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ABSTRACT Many countries are challenged by the medical resources required for COVID-19 detection

which necessitates the development of a low-cost, rapid tool to detect and diagnose the virus effectively for

a large numbers of tests. Although a chest X-Ray scan is a useful candidate tool the images generated by

the scans must be analyzed accurately and quickly if large numbers of tests are to be processed. COVID-19

causes bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes

with a rounded morphology and a peripheral lung distribution. In this work, we aim to extract rapidly

from chest X-Ray images the similar small regions that may contain the identifying features of COVID-19.

This paper therefore proposes a hybrid COVID-19 detection model based on an improved marine predators

algorithm (IMPA) for X-Ray image segmentation. The ranking-based diversity reduction (RDR) strategy

is used to enhance the performance of the IMPA to reach better solutions in fewer iterations. RDR works

on finding the particles that couldn’t find better solutions within a consecutive number of iterations, and

then moving those particles towards the best solutions so far. The performance of IMPA has been validated

on nine chest X-Ray images with threshold levels between 10 and 100 and compared with five state-of-art

algorithms: equilibrium optimizer (EO), whale optimization algorithm (WOA), sine cosine algorithm (SCA),

Harris-hawks algorithm (HHA), and salp swarm algorithms (SSA). The experimental results demonstrate

that the proposed hybrid model outperforms all other algorithms for a range of metrics. In addition,

the performance of our proposed model was convergent on all numbers of thresholds level in the Structured

Similarity Index Metric (SSIM) and Universal Quality Index (UQI) metrics.

INDEX TERMS COVID-19 detection, marine predators algorithm, ranking-based reduction diversity,

Kapur’s entropy, image segmentation.

I. INTRODUCTION

Due to the limited diagnosis tools available, many coun-

tries are only able to apply the COVID-19 [1], [2] test for

a limited number of citizens. Despite the great efforts to

find an effective way for COVID-19 detection, the required

medical resources in many countries represent a big chal-

lenge. Accordingly, there is an urgent need to identify a

low-cost and rapid tool to detect and diagnose COVID-19

effectively.

The associate editor coordinating the review of this manuscript and

approving it for publication was Victor Hugo Albuquerque .

Many attempts have been conducted to find a suitable

and fast way to detect infected patients in an early stage.

After making chest CT scans of 21 patients infected with

COVID-19 in China, Guan et al. [2] found that CT scan

analysis included bilateral pulmonary parenchymal ground-

glass and consolidative pulmonary opacities, sometimes with

a rounded morphology and a peripheral lung distribution.

Consequently, COVID-19 diagnosis can be represented as

an image segmentation problem to extract the main features

of the disease. This segmentation problem can be solved by

developing an algorithm that has the ability to extract the

smaller similar regions that can indicate infection with the

COVID-19 virus.

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 79521

https://orcid.org/0000-0002-2794-3936
https://orcid.org/0000-0002-1903-4062
https://orcid.org/0000-0001-6347-8368
https://orcid.org/0000-0002-7373-0149
https://orcid.org/0000-0002-6335-3773
https://orcid.org/0000-0003-3886-4309


M. Abdel-Basset et al.: Hybrid COVID-19 Detection Model Using an Improved Marine Predators Algorithm

Segmentation of an image, separating image regions from

each other, is an essential step in image processing [3] and

computer vision [4] to focus on a specific region thereby

increasing the accuracy of image analysis techniques. The

image segmentation problem (ISP) is present in many fields

such as: medical diagnosis [5], [6], object recognition [7],

satellite image processing [8], remote sensing [9], historical

documents [10], and historical newspapers [11], [12].

Several techniques have been proposed to provide an

effective image segmentation tool, such as region-based seg-

mentation [13], edge-based detection [14], feature selection-

based clustering [15], and threshold-based segmentation [16].

Due to its simplicity, speed, and accuracy, threshold-

based segmentation is widely used for image segmentation

[3], [17], [18] using either a bi-level threshold or a multi-

level threshold. In bi-level thresholding, the image is seg-

mented into two regions: object and background. Although

the bi-level threshold is very useful in subdividing the image

into only two parts, many applications are interested in more

than two regions. In that case, another threshold technique

called multi-level threshold has been used to segment the

image into more than two regions. Although increasing the

number of regions extracted from the image, the time needed

to segment the image increases exponentially with the num-

ber of regions of interest.

Threshold techniques are based on two approaches: para-

metric and non-parametric [19]. In a parametric approach,

some parameters for each class in the image need to be com-

puted using a probability density function. However, in a non-

parametric approach, the technique searches for the optimal

threshold values based on maximizing an appropriate func-

tion (such as Kapur’s entropy [20], fuzzy entropy [21], and

Otsu function [22]) without needing to calculate parameters

at the outset.

