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Abstract. In this paper, a new method for generating size-bounded
clusters is proposed such that the cardinality of each cluster is less than
or equal to a pre-specified value. First, set estimation techniques cou-
pled with Rectangular Intersection Graphs are used to generate adap-
tive clusters. Then, the size-bounded clusters are obtained by using space
partitioning techniques. The clusters can be indexed by a Kd-tree like
structure for similarity queries. The proposed method is likely to find
applications to Content Based Image Retrieval (CBIR).

1 Introduction

In a CBIR system, the images are indexed as points in the multidimensional fea-
ture space (mostly Euclidean space). Given a query image, the same features are
extracted to perform a similarity query that basically is a search for the nearest
neighbour(s) of the query point, or a range search around the query point in an
Euclidean space [1]. Most of the nearest neighbor (NN) search techniques try to
reduce the search time by using multidimensional indexing techniques. Multidi-
mensional data structures can be classified as (i) space partitioning (e.g. Kd-tree
and K-D-B tree) based techniques and (ii) data partitioning (e.g. R tree, R+ tree,
R∗ tree, SS tree, and SR tree) based techniques [2]. The space partitioning tech-
niques recursively partition the entire space into mutually disjoint sub-spaces. In
data partitioning based index structures, the data points at a particular level are
obtained by clustering them in the sibling nodes using different bounding regions
like rectangular hyperbox, sphere, etc. For a survey on these, see [2]. Unlike the
data partitioning index structure, range query on the multidimensional space
using a space partitioning index structure like Kd-tree, requires only a single
check at each node corresponding to the splitting dimension. Apparently these
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methods offer logarithmic search time, but may be worse than linear search if
d > logn[3]. For all the above techniques, the problem increases manifold when
the secondary memory, that is inherently non-random access, comes into play
owing to huge image databases. On the other hand, clustering techniques have
also been in use for image retrieval. Generally, clustering algorithms do not have
any control over the number of points in a cluster. In addition, indexing clusters
of arbitrary shape and size remains a problem. For such clusters spread over
many disk pages, search time will be very high.

To address the above issues, we propose a method that generates clusters of
bounded size (the size is an input to our method), which then can be indexed using
a two-level multidimensional data structure for retrieval. We use set estimation
techniques based on the data distribution to form a bounding box around each
data point and then use rectangular intersection graphs to find clusters. Next,
we use space partitioning techniques to further sub-divide the clusters so that the
size of each cluster is less than the bounding size specified. This space partitioning
technique is also used for indexing these bounded-size clusters.

2 Set Estimation and Clustering

In set estimation problem [4], the parameter to be estimated is a set. The cluster
α(⊂ IRd), which is unknown is to be estimated. Below is the definition of the set
of parameter A and a probability measure Pα on α ∈ A.

Definition 1. [5,6] A ={α : α ⊆ IRd, α is path connected, compact, cl(int(α)) =
α and ∂α consists of finitely many analytic arcs } Here cl represents “closure”,
int represents “interior” and ∂α represents the boundary of α and is defined as
α ∩ cl(αc).

Definition 2. [6] The properties of Pα are as follows: (i) Pα(αc) = 0, (ii)
Pα(∂α) = 0; (iii) Pα(A ∩ α) > 0, ∀ open set A ⊆IRd with A ∩ α �= φ, and
(iv) there exists a function f :IRd→ IR+ such that Pα(A) =

∫
A fdµ, ∀ subset A

in IRd.

Based on the above definition of the probability measure, we have the following
definition for a consistent estimate of α.

Definition 3. Let X1, X2, · · · , Xn be a random sample from Pα. Then αn ob-
tained from Xi’s is said to be a consistent estimate of α if

lim
n→∞EPα(µ(αn∆α)) = 0 (1)

where, µ is a Lebesgue measure in IRd and ∆ denotes symmetric difference and
E denotes expectation [4].

2.1 Estimation of α

In set estimation, depending on the sample points, we estimate the path con-
nected set from which the sample points have come. We can estimate α by αn
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in the following way as proposed in [4,6]. Let d denote the dimension of the
data. Let δn = (δn1, δn2, · · · , δnd)t ∈IRd with δnj > 0, ∀j such that the following
conditions are met:

Condition 1. (i) δnj → 0; and (ii) n
∏j=d

j=1 δnj → ∞ as n → ∞.

