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ABSTRACT Melt pool temperature contains abundant information on metallurgical and mechanical aspects

of products produced by additive manufacturing. Forecasting melt pool temperature profile during a process

can help in reducing microstructural porosity and residual stresses. Although analytical and numerical

models were reported, the performance of these are questionable when applied in real-time. Hence,

we developed data-driven models to address this challenge, for continuous forecasting layer-wise melt pool

temperature using a hybrid deep learning technique. The melt pool temperature forecasting by the proposed

CNN-LSTM model is found to be better than other benchmark models in terms of accuracy and efficiency.

The model results have shown that combining CNN and LSTM networks can extract the spatial and temporal

information from the melt pool temperature data. Further, the proposed model results are compared with

existing statistical and machine learning models. The performance measures of the proposed CNN-LSTM

model indicate a greater potential for in-situ monitoring of additive manufacturing process.

INDEX TERMS Wire-arc additive manufacturing, melt pool temperature forecasting, deep learning, CNN,

LSTM, statistical learning, machine learning.

NOMENCLATURE

xi Melt pool temperature vector with length i.

ylij Convolved output of l th layer.

σ Activation function.

blj Bias for the jth feature map of l th layer.

ω Kernel width.

m Index value of filter.

plij Pooling operation of l th layer.

T Stride.

R Pooling size.

it Input gate.

ct Control gate.

ft Forget gate.

ot Output gate.

ht Hidden state.

Wi,Wf ,Wo Weight matrix of input, forget and output

gates.

pt Output of pooling layer at time t .

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosalia Maglietta .

bi, bf , bo Bias vectors of input, forget and output gates.

O(..) Big O notation.

d Number of convolutional layers.

nf Number of filters.

s Spatial size of filter.

q Spatial size of feature map.

e Number of epochs.

N Total number of samples

I. INTRODUCTION

Metal additive manufacturing (AM) processes of directed

energy deposition (DED) offer numerous possibilities for

producing complex parts in aerospace and automotive

industries without design constraints. Compared to tra-

ditional manufacturing, AM offers four key advantages

that include design flexibility, sustainability, higher accu-

racy and efficiency, and faster production cycles. In recent

years, AM techniques have brought key transformations in

aerospace and automotive industries. For example, Boe-

ing used more than 600 additively manufactured parts in

its aircraft 777X. The BMW group has produced over

300,000 additively manufactured parts in just one year [1].
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Wire arc additive manufacturing also known as DED-arc pro-

duces near net-shaped parts bymeltingwire feedstockwith an

electric arc. The electric arc heat source has many processing

advantages over other heat sources such as electron beam

and laser [2]. Plasma arc-based AM techniques offer wide

ranges of power densities and metal deposition rates with

high efficiency and flexibility [3]. Coldmetal transfer (CMT),

which is an arc welding technology has shown significant

potential in metal additive manufacturing of components.

CMT is a relatively new technique that is characterized by

many advantages including low thermal heat input and high

deposition rates [4]. A substantial amount of research was

reported on application of CMT for additive manufacturing

in recent times. The effects of various arc modes in CMT

process on porosity was reported [5]. Fang et al. studied

the evolution of microstructures and mechanical behaviour

of aluminium alloys [6]. Ryan et al. studied the influence

of build parameters and wire batch on porosity of CMT

based additively manufactured aluminum alloy [7]. There

are still some critical challenges such as porosity and voids,

particularly for producing parts with aluminium (Al) alloys,

that need to be addressed before AM technologies take up

widespread adoption in the manufacturing sector [8]. The

possible causes of microstructural defects are the lack of

fusion, insufficient heat, entrapped gases and rapid solidifi-

cation [9]. Investigating melt pool temperature profile such

as temperature distribution and heat flow mechanism reveals

information on most of the possible causes of microstructural

defects. The melt pool temperature profile contains abundant

information and that can be used to reduce the porosity

defects and voids of the Al parts manufactured by AM [10].

Themelt pool inwire-arc additivemanufacturing (WAAM)

refers to the vicinity of electric arc and molten material

interface where the wire feed stock is melted and form

spherical molten metal droplet. Temperature variations can

significantly affect the evolution of porosity in final products.

In comparison to powder-bed AM, very few reports are

available on WAAM that discuss the process parametric

effects and melt pool temperature variations on porosity for-

mation [11]. This is due to the complex and dynamic nature of

arc. The metal deposition using an electric arc imposes ther-

mal cycles not only on solidified material and substrate, but

also on the previous deposited layers. The imposed thermal

cycles result in partial melting of previous layers below the

deposited layer, up to 4 layers, creating non-isothermal heat

treatment. This heat effect leads to expansion and contraction

of deposited metal and subsequent generation of residual

stresses in the deposited structures [12], [13]. Also, the nucle-

ation and dissolution of eutectic phases of alloys during

solidification andmelting processes, resulted in the formation

of pores. The degree of residual stresses and porosity is

a function of temperature distribution and thermophysical

properties [14]. Therefore, melt pool temperature monitoring

and controlling helps in achieving desired microstructural

and mechanical properties of the WAAM components. This

study aims to develop data-driven models for continuous

forecasting of layer-wise melt pool temperature in order to

control the microstructural defects.