Since processing time increases exponentially with

increasing numbers of thresholds, traditional techniques will

take considerable time to search for the optimal threshold.

Consequently, meta-heuristic algorithms have been used as

excellent stochastic meta-heuristic techniques to overcome

the high processing time and accuracy problems [23]–[25].

Recently, many meta-heuristic algorithms have been pro-

posed for image segmentation, such as genetic algorithm

(GA) [26], particle swarm optimization (PSO) [27]–[29],

ant-colony optimization algorithm [30], whale optimization

algorithm (WOA) [31], honey bee mating (HBM) opti-

mization [32], multi-verse optimizer [33], cuckoo search

(CS) [34], symbiotic organisms search (SOS) [35], Harris

hawks optimization algorithm (HHA) [36], and moth-

flame optimization algorithm (MFA) [31], flower pollina-

tion algorithm (FPA) [37], crow search algorithm [38], grey

wolf optimizer [39], bee colony algorithm (BCA) [40],

locust search algorithm (LSA) [41] and firefly optimization

algorithm (FFA) [42].

Singla and Patra [43] investigated the bounds and the

potential thresholds that contain the optimal threshold values

by using the cluster validity measure, and then used the

GA algorithm to search for the optimal thresholds from the

discovered bounds. GA has also been proposed [44] for image

segmentation based on a simulated binary crossover to max-

imize Kapur’s entropy for the medical image. Among swarm

algorithms, PSO [45] has been proposed for image segmen-

tation, in addition to improving its performance by cooper-

ative and comprehensive learning to face the dimensionality

curse and to reduce the premature convergence of the swarm,

respectively. Amodified PSO [46] has also been developed to

improve its performance for solving ISP using adaptive iner-

tia and the adaptive population. Ghamisi et al. [47] introduced

fractional-order Darwinian PSO to solve the problem of the

n-level threshold based on the Otsu function to maximize the

variance between classes.

In [31], WOA and MFA were proposed for solving the

image segmentation problem bymaximizing Otsu’s criterion,

although only for small threshold levels up to 6. FFA [42] has

also been applied to image segmentation but does not per-

form well for multi-level thresholding, so the improved FFA

(IFFA) [48] has been proposed using the Cauchy mutation

and neighborhood strategy to avoid being trapped in local

optima and to enhance the exploration operation.

CS [34] has also been proposed for tackling the ISP by

maximizing the Tsallis entropy. SOS [35] has been proposed

for segmenting the color images, improved by opposite-based

learning in an attempt to enhance its performance (ISOS).

ABC [49] has been used for segmentation of satellite imagery

based on maximizing various fitness functions—the tech-

nique has been modified by initializing the population using

a chaotic search and using differential evolution as a novel

search technique to improve the exploitation phase.

The Bacterial Foraging Algorithm (BFA) [50], relying on

fuzzy entropy to switch the bacterium between exploitation

and exploration operators, has been adapted for gray-scale

image segmentation. Also, BFA [51] has been modified by

moving the best bacteria to the subsequent iterations to accel-

erate the convergence to the optimal solution. Furthermore,

BFA [52] has been integrated with PSO to support the global

search capability and accelerate the convergence rate. In addi-

tion, the weak bacterium in BFA chooses a strong bacterium

from the healthiest bacteria, then it moves near to the location

of this strong selection. WOA [53] has been proposed for

tackling liver image segmentation. WOA divides the liver

image into a predetermined number of clusters based on

the prospect liver position in the abdominal image defined

by a statistical image. The problem of multi-level threshold

segmentation [54] is handled as a multi-objective problem

that maximized both Kapur’s entropy and Otsu’s function.

Although there are many existing methodologies for med-

ical image segmentation, none of the works exposed at the

literature was validated on an image with high threshold

levels to observe its ability to segment an image with many

similar regions. Subsequently, those algorithms may not be

the best choice for searching for smaller homogenous regions

in medical images that may contain the features of a disease

such as COVID-19. This challenge motivates us to observe
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the performance of some state-of-art algorithms proposed in

the literature for tackling ISP. In addition, it leads us to pro-

pose a robust meta-heuristic algorithm, namely the improved

marine predators algorithm (IMPA), that has a good ability to

segment an image into many similar regions.

