mm

D� 2.25mm

Table 23: Comparison of the optimal results for three cases.

Case
study

Method Optimal factors

Optimal responses

Frequency
(Hz)

Displacement
(mm)

Stress (MPa) MPCI

Case 1

Hybrid of Taguchi method and fuzzy logic
D� 2.25mm
L3� 8.5mm
L4�18.7mm

Predicted:
F1� 24.4574

FEA:
F1� 26.283
ε� 6.94%

Predicted:
F2� 0.1691

FEA:
F2� 0.1772
ε� 4.57%

Predicted:
F3� 251.463

FEA:
F3� 259.42
ε� 3.06%

0.510

Proposed hybrid approach of fuzzy-ANFIS-
LAPO algorithm

D� 2.30mm
L3� 8.5mm
L4�18.7mm

Predicted:
F1� 26.592

FEA:
F1� 25.828
ε� 2.95%

Predicted:
F2� 0.1679

FEA:
F2� 0.1766
ε� 4.92%

Predicted:
F3� 253.847

FEA:
F3� 260.570
ε� 2.58%

0.570

Case 2

Hybrid of Taguchi method and fuzzy logic

θ� 16.5o

L1� 7.7mm
L2�18.7mm
D� 2.25mm

Predicted:
F1� 28.9482

FEA:
F1� 649.3
ε� 2.58%

Predicted:
F2� 0.1527

FEA:
F2� 0.1782
ε� 9.55%

Predicted:
F3� 7.9628

FEA:
F3� 7.8629
ε� 1.28%

0.375

Proposed hybrid approach of fuzzy-ANFIS-
LAPO algorithm

θ� 16.5o

L1� 8.0mm
L2�14.5mm
D� 2.5mm

Predicted:
F1� 651.08

FEA:
F1� 682.8535
ε� 4.65%

Predicted:
F2� 0.1981

FEA:
F2� 0.1907
ε� 3.88%

Predicted:
F3� 4.4641

FEA:
F3� 4.288
ε� 4.10%

0.517

Case 3

Hybrid of Taguchi method and fuzzy logic
L1� 7.7mm

L3�10.1625mm
D� 2.25mm

Predicted:
F1� 158.970

FEA:
F1� 27.175
ε� 484%

Predicted:
F2� 0.0957

FEA:
F2� 0.0443
ε� 116%

Predicted:
F3�155.8
FEA:

F2� 86.112
ε� 80%

0.496

Proposed hybrid approach of fuzzy-ANFIS-
LAPO algorithm

L1� 6.3793mm
L3� 9.73mm
D� 2.25mm

Predicted:
F1� 27.0063

FEA:
F1� 27.178
ε� 6.31%

Predicted:
F2� 0.2203

FEA:
F2� 0.2233
ε� 1.34%

Predicted:
F3� 332.8096

FEA:
F2� 343.3
ε� 0.03%

0.611

Table 24: Comparison between other algorithms with the proposed approach.

Approaches Frequency (Hz) Displacement (mm)

ANFIS-Jaya (L1� 6.3790, L3� 9.7305mm, and D� 2.25mm) 26.6803 0.2199
ANFIS-TLBO (L1� 6.6134, L3�10.8097mm, and D� 2.25mm) 26.0994 0.1959
Proposed algorithm (L1� 6.3793, L3� 9.7300mm, and D� 2.25mm) 27.0063 0.2203
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and space complexity of an algorithm is very important. For
a more complicated problem with large datasets, it needs
more better memory space of a computer. �ese disad-
vantages of the proposedmethod can be solved as follows: (i)
FEM analysis is time consuming, but this problem can be
solved by using parallelism computation by using multiple
processors or a high-performance computer. (ii) Auto-
matically adaptive combination of statistical method, FEM,
and metaheuristic algorithms is a feasible approach to re-
duce the computational cost. In other words, the proposed
optimization scheme should automatically update new data
if there is an adjustment of space or range of design variables.
�e aim of the present work is to recommend a new hybrid
computational approach in solving the MOO design for
compliant mechanisms. In future work, the time, space, and

algorithm complexity need to be investigated to improve the
proposed approach.

