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Abstract: Arrhythmias are defined as irregularities in the heartbeat rhythm, which may infrequently
occur in a human’s life. These arrhythmias may cause potentially fatal complications, which may lead
to an immediate risk of life. Thus, the detection and classification of arrhythmias is a pertinent issue
for cardiac diagnosis. (1) Background: To capture these sporadic events, an electrocardiogram (ECG),
a register containing the heart’s electrical function, is considered the gold standard. However, since
ECG carries a vast amount of information, it becomes very complex and challenging to extract the
relevant information from visual analysis. As a result, designing an efficient (automated) system to
analyse the enormous quantity of data possessed by ECG is critical. (2) Method: This paper proposes
a hybrid deep learning-based approach to automate the detection and classification process. This
paper makes two-fold contributions. First, 1D ECG signals are translated into 2D Scalogram images
to automate the noise filtering and feature extraction. Then, based on experimental evidence, by
combining two learning models, namely 2D convolutional neural network (CNN) and the Long Short-
Term Memory (LSTM) network, a hybrid model called 2D-CNN-LSTM is proposed. (3) Result: To
evaluate the efficacy of the proposed 2D-CNN-LSTM approach, we conducted a rigorous experimental
study using the widely adopted MIT–BIH arrhythmia database. The obtained results show that
the proposed approach provides ≈98.7%, 99%, and 99% accuracy for Cardiac Arrhythmias (ARR),
Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR), respectively. Moreover, it provides
an average sensitivity of the proposed model of 98.33% and a specificity value of 98.35%, for all
three arrhythmias. (4) Conclusions: For the classification of arrhythmias, a robust approach has been
introduced where 2D scalogram images of ECG signals are trained over the CNN-LSTM model. The
results obtained are better as compared to the other existing techniques and will greatly reduce the
amount of intervention required by doctors. For future work, the proposed method can be applied
over some live ECG signals and Bi-LSTM can be applied instead of LSTM.

Keywords: arrhythmia; deep learning; ECG; classification; convolutional neural network (CNN);
long short-term memory (LSTM)

1. Introduction

Cardiovascular (CVD) diseases are globally recognised as the main cause of death,
and they manifest themselves in the form of myocardial infarction or heart attack. Accord-
ing to the WHO [1], CVD is responsible for 17.7 million deaths. Approximately 31% of
all deaths occur in poor and middle-income nations, with 75% of these deaths happening
in these countries. Arrhythmias are the type of CVD that represents irregular patterns of
heartbeats, such as the beating of the heart too fast or too slow. Examples of arrhythmias
include: a trial Fibrillation (AF), premature ventricular contraction (PVC), ventricular fibril-
lation (VF), and Tachycardia. Although single cardiac arrhythmias may have little impact
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on one’s life, a persistent one might cause fatal problems, such as prolonged PVC that
occasionally turns into Ventricular Tachycardia (VT), or Ventricular Fibrillation that can
immediately lead to heart failure. Ventricular arrhythmias are one of the most prevalent
types of cardiac arrhythmias that result in irregular heartbeats are responsible for nearly
80% of sudden cardiac deaths [2,3]. If arrhythmia conditions are detected early enough,
ECG signal analysis may improve the identification of risk factors for cardiac arrest. Thus,
it is fair to infer that monitoring heart rhythm regularly is crucial for avoiding CVDs.
Practitioners use electrocardiographs as a diagnostic tool to detect cardiovascular diseases
called arrhythmias, which detects and interprets the heart’s electrical activity during the
diagnosis and is represented in ECG signals. However, ECG signals are represented in
the form of waves when an ECG machine is attached to the human body; to get an exact
picture of the heart, ten electrodes are needed for capturing 12 leads (signals). According
to Zubair et al. [4], 12 ECG leads are required to properly diagnose, which are divided
into precocious leads (I, II, III, aVL, aVR, aVF) to precordial leads (V1, V2, V3, V4, V5, V6). P
waves, Q waves, R waves, S waves, T waves, and U waves based on the heart’s anatomy
are illustrated in Figure 1. as positive and negative deflections from the baseline that signify
a particular electrical event.

PR interval 
0.12 - 0.22 s 

QRS  duration 
< 0.12 s

QT duration 
Correcred QT duration men: < = 0.45 s   

Correcred QT duration women: <= 0.47 s   
 
 

Figure 1. Representation of complete electrical activity of the heart.

Conventionally, arrhythmia diagnosis studies focused on the filtering of noise from
ECG signals [5], waveform segmentation [6], and manual feature extraction [7,8]. Various
scientists have tried to classify arrhythmias using different machine learning (ML) and data
mining methodologies. Here, we discuss some of the machine learning and deep learning
techniques for the classification of arrhythmias.

Sahoo et al. [9] identified QRS complex using Discrete Wavelet Transform and Empiri-
cal Mode Distribution (EMP) for noise reduction, and Support Vector Machine was used to
classify 5 distinct kinds of arrhythmias with an accuracy of 98.39% and 99.87% sensitivity
with an error rate of 0.42. Osowski et al. [10] used higher order statistics (HOS) and Hermite
coefficients to detect the QRS complex. The performance of the proposed approach [10] is
compared with spectral power density algorithm, genetic algorithm, and SVM for classi-
fication of 5 different types of arrhythmia, which provides an average accuracy of 98.7%,
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98.85%, 93%. Although these models are quite accurate due to the manual feature extraction
process, their computation cost is high. Plawiak et al. [11] used higher-order spectra for
feature extraction, PCA for dimension reduction, and SVM to identify 5 different forms of
arrhythmia with the accuracy of 99.28%.

Yang et al. [12] used HOS and Hermite functions for manual feature extraction,
and they also used SVM for disease classification. Polat and Gunes et al. [13] suggested
least square SVM (LS-SVM) for the classification of arrhythmia and used PCA to reduce the
dimensionality of features from 256 to 15. Melgani and Bazi et al. [14], using SVM, carried
out an experimental study to identify five types of irregular waveforms and natural beats
in a database from the MIT-BIH dataset. To increase the efficiency of SVM, they adopted
particle swarm optimization (PSO). The sole purpose of PSO is to fine-tune the discrimi-
nator function for selecting the best features for SVM classifier training. The authors [14],
contrasted their technique to two existing classifiers, namely K-nearest neighbours (KNN)
and radial basis function neural networks, and discovered that SVM outscored them with
an ≈90% accuracy. In a similar vein, to optimise the discriminator function, GA is used
in [15]. Furthermore, they used a modified SVM classifier for arrhythmia classification.