The contribution of this paper is two-fold. First, we pro-

pose a hybrid model for COVID-19 detection using an

improvedmarine predators algorithm (IMPA) for overcoming

the multi-threshold image segmentation problems of chest

X-Ray images. Second, a newmethod, namely ranking-based

diversity reduction (RDR), has been proposed to improve the

MPA by moving the positions of the worst solutions to be

near to the best solution. The proposed RDR is compared

with other well-known algorithms using a set of chest X-Ray

images. The experimental results show that MPA and IMPA

are better able to solve the image segmentation problem com-

pared with state-of-art algorithms in terms of fitness value

and standard metrics. Additionally, it is competitive with EO

in low numbers of threshold levels in terms of peak signal-to-

noise-ratio (PSNR), and signal-to-noise-ratio (SNR), but has

significantly better performance for high numbers of thresh-

old levels. Along with EO, the performance of our proposed

algorithm is convergent using the structured similarity index

metric (SSIM) and the Universal Quality Index (UQI).

The remainder of the paper is organized as follows.

In section 2, we explain the Kapur’s entropy formulation.

Then, section 3 provides a description of the marine predators

algorithm. Section 4 describes the steps of adapting MPA for

application to image segmentation. Section 5 provides the

results and discussions and section 6 concludes the paper.

II. MULTILEVEL THRESHOLDING

As discussed earlier, image threshold techniques are cate-

gorized as bi-level or multilevel thresholding. In this work,

optimal threshold values are obtained using a popular mul-

tilevel method, namely Kapur’s entropy, which determines

the optimal threshold values based on the entropy of the seg-

mented regions [20]. Assuming that [t0, t1, t2, . . . . . . . . . , tn]

represents the threshold values that segment the image into

multiple regions, then Kapur’s entropy method can be for-

mulated in Eq. 1, Eq. 2, Eq. 3, Eq. 4, and Eq. 5.

T (t0, t1, t2, . . . . . . . . . , tn) = T0+T1 + T2+. . . . . . . . .+Tn

(1)

where:

T0 = −
∑t0−1

i=0

Xi

W0
∗ ln

Xi

W0
, Xi=

Ni

W
, W0=

∑t1−1

i=0
Xi

(2)

T1 = −
∑t1−1

i=t0

Xi

W1
∗ln

Xi

W1
, Xi=

Ni

W
, T1 =

∑t1−1

i=t0
Xi

(3)

T2 = −
∑t2−1

i=t1

Xi

W2
∗ln

Xi

W2
, Xi=

Ni

W
, T2=

∑t2−1

i=t1
Xi

(4)

Tn = −
∑L−1

i=tn

Xi

Wn
∗ln

Xi

Wn
, Xi=

Ni

W
, Tn=

∑L−1

i=tn
Xi

(5)

T0,T1,T2, . . . . . . . . . , and Tn are the entropies of the dis-

tinct regions, and Ni indicates the number of pixels with a

value of i, the grey level. W0,W1,W2, . . . , and Wn are the

probabilities of the regions relative to the number of pixels W

found in the whole image.

To obtain the optimal threshold values, the function at Eq. 6

must be maximized.

F (t0, t1, t2, . . . . . . . . . , tn) = max{T(t0, t1, t2, . . . . . . . . . , tn)}

(6)

Here, Eq.6 is used as a fitness function to obtain the optimal

threshold values using theMPA illustrated in the next section.

III. MARINE PREDATORS ALGORITHM (MPA)

MPA has been proposed to simulate the optimal foraging

mechanism for marine predators in finding their prey: preda-

tors use Lévy strategy when there is a low concentration

of prey and Brownian movements when there is abundant

prey [55]. The velocity ratio v from the prey to the preda-

tors represents the tradeoff between the Lévy and Brownian

strategies:

1. At low-velocity, v < 0.1, the best strategy for the

predators is to move in Lévy steps regardless of whether

the prey is moving in Brownian or Lévy.

2. At unit velocity, v = 1, the predators should move in

Brownian if the prey is moving in Lévy steps.

3. Finally, at high-velocity > 10, the best strategy for the

predators is to remain motionless, regardless of whether

the prey is moving in Brownian or Lévy.

The mathematical model of the MPA is as follows:.

In the first stage, a group of the prey will be initialized

within the search space using the following equation:

−→
X =

−→
X min + rand (0, 1) ∗ (

−→
X max −

−→
X min) (7)

where rand (0, 1) is a random number in the range of [0, 1],

and
−→
X min and

−→
X max are the vectors including the upper and

lower bounds for the search space of each dimension in the

optimization problem.

After initializing the prey, the fitness of each predator is

calculated, and the one that has the best fitness value is

determined to be the top predator. Based on the survival of

the fittest, the top predator is the best one in foraging, so it is

used to construct a matrix known as Elite. This elite matrix

can be formulated as follows:

Elite =













X I1,1 X I1,2 . . . X I1,d
X I2,1 X I2,2 . . . X I2,d

.