7. Conclusions

A new hybrid computational method is developed to solve a
MOO design for a Scott Russell compliant mechanism in
this article. �e methodology can be considered as a com-
bination of statistical techniques, finite element method, and
intelligent computation. It is an integration of the desir-
ability function technique, fuzzy logic reasoning, ANFIS,
and LAPO algorithm. A 3D FEMmodel is created, and CCD
is used to build the experimental matrix. Next, numerical
data are collected through FEM simulations. Based on the
numerical results, a sensitivity investigation is analyzed by

Table 25: Wilcoxon signed rank test for displacement.

Number of tests
Proposed algorithm versus ANFIS-Jaya

Wilcoxon statistic p value Estimated median difference
60 0.0 0.000 −0.004

Number of tests
Proposed algorithm versus ANFIS-TLBO

Wilcoxon statistic p value Estimated median difference
60 0.0 0.000 −0.0244

Table 26: Wilcoxon signed rank test for frequency.

Number of tests
Proposed algorithm versus ANFIS-Jaya

Wilcoxon statistic p value Estimated median difference
60 0.0 0.000 −0.326

Number of tests
Proposed algorithm versus ANFIS-TLBO

Wilcoxon statistic p value Estimated median difference
60 0.0 0.000 −0.9069

Table 27: Friedman test for displacement.

Algorithm Number of tests Median Sum of ranks

ANFIS-Jaya 60 0.219900 120
ANFIS-TLBO 60 0.195900 60
Proposed algorithm 60 0.220300 180
Overall 180 0.212033
DF Chi-square p value
2 120 0.000
Null hypothesis H0: all treatment effects are zero
Alternative hypothesis H1: not all treatment effects are zero

Table 28: Friedman test for frequency.

Algorithm Number of tests Median Sum of ranks

ANFIS-Jaya 60 26.6803 120
ANFIS-TLBO 60 26.0994 60
Proposed algorithm 60 27.0063 180
Overall 180 26.5953
DF Chi-square p value
2 120 0.000
Null hypothesis H0: all treatment effects are zero
Alternative hypothesis H1: not all treatment effects are zero
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using ANOVA and Taguchi method.�e refinement process
for design variables is to determine really searching spaces of
design parameters. As a result, three case studies are assigned
as application example of the proposed approach. Next, the
desirability of two responses is computed and transferred
into the FIS system. ANFIS technique is then utilized to
model the MPCI, which is considered as a combined ob-
jective function. LAPO algorithm is adopted for optimizing
the MPCI. �e results find that the predicting accuracy of
proposed hybrid methodology is better than that of the
traditional Taguchi-based fuzzy logic. Case study 3 is chosen
to be optimal candidate. Finally, the Wilcoxon signed rank
test and Friedman test are analyzed to compare the per-
formances of the proposed approach with the ANFIS-based
Jaya algorithm and ANFIS-based TLBO algorithm. �e
results found the performance efficiency of proposed ap-
proach is better than those of other approaches. �e pro-
posed methodology can be an efficient tool for more
complex optimization problems, including multiple objec-
tive functions, design variables, and constraints.

�e results of the present study will be extended to more
complex compliant mechanisms. Future research will con-
centrate on fabricating physical prototypes, and then an
extra number of testing experiments is performed to validate
the theoretical models and simulations.
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[67] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3–18, 2011.

[68] L. M. Li, K. Di Lu, G. Q. Zeng, L. Wu, and M. R. Chen, “A
novel real-coded population-based extremal optimization
algorithm with polynomial mutation: a non-parametric sta-
tistical study on continuous optimization problems,” Neu-
rocomputing, vol. 174, pp. 577–587, 2016.
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