Dutta et al. [16] suggested an LS-SVM classifier for heartbeat classification, such as nor-
mal beats, PVC beats, and other beats, by utilising the MIT-BIH arrhythmia database. Their
approach yields 96.12% accuracy for classification. Desai et al. [17], considering 48 records
of MIT-BIH arrhythmias, suggested a classifier using SVM for the classification and Discrete
Wavelet Transformation (DWT) for feature representation. They categorised five types
of arrhythmia beats: (i) Non-ectopic (N), (ii) Supraventricular ectopic (S), (iii) Ventricular
ectopic (V), (iv) Fusion (F), and (v) Unknown (U). Their approach resulted in an accuracy of
98.49%. Furthermore, the authors performed statistical analysis using ANOVA to validate
the efficacy of the proposed approach.

Kumaraswamy et al. [18], considering the MIT-BIH arrhythmia database, proposed
a new classifier for the classification of heartbeats that is useful for the detection of ar-
rhythmias. In particular, they used a random forest tree classifier and discrete cosine
transform (DCT) for discovering R-R intervals (an essential pattern that helps in detecting
arrhythmias) as features.

Park et al. [19] proposed a classifier for detecting 17 different types of heartbeats
that can be used to detect arrhythmias. They carried out a two-step experimental study:
(a) in the first step, P waves and the QRS complex are identified using the Pan-Tompkins
method, and (b) in the second step, KNN classifier is used to classify them. This model
was validated using MIT-BIH arrhythmias and performed with a sensitivity of 97.1% and
specificity of 96.9%. Jun et al. [20] used a high-performance GPU-based cloud system for
arrhythmia detection. Similar to [19], they used the Pan-Tompkins algorithm and KNN for
identification and classification.

Machine learning paradigms are heavily influenced by feature architecture and a focus
on feature extraction and filtering. The underlying concept behind learning is to include
all of the data in signals so that the machine learning algorithm can learn and choose
functions. This theory also underpins the deep learning paradigm, especially CNN and its
1-D equivalents [21]. Because of the potential and prospect of deep learning techniques, re-
searchers [21–25] have adopted these techniques for the detection/classification of various
types of chronic diseases. In this direction, Acharya et al. [22,23,26,27] conducted a detailed
study for arrhythmia classification using deep learning. In [26], they proposed an auto-
mated classifier for arrhythmias. In [23], a CNN architecture is built to predict myocardial
infarction with a 95.22% accuracy. In [27], an automated CNN model for the categorization
of shockable and non-shockable ventricular arrhythmias is proposed. The suggested model
outperformed with an accuracy of 93.18%, 95.32% sensitivity, and 94.04% specificity.

Kachuee et al. [24] utilized deep residual CNN for classification, and t-SNE was used
for visualization. They employed their approach to identify five distinct arrhythmias
by the AAMI EC57 norm and offered better results than ALTAN et al. [25] on the same
database of MIT-BIH arrhythmias with an accuracy of 95.9%. Xia et al. [28] utilised short-
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term Fourier transform (STFT) and stationary wavelet transform (SWT) for the detection
of arterial fibrillation arrhythmias. Further, to evaluate ECG segments, STFT and SWT
outputs are input to two separate deep CNN models. As a result, CNN outperformed
with 98.29% for STFT and 98.63% for SWT. Savalia et al. [29] proposed a model based on
5-layer CNN that can classify five types of arrhythmias. Although these models are quite
accurate for minimising the loss function in backpropagation, they still suffer from the
vanishing gradient problem of exploding gradients. For the classification of cardiac arrest
during CPR, Jekova et al. [30] employed an end-to-end CNN model entitled CNN3-CC-
ECG, which they validated on the independent database OHCA. With automatic feature
extraction, the model performed well, with a sensitivity of 89% for ventricular fibrillation
(VF), a specificity of 91.7% for non-shockable organised rhythms (OR), and a specificity
of 91.11% for asystole, but found moderate results with noisy data. Krasteva et al. [31]
applied convolution DNN for the classification of shockable and non-shockable rhythms,
and to optimise the model they used random search optimization. Elola et al. [32] utilized
two DNN architectures to classify pulseless electrical activity (PEA) and pulse-generating
rhythm (PR) using short ECG reading segments (5s) on an independent database (OHCA).
Additionally, the model was optimised using Bayesian Optimization. Both architectures
work well with balanced accuracy of 93.5% as compared to other state-of-the art algorithms.
Although, 1D CNN outperformed with automatic feature extraction [33] and more accurate
than clinicians [34], but recurrent neural networks (RNNs) are effective deep learning
methods as they can handle time dependencies and variable-length segmented data [35].
Although RNNs face certain difficulties, such as the vanishing gradient problem [36],
in which the gradient decreases with backpropagation and its value becomes too small,
Consequently, diminished gradient values do not contribute much to learning. The reason
for this is that with RNN, the layers that receive a diminished gradient to upgrade weights
stop learning; as a result, these layers do not remember and may not be able to recall
the longer sequences used. Thus, these layers have a short-term memory, which impacts
negatively predicted problems. Nevertheless, this vanishing gradient issue can be resolved
by using LSTM or GRU with ReLU, which allows capturing the impact of the earliest
available data. Actually, by tuning the burden value, the vanishing gradient problem can
be avoided. Altan et al. [25] presented a classification network based on a four-layer deep
belief network to classify five kinds of arrhythmias with an accuracy of 94%. Furthermore,
they used DFT for feature extraction.

Ping et al. [37] have presented an 8CSL approach for the identification of atrial fibrilla-
tion that includes shortcut connections in CNN, which aids in boosting data transmission
speed, and 1 layer of LSTM, which aids in reducing long-term dependencies between
data. To further test the proposed methodology, he compared it to the RNN and the
multi-scale convolutional neural network (MCNN), and he discovered that 8CSL extracted
features better when compared to the other two methods in terms of F1-score (84.89%,
89.55%, 85.64%) with different data segment lengths (5 s, 10 s, 20 s). When it comes to
heartbeat detections, Ullah et al. [38] used three different algorithms: CNN, CNN+LSTM
and CNN+LSTM+attention model for the classification of five different types of arrhythmia
in heartbeat detections over two well known databases, MIT-BIH arrhythmias and the PTB
Diagnostic ECG Database. They discovered that CNN had 99.12%, CNN+LSTMhad 99.3%,
and CNN+LSTM+attention model had 99.29%, all of which were statistically significant.
Kang et al. [39] tries to classify mental stress data using the CNN-LSTM model, where he
has trained his model using the ST Change Database and WESAD Database, and he has
converted the 1D ECG signals into the time and frequency domain in order to train the
proposed method. On testing, he achieved an accuracy of 98.3%.