Define Ai = {X ∈ IRd : |xij −xj | ≤ δnj , ∀j = 1, 2, · · · , d}, ∀i = 1, 2, · · · , n. Then,
form αn as a union of connected subsets as αn =

⋃i=n
i=1 Ai. It may be noted that

αn is taken as the union of closed axis-parallel hyper-rectangular neighborhoods
around each sample point Xi. We now need to choose a suitable neighborhood
so that Condition 1 and the consistency condition in Equation 1 are satisfied.

2.2 Choice of the Neighborhood δnj

We select the δn-neighborhood of the sample points as follows: the ranges Rj =
Max{xij}i=n

i=1 − Min{xij}i=n
i=1 (where xij is the jth component of Xi) for each of

the components of the sample points are found out. Then, we choose each δnj

as δnj = Rj

n
1
2d

, ∀j = 1, 2, . . . , d.

Lemma 1. δnj = Rj

n
1
2d

, ∀j = 1, 2, . . . , d, satisfies Condition 1.

Proof. limn→∞ δnj = limn→∞
Rj

n
1
2d

= 0. Also, limn→∞ n
∏j=d

j=1 δnj =

limn→∞
√

n
∏j=d

j=1 Rj = ∞.

For a proof of the consistency property (see Equation 1 in Definition 3) of the
above δn, see [6]. From the above discussions, we have the following observations.

Observation 1. Any α ∈ A is a path connected set by definition 1 and its
estimate αn → α as n → ∞[6] with respect to the consistency condition (1).

Observation 2. The set of all samples, which belongs to a connected subset is
path connected and forms an estimate of the cluster of the sample point set.
Thus, finding an estimate of the clusters of the sample points is same as finding
the connected component of αn.

2.3 Generation of Clusters Using Rectangular Intersection Graph

The estimated set αn is a union of some connected subsets with respect to the
neighborhoods of the sample points.

Observation 3. To find a path connected set, we observe that there is a path
between two data points if their corresponding hyperrectangles intersect and a
cluster is formed by a maximal set of data points such that there is a path between
each pair of vertices.

From the above observation, we can find the path connected set as a cluster by
finding the strongly connected component in a Rectangular Intersection Graph
(RIG). The RIG, G = {V, E} is formed as follows. For each data point Xi, we
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assign a vertex vi ∈ V of the graph. Any two vertices vi and vj have an edge
eij between them if the neighborhoods Nδn(Xi) and Nδn(Xj) intersect, i.e.,
Nδn(Xi) ∩ Nδn(Xj) �= φ. Finding the connected component of an RIG having n
vertices (i.e. n sample points) takes O(n log n) time and O(n) space for d = 2
[7]. For d > 2, forming the RIG is equivalent to finding the k intersecting pairs
in a set of n axis-parallel hyper-rectangles in d dimensions and can be done
in O(nlogd−1n + k) time using only O(n) space [8]. The RIG thus formed has
O(k) edges. We can find its connected component in O(n+k) time [9]. Thus, the
overall time needed for finding the cluster according to our method is dominated
by the RIG formation and is O(nlogd−1n+ k). Thus, from the above discussion,
we have the following.

Theorem 1. The clusters can be found as connected components in an RIG of
the consistent estimate αn of a path connected set α and can be computed in
O(nlogd−1n + k) time.

Remark 1. The clustering algorithm developed here is adaptive. A cluster of
any shape (convex and non-convex) can be computed by the above method. The
nearest neighbor of a point belongs to the same cluster.

3 Generation of Bounded Clusters and Their Indexing

We now have set estimated clusters, whose size and shape can be arbitrary. To
partition the data and index it into small buckets, each of whose size does not
exceed a threshold value (T), we use a two-level space partitioning tree.

We first find the set C of cluster centroids, C = {C1, C2, . . . , Cm}, and the
enclosing axis-parallel hyperboxes of each of the m clusters. These hyperboxes
may be overlapping. We will now induce a recursive space partitioning, by split-
ting the centroids along a single dimension at each split, based on the spread
of their enclosing hyperboxes. From the spread of the enclosing axis-parallel
hyperboxes, we find the dimension j (≤ d), along which the data set has the
largest elongation. Next, we find the median Mj of the jth component of the
cluster centroids. Then, we split C into two subsets C(1) and C(2) such that C(1)

contains all cluster centroids whose jth component is less than Mj . Form C(2)

as C(2) = C \ C(2). To ensure that the splitting plane does not pass through
any cluster centroid, we fix the splitting discriminant co-ordinate Mnj as the
average of the maximum and minimum jth coordinates of C(1) and C(2) respec-
tively. This technique is applied recursively until each subspace has only one
cluster centroid left. Thus, we generate a Kd-tree [7] using this method. At each
split, we store the discriminant value Mnj at the tree node.