.

X In,1

.

.

X In,2

.

.

. . .

.

.

X In,d













where
−→
X I represents the top predator vector and is replicated n

times to build up an n×d Elite matrix, where n is the number
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of the individuals in the population, and d is the number of

dimensions.

Another matrix, namely Prey, has the same dimensions as

Elite and is used by the predators to update their positions.

Prey =













X1,1 X1,2 . . . X1,d
X2,1 X2,2 . . . X2,d

.

.

Xn,1

.

.

Xn,2

.

.

. . .

.

.

Xn,d













In the main loops of the MPA, the optimization process is

divided into three stages based on the velocity ratio, and is

modeled as follows:

A. HIGH VELOCITY RATIO

This is the exploration phase, and is formulated at Eq. 8 and

Eq. 9:

while it <
1

3
∗ max_iter

−→
S i =

−→
R B ⊗

(

−−→
Elitei −

−→
R B

−−−−→
⊗Preyi

)

(8)

−−→preyi =
−−→preyi + P ∗

−→
R ⊗

−→
S i (9)

where
−→
R B is a vector of random numbers created based on

the normal distribution and represents the Brownian motion,

⊗ represent the entry-wise multiplication, P = 0.5, 0.5 con-

stant is recommended from the original paper, is a constant

number, R is a random numbers vector created uniformly,

t is the current iteration, and tmax is the maximum number

of iterations.

B. UNIT VELOCITY RATIO

This phase occurs in the intermediate phase of optimization

process, where exploration is gradually changed to exploita-

tion. The mathematical model of this phase is represented in

Eq. 10, Eq. 11, Eq. 12, and Eq. 13.

while
1

3
∗ maxiter < it <

2

3
∗ max_iter

- For the first half of the population

−→
S i =

−→
R L ⊗

(

−−→
Elitei −

−→
R L

−−−−→
⊗Preyi

)

(10)

−−→preyi =
−−→preyi + P ∗

−→
R ⊗

−→
S i (11)

- For the second half of the population

−→
S i =

−→
R B ⊗

(

−→
R B ⊗

−−→
Elitei −

−−→
Preyi

)

(12)

−−→preyi =
−−→
Elitei + P ∗ CF ⊗

−→
S i (13)

where
−→
R L is the vector created using the Lé vy flight strategy.

In this phase, the first half of prey would move with Lé vy

steps, while the other half uses Brownian steps.

where CF is an adaptive parameter to control the step size

and is generated using Eq. 14.

CF = (1 −
it

max_iter
)

(

2 it
max_iter

)

(14)

C. LOW VELOCITY RATIO

This is the exploitation phase and is formulated using

Eq. 15 and Eq. 16:

while it >
2

3
∗ max_iter

−→
S i =

−→
R L ⊗

(

−→
R L ⊗

−−→
Elitei −

−−→
Preyi

)

(15)

−−→preyi =
−−→
Elitei + P ∗ CF ⊗

−→
S i (16)

Some studies confirmed that the surrounding environ-

ment such as the eddy formulation, and fish aggregating

devices (FADs) affects the behavior of the prey. As a result,

the predators spend 80% of their time searching for their prey

in the vicinity, while the remaining time, they search for the

prey in another environment. This process is known as FADs

and is calculated using Eq. 17.

−−→preyi =



















−−→preyi + CF[
−→
X min +

−→
R ∗ (

−→
X max −

−→
X min)] ⊗

−→
U

if r < FADs
−−→preyi + [FADs (1 − r) + r]

(−−→preyr1 −
−−→preyr2

)

if r > FADs

(17)

where r is a random number in the range of [0, 1].
−→
U is the

vector containing the arrays with 0 and 1 values. For each

array in
−→
U , a random number between 0 and 1 is generated

and if the generated number is greater than 0.2, then this array

is set to 1; otherwise it is set to 0. FADs = 0.2 indicates the

influence of the FADs on the searching process.

MPA accomplishes memory saving by saving the old posi-

tion of the prey. And, after updating the current solutions,

the fitness values of each current solution and each old solu-

tion are compared, and if the fitness of the old one is better

than the current one, they are swapped. The steps of MPA are

listed in Algorithm 1.

IV. THE HYBRID PROPOSED MODEL

In this section, standard MPA and improved MPA (IMPA)

have been developed for overcoming the multi-thresholding

image segmentation problems. The steps of adaptation are

shown in the next sections.

A. INITIALIZATION

In this phase, the number of prey N and the number threshold

are predefined. Then each threshold is initialized randomly

within 0 and 255 (the gray levels of the 8-bit image) using

Eq. 18.