The majority of past work has trained models using a 1D ECG output, which contains a
lot of noise, such as baseline wandering effects, power line interference’s, electromyographic
noises [40], and artefacts. Filtering and extracting features requires numerous preprocessing
processes, which can jeopardise data integrity and model accuracy. Thus, the main aim
of this study is to automate the detection and classification process. For that, 1-D ECG



Bioengineering 2022, 9, 152 5 of 26

signals are translated into 2-D colored scalogram images using the Continuous Wavelet
Transform (CWT) with a resolution of 227 × 227 × 3. Thereafter, a 2D CNN is adopted for
automatic feature extraction and an LSTM is adopted for classification purposes. In sum,
the following are the paper’s key contributions. (1) We proposed a hybrid approach
combining the power of CNN and LSTM. In the initial phase, we converted all the ECG
signals to images using CWT, so that the CNN model executes effectively, and then applied
LSTM to classify arrhythmias. The approach was developed using the deep learning library
on the MATLAB platform. The performance of the proposed approach is validated using
the well-known MIT–BIH Arrhythmia database in two ways: firstly, by dividing the dataset
into 75% for training and 25% for testing; and secondly, by training the model using K-fold
cross validation. Additionally, the parameters of the proposed model are hyper-trained
with the grid search algorithm.

Rest of the paper is organised in the following manner: The detailed description of the
methodology, including MIT-BIH arrhythmias, dataset preprocessing steps to filter data
and conversion of ECG signals into scalogram images, is given in Section 2. Experimental
results and performance evaluation are reported in Section 3. Discussion is mentioned in
Section 4; Finally, Section 5 concludes the paper.

2. Methodology

This section describes the dataset utilized, data cleaning and preprocessing techniques,
and a thorough explanation of the suggested model.

2.1. Dataset

We evaluated the accuracy of our CNN-LSTM model using 162 ECG recordings from
three Physionet databases (https://archive.physionet.org/physiobank/database, accessed
on 1 February 2021). A description about these is as follows.

• 96 recordings: taken from the MIT-BIH cardiac arrhythmias database [41,42], this
repository contains beat annotation files for 29 long-term ECG recordings of individ-
uals with congestive heart failure ranging in age from 34 to 79. Eight men and two
women were among the subjects, while the gender of the remaining 21 was uncertain,
and the initial ECG recordings were digitised at 128 samples per second. The sampling
frequency of MIT-BIH cardiac arrhythmia is 360 Hz with a resolution of 5 µV/bit.

• 36 recordings: was taken from the MIT-BIH normal sinus rhythm database, which con-
tains 18 long-term ECG recordings of patients hospitalised at Boston’s BIH arrhythmia
laboratory. The patients in this database, which comprised five males aged 26 to 45
and thirteen women aged 20 to 50, had no severe arrhythmias. The MIT-BIH database
for normal sinus rhythm is sampled at 128 Hz and the data is accessible at uniform
intervals of 7.8125 ms. These signals are digitised using a 12-bit analog-to-digital
converter (ADC) at a sampling rate of 128 Hz [41].

• 30 recordings: taken from the BIDMC congestive heart failure database [41,43]. this
repository includes 15 patients’ long-term ECG recordings with severe congestive
heart failure (NYHA class 3–4) (11 men, ages 22 to 71, and 4 women, ages 54 to 63).
The duration of each recording is about 20 hours, with two ECG signals sampled at
250 samples per second and 12-bit resolution over a ten-millivolt spectrum. At Boston’s
Beth Israel Hospital, the first analog recordings were produced using ambulatory ECG
recorders with a recording bandwidth of about 0.1 Hz to 40 Hz.

According to [22], the database is structured as an array of two fields: data and
labels. Every recording consists of 65,536 samples. As a result, the data is interpreted as a
162 × 65,536 matrix, which means it comprises a total of 162 ECG signals with a sample
size of 65,536 and is re-sampled at a standard rate of 128 hertz. In contrast, labels indicate
ECG signal information, that is, ARR signals are from 1st to 96th row of an array, 97th to
126th rows of an array represent CHF signals. However, from 127th to 162th row represents
NSR signals, as seen in Figure 2.

https://archive.physionet.org/physiobank/database
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(c) CHF Signals

(a) ARR Signals (b) Scalogram of ARR signals using CWT

(d) Scalogram of CHF signals using CWT

(e) NSR Signals (f) Scalogram of NSR signals using CWT

Figure 2. Distribution of ECG waveforms from three classes of arrhythmias. Sub-figures (a,b)
Represents ARR signals and Scalogram image of ARR signal using CWT; Sub-figures (c,d) Represents
CHF signals and Scalogram image of CHF signal using CWT; Sub-figures (e,f) Represents NSR signals
and Scalogram image of NSR signal using CWT.

2.2. Data Preprocessing

This stage is used to prepare data for training and testing. First, the data is seg-
mented by using a transformed data store and the resize data helper function. Continuous
Wavelet Transformation (CWT) was also used to turn 1-D ECG signals into 2-D colored
scalogram images.

2.2.1. Data Segmentation

Deep Learning models, such as CNN, are dynamic models used for feature extraction
and require a lot of data for training the process model. When exceptionally lengthy input
signals are sent through the CNN network, the estimated performance may suffer due to
the degradation. The ECG signals and their related label masks should be broken up using
a modified datastore and the resizeData helper function to prevent these side effects. Our
analysis used a dataset from the Physionet databases that included ECG recordings from
162 patients, and each patient recording consisted of 65,536 sequence segments. Here, we
have divided 65,536 sequence segments into ten chunks of 500 samples each and discarded
the remaining parts of the segment. In our study, we have taken 96 recordings from ARR,
30 recordings from CHF, and 36 recordings from NSR. To make them equally proportional,
we used 30 recordings from the NSR database, 30 recordings from the CHF database,
and 30 recordings from the ARR database. As a result, there are 900 recordings, and each
recording is divided into ten chunks of 500 samples each, which is a lot of data to train
CNN for feature extraction and LSTM for classification. Table 1 describes the information
in all arrhythmia databases from Physionet.

Remark 1. In our experiment study, we computed f loor ∗ 65,536
500 = 131 chunks, out of which

we chose only 10 chunks. The length of each chunk is 500, which passes through CWT 12 band
pass filters and is converted into scalogram images, which represent the ECG signals in the time-
frequency domain. Finally, we have 900 scalogram images to train the proposed model with K-fold
cross validation.
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Table 1. Description of all arrhythmia databases from Physionet.

Database Type No of Recording No of Samples Sampling Rate

MIT-BIH Cardiac
Arrhythmias (ARR) 96 96 × 65,536 128

BIDMC congestive heart
failure (CHF) 30 30 × 65,536 250

MIT-BIH Normal Sinus
Rhythm (NSR) 36 36 × 65,536 128

2.2.2. Image Conversion

The majority of previous work has used a 1D ECG signal to train models, which has
a lot of noise [44] such as baseline wandering effect [40], and artifacts. They need many
preprocessing steps to filter and extract features, which can compromise data integrity
and model accuracy. Thus, in this study, 1D ECG signals are transformed into 2D colored
scalogram images using CWT, which are used as input parameters with a resolution of
227 × 227 × 3. As seen in Figure 3, where a normal sinus rhythm signal is converted into
a scalogram image using CWT. Application of CWT is denoising and conversions of 1D
signals into 2D scalogram images.