After the space partitioning for the cluster centroids ends, we have the first
level Kd-tree, and corresponding to each cluster, we have the data points in
that cluster. Now, we use the same recursive sub-division and stop when the
cardinality of a set of points is just less than T , thus ensuring that the data
is partitioned into buckets, each of which has size less than T . Note that, this
has also a Kd-tree structure but unlike the level-1 tree, this level-2 tree may
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Fig. 1. An example of space partitioning and indexing structure in 2D

(a) Connected components of synthetically
generated points in IR2

(b) A program output showing splitting
boxes generated by our method

Fig. 2. An example of adaptive clustering and space partitioning

not be balanced because of the arbitrary sized natural clusters generated using
set estimation techniques. Henceforth, we term the two-level tree thus generated
as a DSP tree (an acronym for Data and Space Partitioning). See Fig. 1 for
an example. Fig. 2 shows an example of the adaptive cluster formation and its
splitting into size-bounded clusters.

4 Similarity Query and Results

The image database used is the Columbia Object Image Library(COIL-20) [10]
of 20 objects. There are 72 images per object, taken at pose intervals of 5 de-
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grees, making a total of 1440 gray-scale images. We have taken feature vectors
of dimension 7 whose first three components are the set of three invariant mo-
ments [12] and the other four components are the elements of the Euler vector
[11], which is a 4-tuple, where each element is an integer representing the Euler
number of the partial binary image formed by the gray code representation of
the four most significant bit planes of the gray-tone image. As query, we have
taken the front view of each of the 20 objects and an axis-parallel range query
hyperbox around them. We have also performed the exhaustive search for testing
the validity of the result of the experiment performed by our method. For each
query, we have reported the first 10 (atmost) among the retrieved images. An
output image is said to be accepted if it belongs to same COIL-object as the
query image. The acceptance percentage is calculated as the ratio of the number
of accepted output images by number of reported images. The results are given
in Table-1. The purpose of the experiments reported here is not to achieve a
high retrieval success for the COIL database, but to show that our scheme gives
comparable retrieval success to exhaustive search with an appreciable savings in
computation time.

Table 1. Search results

DSP-tree Serach Exhaustive Search
Input No. Of No. Of % of Time (sec.) No. Of No. Of % Of Time (sec.)
Images Ret. Im. Acpt. Im. Acpt. TDSP Ret. Im. Acpt. Im Acpt. TEX

obj1.raw 10 5 50 0.01 10 5 50 0.06
obj2.raw 10 6 60 0.00 10 6 60 0.06
obj3.raw 10 4 40 0.02 10 4 40 0.07
obj4.raw 10 10 100 0.00 10 10 100 0.05
obj5.raw 7 7 100 0.00 7 7 100 0.05
obj6.raw 10 1 10 0.02 10 1 10 0.05
obj7.raw 10 1 10 0.01 10 1 10 0.05
obj8.raw 10 6 60 0.00 10 6 60 0.05
obj9.raw 10 10 100 0.00 10 10 100 0.05
obj10.raw 10 4 40 0.01 10 4 40 0.06
obj11.raw 10 1 10 0.02 10 1 10 0.07
obj12.raw 10 2 20 0.01 10 2 20 0.07
obj13.raw 10 7 70 0.00 10 7 70 0.05
obj14.raw 10 4 40 0.01 10 4 40 0.05
obj15.raw 10 5 50 0.01 10 5 50 0.06
obj16.raw 10 5 50 0.02 10 5 50 0.06
obj17.raw 10 9 90 0.02 10 9 90 0.06
obj18.raw 10 8 80 0.01 10 8 80 0.05
obj19.raw 10 4 40 0.00 10 4 40 0.06
obj20.raw 10 2 20 0.00 10 2 20 0.06

Average total = 197 total = 101 51.2690 0.0085 total = 197 total = 101 51.2690 0.0550

5 Discussions and Conclusion

In this paper, we first generated adaptive clusters using set estimation tech-
niques and rectangular intersection graphs. Secondly, we devised a two-level
space partitioned indexing scheme to generate indexed clusters of bounded size.
We have evaluated our scheme against the exhaustive search method. In the
future, we will elaborate the technique adopted to split and index a cluster
whose enclosing box is completely contained in another. Further experiments are
to be carried on image databases of larger size and with better representative
features.
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