Pi,j = Lmin + r ∗ (Lmax − Lmin) (18)

where Lmin, and Lmax indicate the upper and lower bounds

of the gray level values in the image histogram, and r

is a random number generated randomly in the range

of [0, 1].
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Algorithm 1 The Marine Predators Algorithm (MPA)

1. Initialize the population of prey pi(i = 1, 2, 3, . . . ., n)

2. Set parameter’s value

3. P = 0.5;Top_Predetor_fit = = MAX_VALUEX

4. Top_Predetor_Position = NULL

5. while (it < tmaxIter)

6. for each i prey

7. Calculate the fitness value of prey if (−→p i)

8. if (f (−→p i) < Top_Predetor_Best) )

9. Top_Predetor_Best = f (−→p i)

10. Top_Predetor_Position =
−→p i

11. End if

12. End for

13. Construct The Elitematrix

14. Accomplish the memory saving

15. Assign CF using Eq. (14)

16. for each i prey

17. if (it < 1
3

∗ tmax)

18. Update the current −→p i using Eq. (9)

19. Elseif ( 1
3

∗ tmax < it < 2
3

∗ tmax
20. If (i < 1

2
∗ n)

21. Update the current −→p i using Eq. (11)

22. Else

23. Update the current −→p i using Eq. (13)

24. End if

25. Else

26. Update the current −→p i using Eq. (16)

27. End if

28. end for

29. for each i prey

30. Calculate the fitness value of prey if (−→p i)

31. if (f (−→p i) < Top_Predetor_Best) )

32. Top_Predetor_Best = f (−→p i)

33. Top_Predetor_Position =
−→p i

34. End if

35. end for

36. Accomplish the memory saving

37. Accomplish the FADs for each predator −→p i using

Eq. (17)

38. it ++

39. end while

B. RANKING-BASED DIVERSITY REDUCTION TECHNIQUE

(RDR)

Some particles may be far away from an optimal solution

which will require a long time to find and the number of

iterations may terminate before a better solution is reached.

Therefore, we propose an algorithm to calculate the consec-

utive number of iterations in which each particle was not

able to identify a better solution. After identifying the worst

particles that fail to find a better solution within a consecutive

number of iterations, in Algorithm 2 those particles will be

updated towards the best solution found so far to reduce the

Algorithm 2 RDR

1. P : the number of prey

2. CR : a vector of size N and contain 0’s value in the start

3. i = 0

4. perIter = 3

5. while (i < N )

6. if (fit (Pi) > fitLocal (Pi))

7. CRi + +

8. else

9. CRi = 0

10. end if

11. i+ +

12. end while

13. for each i particle

14. if (CRi > perIter)

15. Update Pi toward the best one using Eq.19

16. end if

17. end for

distance from the optimal solution using the Eq.19.

−→
Pb =

−→
Pb + r ∗

(

−→
Pb −

−→
Pi

)

(19)

where
−→
Pi refers to a worst particle that fails in finding a

better solution within a consecutive number of iteration,
−→
Pb

refers to a vector of the best solution, and r is a number

generated randomly in the range of [0, 1]. This technique

that reduces the distance between the optimal solution and

the particles that couldn’t find a better solution within a

consecutive number of iterations is called RDR.Algorithm 2

illustrates the steps of the RDR technique.

In Algorithm 2, a vector of size equal to the number of

prey is created and initialized in 0’s value. Then the old fitness

is compared with the current fitness, and if the old fitness is

still better, the rank CRi of the ith particle is increased by 1.

Otherwise, it is reset to 0 again. This will help to identify the

number of particles that couldn’t reach better solutions within

a consecutive number of iterations. After that, each particle

couldn’t find a better solution within the consecutive number

of iterations CN, predefined, will be updated towards the best

solution using Eq.19.

C. THE PROPOSED IMPA

The steps of adapting the IMPA using the RDR for over-

coming multi-thresholding problems are illustrated in Fig 1.

The initialization step is considered the first step for all

meta-heuristic algorithms, so it is firstly used for initial-

izing the prey randomly, as shown in Fig 1. Within the

initialization step, the fitness of each prey would be cal-

culated, and the one with the highest fitness value is

defined as the Top_Predator_Best, and its position as the

Top_Predator_Position. After that, the first stage of the pri-

mary optimization process will start to update the current

positions using one of the updating equations illustrated in

Section 2 at the expense of the current iteration and prey.

VOLUME 8, 2020 79525



M. Abdel-Basset et al.: Hybrid COVID-19 Detection Model Using an Improved Marine Predators Algorithm

FIGURE 1. Flowchart of IMPA for overcoming image segmentation problem.