Am
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(a) NSR Signal (b) Scalogram for NSR

Figure 3. Conversion of normal sinus rhythm (NSR) signal into scalogram image. Sub-figures (a,b)
represents NSR signals and CWT scalogram for NSR.

2.2.3. Continuous Wavelet Transformation (CWT)

The CWT essentially allows the signals to be mapped into a time-scale domain. It
also makes the frequency components in the studied signals more visible. Following
previous studies [45,46], this study considers the CWT as a potential candidate solution.
Before defining the CWT, let us describe the required machinery setup.

Definition 1 (Wavelet). A wavelet is defined as a limited duration waveform, whose average value
is zero. The wavelet function for frequency is defined as:

ϕp,q(t) =
1
√

p
ϕ ∗ (t− q)

p
, p, q ∈ R+ (1)

Definition 2. Continuous wavelet transformation (CWT) is the sum of the signal multiplied by
shifted and scaled versions of the wavelet function ϕ. The components of functions ϕ(t) are called
mother wavelets and ϕp,q(t) are called daughter wavelets; and it is obtained by comparing signals
by stretching and compressing of mother wavelet at various scales and positions. CWT [47] ϕ
represents the usage of a wavelet to quantify the similarity between a signal and an analysis function.
CWT is a technique that is often used to denoise and depict ECG data in the time and frequency
domains. as scalogram pictures.
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We can obtain CWT coefficients of two variables Cp, q of the regionR where p is used
for scaling purpose and q is used for positioning on x axis, and ∗ denotes the complex
conjugate, and t represents the time interval. At lower scales, frequencies are high because
waves are less stretched, but as we move to higher scales, the frequency of waves decreases
as waves are more stretched at this position. By analyzing the coefficients, more variations
can be seen at lowers scales where the frequency is very high, so one can able to capture
more varying details of signal f(t), and at higher scales where the waves are less stretched,
a minor variation of coefficients can be seen and able to capture less varying details of the
signal. The diagrammatical demonstration for CWT coefficient computation is shown in
Figure 4.

Analyzed Signal length=1280

Ca,b  Coefficients - Coloration mode :  Init + by scalo +abs

Scale of color from min to max

Coefficients Line - Ca,b for the scale a=32  (frequency =0.025 )

Local Maxima Lines

Figure 4. Different coefficient representation of Scalogram.

Remark 2. In our study, we used 2D scalogram images as input for training and validation of our
model, and CWT was used to convert 1D ECG signals into 2D scalograms. We have used Morlet
wavelet (i.e., amor) which has a one–sided spectra and has complex values in the time domain.
Twelve bandpass filters per octave are used for CWT, as shown in Figure 5.

2.3. Model Architecture and Details

There are several methods to automatically analyse ECG, including machine learning-
based [48,49] and deep learning-based [34,50,51]. Deep learning algorithms are more
feasible because feature engineering is performed automatically (e.g., extraction of QRS
Complex). Here, the mapping of ECG input signals into types of arrhythmias is performed
end-to-end. This section explains the complete architectural details to identify three types of
arrhythmias (i.e., ARR, CHF, and NSR). First, 1D signals are segmented using Section 2.2.1,
and the 2D scalogram images are made using CWT, which helps convert the 1D signals
into the time and frequency domain. Then these scalogram images are classified using a
structure that is a combination of 2D-CNN and LSTM. The proposed model is trained with
K-fold cross-validation, and hyper-parameter tuning is performed through a grid search
optimization algorithm. As shown in Figure 6.
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(b) Scalogram Images 
227 * 227 * 3 

CWT using  
12 bandpass filters per

octave

(a) Preprocessed ECG
signals

ARR

CHF

NSR

Figure 5. Conversions of 1D ECG signals into Scalogram images using CWT.

2.3.1. Convolutional Neural Network

Convolutional Neural Network (CNN) [52] is a neural network used for enhancing
the image or fetching some helpful information out of it, for example, image classification,
and by taking 2-D grid features of an image and finding temporal features of time series
data by taking 1-D grid samples at different time intervals. The basic architecture and its
characteristics are described in [10,53].

The main functions of CNN are max pooling, convolution, classification, and non-
linearity. In this analysis, CNN is in charge of extracting temporal features, while LSTM
excels at capturing the helpful parameters of time series data and classification. Now,
the layers of CNN are in order.

• 2D convolution layer: is in charge of generating feature maps from 2-D filters strung to-
gether.

• ReLU Activation Function: Activation is an incredibly critical function of a neural
network. The responsibility of an activation function is to determine whether the
information revived by a neuron is useful or can be overlooked. In this study, we used
ReLU as an activation mechanism. It is a non-linear activation function that is used to
reduce the linearity of an image by deactivating neurons only when their values are
less than zero (explained through (4)).

Y = ReLU
(

∑(W ∗ X) + b
)

, (2)

where, X are inputs, W represents weights and b represents bias and Y represents
output value.

• Batch normalization: The parameters in the previous layer may significantly impact
the input distribution of the further layer. Batch normalisation is the most important
layer since it normalises the last layer’s output and acts as a regularizer to deter the
algorithm from overfitting. This effect is referred to as “internal covariate transition”.
Batch normalisation estimates the mean and variance of input batches and normalizes,
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scales, and shifts them. In this work, batch normalisation is performed after the
activation. The formula for batch normalisation is calculated as:

α =
1
n

n

∑
i=1

yi, (3)

β2 =
1
n

n

∑
i=1

yi − α, (4)

y(i) =
y(i) − α√

β2 + ε
, (5)

where: α = mean of same batch; β = variance of same batch; y(i) = standardized output
value; ε = constant value as 0.001.

• Max pooling: is used for dimensionality reduction or downsampling of input matrices.
Max pooling is achieved by adding the maximum filter to non-overlapping sub-regions
and selecting the maximum value from each patch.

• Flattening: a 2-D matrix is transformed into a 1-D vector that can be fed into a
completely connected layer by this layer

• Softmax layer: is used to measure the probability distribution of an occurrence over n
separate events in a multi-class grouping. This feature computes the probabilities for
each target class in the total classes, ranging from 0 to 1. The probabilities are then
used to decide which target class has a higher probability for the given inputs.

• Classification layer: is used for classifying different categories.
• Dropout Regularization: generally, the network suffers from over-fitting during the

model training [51]. Dropout regularisation solves this problem by discarding some of
the function nodes and reducing dependencies between them. We used a 50% dropout
before the last completely linked layer in our model.
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Figure 6. Block-diagram of the proposed method.
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2.3.2. Long Short Term Memory (LSTM)

Traditional artificial neural networks have limitations in that they are unable to collect
the sequential information required for dealing with sequence data in the input data [54,55].
However, in making predictions, RNNs extract sequential information from the input
data, that is, the connection between the words in the text. The RNN’s future hidden
state is estimated as follows: Let at given time stamp vector t = (1, · · · , T), input x =
(x1, · · · , xT), the output q = (q1, · · · , qT), future hidden state vector h = (h1, · · · , hT) and
mathematically determined as:

ht = H(Wxhxt + Whhht−1 + bh), (6)

where: qt = Whqht + bq, W: weight matrices, Wxh: weight matrix between input and hid-
den vector, bh: the bias vector for hidden state vectors,H: hidden layer activation function.

The staple concern in conventional RNN is that the back-propagation step is to atten-
uate the loss function gradient, and its value becomes so tiny that it does not contribute
much to learning. As these layers get a slight gradient to upgrade their weights, they
stop learning, and this is called the vanishing gradient problem [56]. Thus, they have a
short-term memory that has detrimental effects on prediction problems by restricting the
network for training in long-term dependencies. Knowing these limitations, we resort to
the LSTM that uses cell state memory rather than simple neurons, as shown in Figure 7.

LSTM architecture[57]: consist of following components: Forget Gate, Input Gate and
Output Gate. These gates can display or erase information in the cell state memory over
random time intervals explained through the following functions [58].

.
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Figure 7. Complete representation of Long Short Term Memory Cell.

Forget Gate: it allows or discard information. Forget vector at timestamp t is calculated
as:

Ft = σ(Wx f xt + Wh f ht−1 + Wc f Ct−1 + b f ), (7)

where Wx f is the weight vector between input and forget gate; xt is the current input value
at timestamp t; Wh f is the weight vector between hidden state and forget gate; ht−1 is the
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previous hidden state at time t− 1; Wc f is the weight vector between cell state vector and
forget vector; Ct−1 is the previous cell state at Ct−1; b f is the bias vector for setting weights
for forget gate. When the summation of all these values is passed through the sigmoid
function, if its values are within the range of 0 and 1, the gate allows it to pass; otherwise, it
simply discards its information.

Input Gate: Transfer current values and previous values to the sigmoid activation
function, which allows you to refresh the cell state memory only when the values are
between 0 and 1. Input vector at timestamp t is calculated as:

it = σ(Wxixt + Whiht−1 + WciCt−1 + bi), (8)

where Wxi is the weight vector of input values; Whi is a weight vector between input
gate and current values; ht−1 previous hidden state at time t− 1; Wci is the weight vector
between input gate and cell state memory.

Cell State: Sets the current cell state, multiplies the Forget variable with the previous
cell state and drop values if multiplied by almost 0, applies the output of the input gate to
alter the value of the cell state. Cell state vector at timestamp t is calculated as:

Ct = FtCt−1 + it tanh(Wxcxt + Whcht−1 + bc). (9)

where, Wxc is the weight vector between the input vector and the cell state vector; Whc is
the weight vector between the current hidden state and the cell state state vector; bc is the
bias vector of the current cell state.

Output Gate: For the sake of prediction, it determines what the next hidden state is.
Output vector at timestamp t is calculated as:

ot = σ(Wxoxt + Whoht−1 + WcoCt−1 + bo). (10)

Finally, the next hidden state value is calculated by applying the hyperbolic activation
function to the current cell state memory and by doing a dot product with the output
gate vector:

ht = ot · tanh(ct) (11)

Remark 3. Sigmoid activation function, σ(·), is a logistic function its value ranges from 0− 1. It
is mainly used for binary classification, formula for sigmoid function: σ = 1/(1 + e−z). However,
tanhis a hyperbolic activation function whose value ranges from −1 to 1, which provides the
probabilities distribution for the input vector for multi-classification.

2.3.3. Classification of Arrhythmias Using Proposed (2D-CNN-LSTM) Model

In this section, we present the complete work for the classification of our proposed
model 2D-CNN-LSTM through the 20 layers presented in Table 2 and visualised through
Figure 8. Here we feed ECG scalogram image sequence data of size 227× 227× 3 into
sequence input layer. Subsequently, these scalogram images are converted into an array
form (vertical, horizontal, channel) using a sequence folding layer. Then these input
features are passed through the first convolutional 2-D, which is responsible for creating a
feature map of size 227× 227× 64, by using Equation (12), where we have applied 64 filters
of size 3× 3 along with padding and stride as 1, we will get the values of the output data.

(OUTH , OUTW) = (
h + 2p− f h

s
+ 1,

w + 2p− f w
s

+ 1) (12)

where: OUTH = output height; OUTW = output weight; h, w = input data size; p = padding
size; f h = height of filter; s = no of stride; f w = weight of filter.

Additionally, we introduce non-linearity to the output data using the ReLU function
through Equation (2), which has a value in the range of 0-1. It deactivates neurons whose
values are less than zero. Further, output data is passed through cross channel normalisation



Bioengineering 2022, 9, 152 13 of 26

with five channels per element that regularises the meaning and prevents over-fitting
of functions.

Table 2. Representation of Complete Layer Architecture of Proposed Model [59].

No. of Layers Name Kernel-Size Filter-Stride Kernel-Type No of Neurons

1 Input image - - - 227× 227× 3
2 Sequence folding layer - - - 227× 227× 1
3 Conv2D+ReLU+Normalization [3 3] 1 64 227× 227× 1
4 Pooling [2 2] 2 - 227× 227× 64
5 Conv2D+ReLU+Normalization [1 1] 1 128 64× 64× 64
6 Pooling+padding [2 2], [1 1 1 1] 2 128 64× 64× 128
7 Conv2D’ [3 3] 1 256 32× 32× 128
8 Pooling [2 2] 2 - 32× 32× 256
9 Sequence unfolding layer - - - 32× 32× 256

10 flattening - - - 192× 192
11 LSTM - - - 4096
12 Fully Connected - - - 4096
13 ReLU - - - -
14 dropout - - - -