After finishing the first stage of the optimization process,

the fitness value of each prey is calculated, and memory

saving is accomplished. Last but not least, the second stage

of the optimization process implements the FADs methodol-

ogy. FADs helps MPA dispose of local optima, subsequently

finding better solutions. Finally, after the selected number

of iterations, the RDR strategy is called to reduce diversity

through the population, as elaborated in Section 4.2. The first

and second stages of the optimization process, in addition

to the RDR strategy, will be repeated until the termination

criterion is satisfied.

Note that i in Fig. 1 indicates the current particle number,

and N refers to the maximum number of particles.

Memory saving in MPA replaces the old solution with

the current one if the current is better; otherwise the old

one is used in the population to be updated toward another

direction for finding better solutions. But what happen if

the old one is always better? This means that the predator

would stay in its position, motionless, and the distance with

the best solution would not change. As long as the particles

are far away of the best solution, the probability of finding a

better solution reduces. Subsequently, a significant number of
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FIGURE 2. Illustration the original images and their histograms used in our experiment.
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FIGURE 3. Comparison of the STD values obtained by each algorithm.

TABLE 1. PSNR values obtained by each algorithm.

iterations would be neglected. To solve this problem, the RDR

strategy is used to move the particle that failed to find a better

solution within a consecutive number of iterations, gradually

toward the best solution even if the updated position isn’t

better than the old one. This will help the particle in exploring

whether other regions may contain a better solution. Because

the best solution is unified for all the members, the diversity

between the members of the population will reduce when the

particles move toward it. Accordingly, many better solutions

may be generated, due to the exploration of more regions

by the particles that couldn’t find better solution within a

consecutive number of iterations.

V. RESULTS AND DISCUSSION

In this section, the conducted experiments are offered and

discussed to show the superiority of our proposed algorithm

for solving ISP. This section is organized as follows:

• Section A. Describes Test Images
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FIGURE 4. Average PSNR values obtained by each algorithm on selected threshold levels from 10 to 100.

• Section B. discusses Stability Analysis of all the com-

pared algorithms.

• Section C. discusses the results of The Peak Signal to

Noise Ratio (PSNR) metric.

• Section D. discusses the results of the Signal to Noise

Ratio (PSNR) metric.

• Section E. demonstrates the outcomes of the Structures

similarity index metric (SSIM).

• Section F. elaborates the results of the universal quality

index (UQI).

• Section G. demonstrate the obtained Kapure’s entropy

values

• Section H. shows some segmented images using IMPA,

and MPA

A. DESCRIPTION OF TEST IMAGES

In our experiment, eight COVID-19 Chest images taken

from https://github.com/ieee8023/covid-chestxray-dataset

are used to validate the performance of our proposed algo-

rithm and other algorithms in extracting the similar regions.

These images are labelled X1, X2, X3, X4, X5, X6, X7,

X8, and X9. The original images and the histogram of

each are shown in Fig.2. We compared our proposed model

and selected state-of-art algorithms: SCA [56], WOA [31],

EO [57], HHA [36] and SSA [58] using the same parameters

and running environment. The population size N was set

to 20, and the maximum iterations tmax set to 150 for a fair

comparison. The experiments are performed on a desktop

computer equipped with Windows 7 ultimate platform and

1 GB memory space. The RDR strategy is implemented on

each particle that exceeds 3 iterations (CN = 3) without a

better solution.

B. STABILITY ANALYSIS

To measure the dispersion of the results obtained by each

algorithm, the standard deviation (Std) is calculated using

Eq. 20.

Std =

√

1

n− 1

∑n

i=1

(

fi − f̄
)2

(20)
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TABLE 2. SNR values obtained by each algorithm.

TABLE 3. SSIM values of each algorithm.

where n is the number of runs, fi indicates the fitness value

of the i-th run, and f̄ is the mean of the fitness value obtained

within all the runs. Note that the lower value of Std metric

refers to better stability.
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FIGURE 5. Average SNR values obtained by each algorithm for selected threshold levels of 10 to 100.

To check the stability of our proposed model, the aver-

age of Std values was calculated for each algorithm using

20 independent runs on all test images and all the thresh-

old levels and introduced in Fig. 3, which shows that

IMPA and MPA have lower Std values compared with

the other algorithms investigated. As a result, both IMPA

and MPA provide results with better consistency and

stability.

C. PEAK SIGNAL TO NOISE RATIO (PSNR)

PSNR is an indicator used to evaluate the similarity of the

predicted image with the original by calculating the ratio

between the square of 255 and the mean square error between

the original image and the predicted one. This metric can be

calculated using Eq. 21 and Eq. 22.