15 Fully Connected - - - 4096 fully
connected layer

16 ReLU - - - -
17 Dropout - - - 50% dropout

18 Fully Connected - - - 1000 fully
connected layer

19 Softmax - - - -
20 Classification Output - - - -

Next hidden state performs Max, Pooling which is used for the downsampling of the
function diagram uses matrix of size [2× 2] with stride 2 and padding [0000], as a result,
the matrix size id reduced to 64× 64× 64. The effects of the downsampling of the feature
diagram are transferred through many convolutional and pooling layers, and the matrix
is transformed into 32× 32× 192. The input features are then flattened and encoded as
192× 192 1D vectors, which are fed into the LSTM at layer 11. The flattening layer has the
benefit of not altering the parameters by transforming the retrieved feature map output
into a 1D array, allowing the feature maps to be rebuilt as input to the LSTM. At this point,
the input of size 800× 4096 is routed via the LSTM’s hidden layer. A weight value of
800 × 4096 is applied to Equations (7)–(10) to extract the feature value, which reflects the
LSTM layer’s computational process. In the LSTM layer, there are three types of gates: an
input gate (it), a forget gate ( ft), an output gate (Ot), and a cell state memory. Using the
sigmoid and tanh functions, a weight value is multiplied by an input vector (xt), a hidden
state (ht − 1), and a cell state (Ct), and then a feature value is retrieved from the result
of the multiplication. Subsequently, the feature value computed at the output gate is
then sent to the output layer using Equation (11). The procedure of obtaining a needed
feature value from multiple feature values generated at the output gate is described in
Equation (11). The feature value in the range computed using the output gate is transmitted
to the output layer after extracting a feature value from −1 to 1 using the Tanh function.
Furthermore, these extracted features are passed through 3 fully connected layers used
for classification, where we have applied a 50% dropout. A dropout is a regularisation
approach that reduces overfitting in neural networks by removing some random nodes
during the training process and improving generalisation error. These values are transferred
into a classification layer that functions similar to ANN. Finally, it went into the Softmax
activation function responsible for the multi-classification that measures the probability
distribution of events over n of different events. This function measures the probability
of each target class out of the whole target classes, and this likelihood ranges from 0 to
1. These probabilities help decide the target class with a greater likelihood and classify
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three different types of arrhythmias, such as ARR, NSR, and CHF. Components of the
convolution 2D layer and LSTM layer are shown in Figure 9. Equation (12) depict the
convolution 2D layer computation process in CNN models, whereas Equations (7)–(10)
depict the process of outputting feature values in the LSTM layer utilising the weight
values of the input gate, forget gate, and output gate. The feature values in the range are
transferred from the output gate to the output layer using Equation (11).

Hyper Parameter Optimization: Tuning, or hyperparameter optimization, is a term
used to describe the process of selecting a set of ideal parameters for machine learning
algorithms. Hyperparameters are variables that may influence how a machine learns.
For generalising data patterns, similar machine learning algorithms may have different
learning rates, weights, and restrictions. Hyperparameters must be fine-tuned to optimally
solve the issue. Finding a tuple that offers an ideal model and minimises the loss function is
part of the optimization process. Hyperparameter tweaking may be performed in a variety
of ways. We used the grid search approach for our research, which entails exhaustive
searching of a portion of the algorithm’s hyperparameter space, followed by a performance
measure. Data is scanned in the grid searching process to find the best parameters for
a specific model. Parameters vary depending on the sort of model under consideration.
Grid searching is not limited to a single kind of model; it may be used across the board
in machine learning to find the optimum parameters for a given model. Grid searching
creates a model based on every potential parameter combination, resulting in numerous
iterations. Grid searching is computationally expensive since these model possibilities for
each parameter are recorded. Grid search and random search are two typical strategies for
tweaking hyperparameters. Every possible combination of hyperparameter values from a
predefined list is tested in a grid search, with the best combination being selected based
on the cross-validation score. Random combinations are chosen to train the model in a
random search, allowing the number of parameters to be regulated. Although it effectively
evaluates an extensive range of values and may quickly arrive at a solid combination, it
has one fundamental flaw: it cannot guarantee the optimal parameter combination. Grid
search, on the other hand, takes a long time yet produces the most significant results.

We employed grid search algorithms to obtain the top three mean test scores, such as
92.35, 83.63, and 78.5, that assist in achieving the maximum accuracy in real-time qualitative
assessment, as shown in Table 3. We were able to get the optimal hyperparameters for
training models by utilizing the maximum test score of 92.35, which included a learning
rate of 0.01, epochs of 20, batch-size of 10, kernel-size of 1, hidden-units of 32, regularisation
dropout of 0.05, and optimizer as Adam.

Table 3. Representation of optimised hyperparameters with different test-scores using Grid Search Op-
timization.

Learn-Rate Batch-Size Hidden-Units Epochs Mean-Test-Score

0.01 10 32 20 92.35
0.04 64 64 50 83.63
0.05 32 32 30 78.5

Cost Function: The cost function describes the difference between the given testing
sample and the predicted performance and measures how well the neural network is
equipped. The cost function is reduced using the optimizer function. Deep learning
typically uses a cross-entropy function in several shapes and sizes. Mathematically, the cost
function U is defined as:

U =
1
m ∑

(
r log(s) + (1− r) log(1− s)

)
, (13)

where: m = batch-size; s = expected value; r = resultant value.
Using a gradient descent-based optimizer function with a learning rate, the cost

function is minimized. Adam [60], Adagrad [61], and Adadelta [62] are some well-known
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optimizer functions. We found through experiments that the optimum point is quickly
achieved when we use Adam. Therefore, we used the Adam optimizer algorithm, which
had a learning rate of 1 × 10−4 and a decay rate of 0.95 for 1000 steps.
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Figure 9. Internal components of the proposed 2D-CNN-LSTM model.

3. Experimental Results and Performance Evaluation

In this study, experiments were carried out on international standard ECG databases
such as MIT-BIH cardiac arrhythmia (ARR), BIDMC congestive heart failure (CHF), and MIT-
BIH normal sinus rhythm (NSR), which have detailed expert notation that is frequently
utilised in contemporary ECG research. In this experiment, the dataset is divided using
K-fold cross validation. Experimental tests were carried out on the workstation with an
Intel Xeon gold 5215 10c 2.50 GHz processor and 16GB with training options: (Referenced
from Table 3) MiniBatchSize as 10, MaxEpochs as 20, InitialLearnRate as 1 × 10−1, Learn
Rate drop period as 3, Gradient Threshold as 1 and the total elapsed time for the training of
the model is 6 min 30 s. These parameters are utilised using a grid search hyperparameter
optimization algorithm with the highest mean test score of 92.35. Here, segmented 1D ECG
signals were transformed into 2D scalogram images of size 227× 227× 3, and trained over
the 2DCNN-LSTM model. Experiments were carried out on Matlab 2021a.

To do a qualitative evaluation of the proposed 2D-CNN-LSTM, we utilise six met-
rics [63] which are described as follows.

• Sensitivity: determines the capacity of the model to accurately detect the actuality of
the cases studied.

• Specificity: used to determine the ability of the model to distinguish between individ-
ual negative samples.

• Precision: defines the number of patients accurately classified by the model.
• Recall: quantifies the number of positive class projections made from all positive cases

in the data set
• Accuracy: defines the percentage of correct classifications.
• F-measure: offers a single score that combines both the accuracy and recall.

The mathematical formulas for the above-mentioned metrics are given in Table 4,
where True Positive (TP) represents the number of positive patients who have been assessed
as positive for ARR. The True Negative (TN) represents the number of patients who are
anticipated to be negative for ARR. Both of these matrices (TP and TN) indicate that the
classification is accurate. A False Positive (FP) represents the percentage of patients who are
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categorised as positive but are negative for ARR. A False Negative (FN) is used to calculate
the percentage of positive patients observed to be negative for ARR. However, both of the
matrices (FP, FN) indicate a classification error. All three matrices (accuracy, sensitivity,
and specificity) indicate the overall classification of the network model. The larger the
value, the better the classification results will be.