PSNR = 10 log10

(

2552

MSE

)

(21)

where MSE is the mean squared error which is calculated as

follows:

MSE =

∑M
i=1

∑N
j=1 |A (i, j) − S(i, j)|

M ∗ N
(22)

where A (i, j) , S(i, j) represent the gray level of the predicted

and original images, respectively.M , andN are the number of

columns and rows of the image matrix. The greater value of

the PSNR refers to a better quality of the predicted image.

The average PSNR values obtained over 20 runs by each

algorithm using Kapur’s entropy are listed in Table 1, which

shows that both IMPA and MPA have the best performance

in 40 cases out of 72, while IMPA alone has the best

performance in 31 cases. With small threshold levels, pro-

posed IMPA algorithm is competitive with the EO algorithm.

In contrast, the proposed algorithm presents the best PSNR

values with an increase in the number of thresholds level.

Based on this analysis, the proposed algorithm can determine

the relevant threshold values for each image, especially for
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FIGURE 6. Average SSIM values obtained by each algorithm for selected threshold levels between 10 and 100.

the images with high threshold levels, and subsequently,

the segmented image generated by IMPA is very close to the

original. Fig. 4 shows the average of the PSNR values across

20 runs, from which it can be seen that the proposed IMPA

algorithm has the best performance for high threshold levels,

and its performance is competitive of EO and MPA for small

threshold levels.

D. SIGNAL TO NOISE RATIO (SNR)

SNR [59] is the error summation method that is used to

measure the quality of the predicted images by calculating

the ratio of the error between the original and the segmented

images, and is computed using the Eq. 23.

SNR = 10 log10

(

I2

SE2

)

(23)

where I is the average of the intensities of the original image

and is calculated using Eq. 24.

I =

∑M
i=1

∑N
j=1 X (i, j)

M ∗ N
(24)

and SE is the squared error and is calculated using Eq. 25.

SE =
∑M

i=1

∑N

j=1
|X (i, j) − Y (i, j)| (25)

where X (i, j) ,Y (i, j) represent the original and the seg-

mented images, respectively. Note that the higher value of

SNR refers to better performance.

The average of SNR values obtained over 20 runs by each

algorithm using Kapur’s entropy are listed in Table 2, which

shows that IMPA is competitive with EO for small threshold

levels and is superior for high threshold levels, as shown

in Fig.5.

E. STRUCTURED SIMILARITY INDEX METRIC (SSIM)

The SSIM [60] metric is used to calculate the differ-

ence between the structure of the segmented and original

image, which takes into consideration the structure similarity,

brightness, and contrast distortion between the original and

segmented images. The mathematical model of SSIM is
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TABLE 4. Average UQI values of each algorithm.

TABLE 5. Fitness values of each algorithm.

formulated as in Eq.26.

SSIM(O,S) =
(2µoµs + a) (2σos + b)

(

µ2
o + µ2

s + a
) (

σ 2
o + σ 2

s + b
) (26)

where µo, µs are the mean intensities of the original and

segmented image; σo and σs are the standard deviation of the

original and segmented image; σos is the co-variance between

the predicted and original image; and a and b are constant
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FIGURE 7. Average UQI of each algorithm on selected threshold levels from 10 to 100.

values equal to 0.001 and 0.003 respectively. A higher value

of SSIM indicates better results.

The average SSIM values obtained over 20 runs by

each compared algorithm using Kapur’s entropy are listed

in Table 3, from which it can be identified that both IMPA

and MPA are competitive with EO for both small and high

thresholds levels. Fig. 6 shows the average of the SSIM values

over 20 runs.

F. UNIVERSAL QUALITY INDEX (UQI)

UQI [61] is an indicator used to measure the quality of the

segmented image based on three factors: loss of correlation,

brightness, and contrast distortion instead of the error summa-

tion between the original and segmented. The mathematical

model of UQI is formulated as in Eq. 27.

UQI(O,S) =
(4σosµoµs)

(

µ2
o + µ2

s

) (

σ 2
o + σ 2

s

) (27)

O, and S refer to the original and segmented images,µo, µs

are the mean intensities of the original and segmented image;

σo and σs are the standard deviation of the original and

segmented image; σos is the co-variance between the pre-

dicted and original image. A higher value of UQI indicates

better results.

The average UQI values obtained over 20 runs by each

algorithm using Kapur’s entropy are listed in Table 4, which

shows that both IMPA outperforms all the other algorithms

in 26 of 72 cases, while achieves the same values as EO

in 15 cases. Meanwhile, MPA outperforms both EO and

IMPA in 2 cases of 72. Further, EO outperforms our pro-

posed IMPA in 19 cases of 72. The proposed IMPA therefore

achieves high quality for the segmented images especially for

the images with the upper threshold levels. Fig. 7 introduces

the average of the UQI values obtained over 20 run at each

threshold level.

G. FITNESS VALUES USING KAPUR’S ENTROPY

Table 5 shows the average of the fitness values across 20 runs

obtained by each algorithm using Kapur’s entropy. It can

be seen that both IMPA and MPA outperform the other

algorithms in 55 cases of 72, while IMPA alone could out-

perform in 50 cases of the 72, presenting the best fitness
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FIGURE 8. Average fitness values of each algorithm on selected threshold levels from 10 to 100.

FIGURE 9. Average fitness values obtained by each algorithm on all threshold levels (10 to 100).

values with all threshold levels in most cases. Fig. 8 shows the

average of the fitness values within 20 times obtained by each

algorithm using Kapur’s entropy for selected threshold levels

from 10 to 100. Fig. 9 presents the average across 20 runs of

Kapur’s entropy for all thresholds levels, fromwhich it can be

seen that the proposed IMPA algorithm outperforms all other

algorithms investigated.

H. CONVERGENCE RATE

The convergence toward the best solution is illustrated

in Fig.10; at the outset of iterations, MPA has high explo-

ration capabilities, so the convergence rate toward the best

solution is low compared with the other algorithms, as shown

in Fig.10. After that, at the intermediate phase of the opti-

mization process specifically between maximum iterations
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FIGURE 10. Convergence rate towards the best value obtained by each algorithm using Kapur’s entropy.
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FIGURE 10. (Continued.) Convergence rate towards the best value obtained by each algorithm using Kapur’s entropy.

and maximum iterations, MPA is between the exploration

and exploitation operators, where it divides the population

into two parts: the first part will move using the explo-

ration operator and while the second will be moved using

the exploitation operator. So in this case, MPA moves faster

toward the best solution, and the convergence rate increases,

this is illustrated in Fig.10 at the half of the iterations. In the

final stage, all the prey would be moved with the exploitation

step, so the convergence rate increases significantly towards

the best solution.

However, MPA still suffers from low convergence due to

spending many iterations in exploration, so RDR is used

to help IMPA to achieve a high convergence rate toward

the optimal solution as shown in Fig.10. Further, IMPA

can outperform all the other algorithms in convergence rate

for all threshold levels, especially for high threshold levels.

In Figure 10, the convergence rate is shown for all algorithms

for the threshold levels 20, 30, 40, 80, and 100. For threshold

level 20, WOA has a higher convergence rate, but after

100 iterations, the performance of WOA drops, while IMPA

increases significantly. For threshold level 20, MPA couldn’t

outperform WOA. For threshold levels 30, 40, 80, and 100,

IMPA, and MPA could outperform all the other algorithms in

convergence rate during the second half of iterations.

I. SEGMENTED IMAGES OF THE PROPOSED MODEL

This section shows a graphical comparison between MPA

and IMPA to illustrate better the performance improvement.

Table 6 shows the segmented images obtained by the pro-

posed IMPA algorithm and MPA. All the results of the per-

formance metrics discussed before confirm that IMPA could

produce higher quality segmented images than MPA. As a

result, the segmented images produced by IMPA, and intro-

duced in Table 6 is better than the images produced by MPA,

and introduced also in Table 6 It is noticeable in Table 6 that

IMPA outperforms MPA for all threshold levels.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new hybrid model to detect

the COVOD-19 using an improved marine predators algo-

rithm (IMPA) and a ranking-based diversity reduction (RDR)

strategy to obtain the number of particles that can’t find a
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TABLE 6. The segmented images obtained by the proposed IMPA algorithm.
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better solution within a consecutive number of iterations.

Our model works on the x-ray images to extract similar

small regions, in an attempt to obtain the regions that may

contain COVID-19. Extracting these regions can be treated

as an image segmentation problem. The performance of our

proposed IMPA algorithm was compared with five state-

of-art algorithms—whale optimization algorithm (WOA),

sine-cosine algorithm (SCA), salp swarm algorithm (SSA),

Harris hawks algorithm (HHA), and Equilibrium optimizer

(EO)—using a set of chest X-Ray images with threshold

levels between 10 and 100. The performance of our proposed

IMPA algorithm is shown to outperform all other investigated

algorithms in the fitness values, Std, and a range of threshold

metrics. In addition, the performance of our proposed model

and EOwas shown to be convergent on all the thresholds level

in SSIM and UQI metrics.

In the future work, the proposed algorithm can be

applied to color image segmentation and different medical

applications.
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