Table 4. Accuracy Measures.

Measures Formula

Accuracy (A) A = (TP+TN)
Total no of samples

Precision (P) P = TP/(TP + FP)
Recall (R) R = ( TP

TP+FN )

F-Measure F = 2 ∗ (P∗R)
(P+R)

Sensitivity TP
(TP+FN)

Specificity TN
(TN+FP)

Here, in this study, in order to evaluate the proposed model, we conducted two
experiments. Firstly, the dataset was divided into two portions, 70% for the training dataset
and 30% for the testing dataset, and by utilising hyperparameters (Referenced in Table 3)
such as kernel size as [3 3]; number of filters as 64; batch-size as 10; regularization dropout
as 0.05; optimizer as Adam, maximum pool Size as [2 2]; loss-method as binary cross
entropy; InitialLearnRate as 1 × 10−1; decay as 0.0; epochs as 20 with 32 hidden units
and found CNN-LSTM classifies three types of arrhythmias with an accuracy of ARR of
98%, precision of 0.97, recall of 0.96, F1-score of 0.98, sensitivity of 0.96, and specificity of 1,
and for CHF class, accuracy of 77%, precision of 0.5, recall of 1, F1-score of 0.66, sensitivity
of 1, and specificity of 0.69, and for the NSR class accuracy of 99%, precision of 0.98, recall
of 1, F1-score of 0.66, sensitivity of 1, and specificity of 0.98, as shown in Figure 10 and
referenced in Table 5. Training accuracy and training loss of the proposed model without
K-fold validation are shown in Figure 11. Although the suggested models’ accuracy is
acceptable, However, the model has under-fitting and over-fitting issues, which appear
when the model has learnt less than or more than 20 epochs. The over-fitting issue model
has a tendency to remember data and is unable to generalise new data, while the under-
fitting model has a difficult time testing but is capable of generalising new data. We trained
our models at 20 epochs and over-optimized parameters using 10-fold cross-validation to
eliminate over-fitting and under-fitting, and the accuracy of proposed model was raised,
(Referenced from Table 6) where the accuracy of ARR is 98.7%, precision is 1, recall is 0.98,
F1-score is 0.98, sensitivity is 0.98, and specificity is 0.98, and for CHF class accuracy is 99%,
precision is 0.97, recall is 0.96, F1-score is 0.96, sensitivity is 0.96, and specificity is 0.99 and
for the NSR class accuracy is 99%, precision is 0.97, recall is 1, F1-score is 0.98, sensitivity is
0.97, and specificity is 0.99 as shown in Figure 12.

Table 5. The table represents overall accuracy, TP, TN, FP, FN, F1, Sensitivity (Se), and specificity
(Sp) scores for the 2DCNN-LSTM model without k-fold validation.

S. No Class Accu. TP TN FP FN Prec. Recall F1 Score Se Sp

1 ARR 98% 62 100 0 2 0.97 0.966 0.98 0.96 1
2 CHF 77% 50 113 50 0 0.5 1 0.66 1 0.69
3 NSR 99% 50 113 1 0 0.98 1 0.66 1 0.98
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Figure 10. Confusion Matrix represents accuracy of the proposed model without k-fold cross valida-
tion 2D-CNN-LSTM.
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Figure 11. (a) Training progress and validation accuracy of proposed model without K-fold cross
validation (b) training and progress loss of proposed model without K-fold cross validation.

Table 6. The table represents overall accuracy, TP, TN, FP, FN, F1, Sensitivity (Se), and specificity
(Sp) score for 2DCNN-LSTM model with k-fold validation.

S. No Class Accu. TP TN FP FN Prec. Recall F1 Score Se Sp

1 ARR 98.7% 65 98 2 1 1 0.98 0.98 0.98 0.98
2 CHF 99% 48 115 1 2 0.97 0.96 0.96 0.96 0.99
3 NSR 99% 48 115 1 1 0.97 1 0.98 0.97 0.99
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Figure 12. Confusion Matrix represents validation accuracy of proposed model with k-fold cross
validation 2D-CNN-LSTM.

4. Discussion

In this study, an optimised ensemble model was developed using a combination of
2DCNN, which is used for automatic feature extractions, and LSTM, which has additional
cell state memory and uses its previous information to predict new data. The goal was
to improve the performance of arrhythmia classification while also avoiding overfitting.
An optimization approach known as “grid search” was employed to tweak the model’s
hyperparameters in order to optimise it. When compared to the random search method, it
provides the best hyperparameters, despite the fact that it is computationally expensive. Ad-
ditional K-fold cross validations were performed on international standard ECG databases
such as the MIT-BIH cardiac arrhythmia (ARR), BIDMC congestive heart failure (CHF),
and MIT-BIH normal sinus rhythm (NSR) in order to train the model. These databases
contain detailed expert notation that is frequently used in contemporary ECG research.
As part of our research, we employed the continuous wavelet transform (CWT), which
is responsible for turning 1D ECG data into 2D scalogram images of size 227 × 227 × 3,
which reflect signals in the time and frequency domain, and which we used for both train-
ing and validating the model. A confusion matrix, and other performance metrics were
used to assess the classifier’s performance after it was enhanced using layers such as batch
normalisation, a flattening layer, and a fully connected layer.

Further, we evaluated two distinct experiments with k-fold cross validation in the
presence and absence of dropout regularisation. In Scheme A, dropout regularisation was
not applied during the training process. Here, all weights were utilised in the learning
process. However, in Scheme B, we applied dropout regularisation with 0.5 dropouts; as a
result, 50% of the information was discarded, and only 50% of data is retained for learning.
Results of both experimental schemes are visualized through Figure 13.

In the absence of dropout regularization, the results obtained from scheme A indicate
high classification due to the overfitting of weights during training. The average accuracy
is 99.8%, the average sensitivity is 99.77%, and the average specificity is 99.78%. However,
in our suggested model where we have applied 0.5 of dropout regularization, only 50%
of information is retained for learning. Hence, our suggested model has an average
validation accuracy of 99%, average sensitivity as 99.33%, and average specificity as 98.35%,
respectively, (Referenced from Table 7). However, validation accuracy for the classification
of ARR is 98.7%, validation accuracy for CHF is 99%, and validation accuracy for NSR
is 99% while sensitivity and specificity for ARR is 0.98%, 0.98% while sensitivity and
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specificity for CHF is 0.96% and 0.99%, and for NSR sensitivity and specificity is 0.97% and
0.99% respectively, (Referenced form Table 6).

Table 7. Average performance analysis of two experiments for the classification of Arrhythmias.

Experiments Schemes Avg-Accuracy Avg-Specificity Avg-Sensitivity

A without dropout
regularization 99.8% 99.78% 99.77%

B with dropout
regularization 99% 98.35% 98.33%

Figure 14 represents the training progress and validation accuracy, as well as the
training progress and validation loss. As seen in the graphs, training and validation errors
were established at a value close to zero after 100 epochs, while training and validation
accuracy stabilised at 98.76%, as seen in the graphs. These outcomes are very promising
and had a high degree of precision (Referenced from Table 6).

The confusion matrix is derived from the training of a proposed model for classifying
three types of arrhythmias. As evidenced by the confusion matrix, the model performs
better for the categorization of CHF and NSR than ARR, which is average. This may be due
to the slight morphological differences in the waveforms generated during the learning
process. The testing dataset’s generated confusion matrix shows 99% accuracy for the
normal sinus rhythm, 98.7% for cardiac arrhythmia, and 99% for congestive heart failure,
as shown in Figure 12.

Validation

Training smooth
Validation

Training smooth

(a)

(b)

Figure 13. (a) Training progress and validation accuracy of proposed model with dropout regulariza-
tion (b) training and progress accuracy of proposed model without dropout regularization.
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Figure 14. (a) Training progress and validation accuracy of proposed model using dropout regular-
ization (b) Training progress and validation loss of proposed model using dropout regularization.

To validate our proposed methodology, we compared our results with the current and
standard methods in terms of feature extraction methods, methodology, accuracy, and other
statistical classifications as presented in Table 8. It is worth mentioning that the difference
between the proposed work and the state-of-the-art described is rather promising in terms
of accuracy and computing cost compared to other models, as seen in Figure 15. Knowing
the potential and prospects of the proposed methodology, it would be interesting to use
our proposed approach for diagnosing different critical diseases, such as gastrointestinal
diseases, and distinguishing between neoplastic and non-neoplastic tissues.
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Figure 15. Comparative analysis of the proposed model with the existing sate-of-the-art methods.
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Table 8. Comparison table of the proposed architecture with some other existing architectures in
terms of feature extraction (FE) methods, methodology, accuracy, and other statistical classification.

Author FE Database Model ACC TPR TNR FPR FNR Sensitivity Specificity

Acharya et al.
[26] RP MIT-BIH arrhythmia

database 11-layer CNN 96% 96 95 3 1 95.49% 94.19%

Zengh et al.
[64] CNN MIT-BIH arrhythmia

database CNN-LSTM 98% 10 11 1 2 97.87% 98.57%

Dinesh et al.
[65]

Wavelet-
intervals

MIT-BIH Arrhythmia
Database optimized CNN 93.19% 10 11 1 2 93.98% 95%

Oliver et al.
[66]

RR-
intervals

ECG signal Database
(Shaoxing Hospital
Zhejiang University
School of Medicine)

CNN 93.19% 12 9 12 1 95% 94.30%

Lu et al. [67] CNN MIT-BIH Arrhythmia
Database

Depth wise
seprable CNN
with focal loss

98.55% 10 12 1 2 82% 79%

Wang et al.
[68] CNN MIT-BIH, INCARTDB

and SVDB

Depth wise
seprable CNN
with focal loss

97.40% 11 12 2 1 96.7% 97.8%

Bhekumuzi et al.
[69]

2d images
using 2D
recurrent

plots

MIT-BIH Atrial
Fibrillation Database,
MIT-BIH Malignant
Ventricular Ectopy

Databas

CNN 95.30% 10 11 2 1 94.2% 95%

Yang et al.
[70] CNN first China ECG

Intelligence Challenge cascaded CNN 86.50% 13 9 2 1 85.3% 82%

Rahul et al.
[71]

RR-
intervals

IT-BIH Arrhythmia
Database SVM 99.51% 10 11 1 2 99.28% 99.63%

Chouhan et al.
[72] CNN IT-BIH Arrhythmia

Database CNN 97.16% 50 100 1 0 99.28% 99.63%

Ullah et al.
[38] CNN IT-BIH Arrhythmia

Database CNN 97.38% 63 89 1 0 2% 95.63%

5. Conclusions

Arrhythmia classification is the most crucial subject in healthcare. An arrhythmia is a
rhythm or heart rate irregularity. This paper proposed an approach for the automated study
of cardiac arrhythmias using the 2D-CNN-LSTM model. This approach has the following
salient features as compared to conventional methods: (i) It employs the CWT to transform
1D ECG signals into 2D Scalogram colored images, making them ideal inputs for this
network; (ii) It passes data from a 2D-CNN-LSTM, CNN for feature engineering and LSTM
for classification, and has been trained on large labeled images.

Experiments on three ECG cross-databases (obtained under a range of acquisition
conditions) showed their usefulness and ability to outperform other approaches in terms
of classification performance. The confusion matrix for “normal sinus rhythm,” “cardiac
arrhythmias,” and “congestive heart attacks” in the testing dataset showed 99% validation
accuracy for “normal sinus rhythm,” 98.7% validation accuracy for “cardiac arrhythmias,”
and 99% and validation accuracy for “congestive heart attacks.” Furthermore, sensitivity
and specificity for ARR is 0.98%, 0.98% while sensitivity and specificity for CHF are 0.96 and
0.99%, and for NSR, sensitivity and specificity is 0.97% and 0.99% respectively. Likewise,
the suggested model will assist clinicians in correctly identifying arrhythmias during
routine ECG monitoring. According to preliminary results from the MIT-BIH database, our
methodology’s overall efficiency is better than other methods.

Furthermore, the heavy computing burden caused by the use of CWT is a drawback.
We could never achieve a complete inter-subject state, even though doing so will signif-
icantly minimise the amount of intervention required by doctors. It will be an excellent
future avenue for researchers. A robust arrhythmia classification algorithm is needed to
address these issues.
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6. Further Details

In this section, we present the different functions used in the training of various deep
learning models.

ReLU: Activation is an incredibly critical function of a neural network. These activation
functions determine if the information neuron receiving is sufficient for the information or
can be overlooked. We use ReLU as an activation mechanism in this study.

Batch Normalization: is the most critical layer used to normalize the performance of
the previous layer and is often used as a regularization to prevent overfitting the model.

Softmax Function: is used to quantify the probability distribution of occurrences
over n distinct events in multi-class classification. This function measures the probability
of each target class of the whole target class, and this likelihood range from 0–1. Later,
the probabilities help decide the target class with a greater likelihood for the target class.

Sigmoid Activation Function: is a logistic function its value ranges from 0–1 it is
mainly used for Binary Classification.

Tanh Activation Function: It is similar to sigmoid activation function and its values
ranges from −1, 1.

Dropout: is used for regularization, which is used for controlling overfitting problems.
Learning Rate: its value ranges from 0–1 it defines how fast the model adapts the

problem and how many weights are modified in the loss gradient model.
Hidden units: are the no of perceptrons used in neural network its values entirely lies

on activation function.
Bias: modifies the activation function by applying a constant (i.e., a given bias) to the

input. It is analogous to the position of constant in a linear function.
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