The temperature profile in the melt pool can be moni-

tored using various types of sensors, such as pyrometers,

thermocouples and infrared (IR) radiation. Thermocouples

have limitations in being used for in-process monitoring,

as they need contact with the parts to monitor tempera-

ture [15]. However, IR cameras and pyrometers are feasible

formonitoring temperature of a process without contact.With

the recent advancements in instrumentation, IR cameras are

capable of obtaining temperature data with a sampling rate

up to 100kHz. The temperature profile during DED processes

have been extensively studied with regard to physics involved

and data – based models. Physics-based models can be

broadly categorized into numerical and analytical methods.

Analytical temperature models of DED involve solving of

closed form welding heat transfer equations using boundary

conditions [16]. Cadiou et al. proposed a 3D heat trans-

fer model for wire-arc additive manufacturing process [17]

The major limitations of analytical models are their general

applicability and failure to address the uncertainties of ther-

mophysical properties. Finite element method (FEM) is a

numerical method of modelling of temperature profile. The

accuracy of these models is questionable due to the lack of

process knowledge. Also, the performance of numeralmodels

depend highly on boundary conditions, element types and

meshing schemes [18]. In contrast to physics-based models,

data driven models offer many advantages and can model

highly non-linear processes such as melt pool formation

with good accuracy and efficiency. Further, data-driven mod-

els require only limited knowledge of process and physics

involved [19]. Some studies were reported on defect detection

from melt pool temperature profile during DED process by

using classical machine learning and deep learning tech-

niques [20]. Recently, a study was performed on prediction

of melt pool temperature during DED process using machine

learning [21]. However, there are very few papers reported

on controlling and monitoring of temperature profile during

DED process. This research gap can be effectively addressed

using deep learning time series forecasting techniques. The

main idea is that deep learning time seriesmodels can forecast

layer-wise melt pool temperature during DED process with

higher accuracy and faster response times.

In most of the time series data, correlations exist between

observations. A standard neural network considers all the

observations as independent, that leads to an erroneous infer-

ence. With recent developments in deep learning techniques,

many special types of neural networks have been intro-

duced to deal with noisy and correlated time-series data

and can lead to more accurate forecasting. Though some

ARIMA family models can address the correlations in time

series, they do not consider the effects of spatial dependen-

cies. Traditional time series models such as ARIMA and

SARIMAX works well when seasonal and trend components

are known. However, in real-time manufacturing, both sea-

sonal and trend components change with regard to process
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parametric variations. These parameters need to be changed

for each simulation when using traditional time series mod-

els. Among various deep learning techniques, convolutional

neural networks (CNN) and recurrent neural networks (RNN)

are most popular, efficient and widely used neural networks.

Long short-term memory (LSTM) networks are special type

of RNN that deals with long-term sequential dependencies

very effectively [22]. CNNs are traditionally used for image

classification and recognition and do not account for sequen-

tial dependencies. However, when dealing with time-series

data, the main advantage of CNN is dilated convolutions [23].

The CNN allows neural network to extract relationships

between different observations in time series that accounts

for spatial dependencies. Therefore, combining the CNN and

LSTM models to exploit the benefits of spatial and temporal

information of time series could improve the forecasting

performance [24]. In this paper, a hybrid deep learning model

is proposed to forecast the layer-wise melt pool tempera-

ture during DED process. The proposed CNN-LSTM model

performance is evaluated using RMSE, MAE and MAPE,

and also compared the performance metrics with traditional

statistical, machine learning and deep learning models. The

major contributions of this study are as follows:

• This paper proposes a hybrid CNN-LSTM network

to forecast layer-wise melt pool temperature during

the DED process in order to control and monitor the

temperature distribution.

• It analyses the model feasibility for real-time mon-

itoring of additive manufacturing process.

• The proposed model has been compared with clas-

sical methods of time series forecasting.

The rest of this paper is structured is as follows.

In section 2, background knowledge of melt pool tem-

perature modelling is presented and related state-of-the-art

CNN-LSTM network-based models for a variety of appli-

cations is reviewed. Section 3 provides the details of exper-

imentation and data collection. In section 4, methodology

of the network is illustrated in detail. Results obtained are

provided in section 5, comparison of forecasting results are

demonstrated in section 6 and Finally, major conclusions of

this study are provided in section 7.

II. RELATED WORK

A. THERMAL SENSING

The heat flow during DED is a quasi-stationary process,

with respect to moving arc heat source. To be specific,

the temperature distribution in the melt pool surface does not

change with time except for initial and final transients [34].

Thus, thermal sensing techniques are an effective way of

monitoring DED. Thermal methods are fast when compared

to other non-destructive testing methods such as ultrasonics,

for quality monitoring of process. It is a very feasible pro-

cess and allows rapid results during manufacturing of parts.

Every object emits electromagnetic radiation from its sur-

face proportional to its temperature. This intrinsic radiation

associated with temperature is called infrared radia-

tion and can be used for temperature measurement.

Khanzadeh et al. [25] developed a thermal sensing system

with a pyrometer and IR camera to analyse the temperature

changes in laser-based AM process. The melt pool images

were analysed using self-organizing maps (SOM). The pro-

posed methodology was able to detect the porosity locations

with an accuracy of 85%. Sreedhar et al. [26] developed

an online monitoring system for gas tungsten arc weld-

ing (GTAW) using thermal images. The authors noticed a dis-

tinctive pattern at the defective locations over non-defective

areas. Mireles et al. [27] proposed in-situ monitoring tech-

nique for defect detection. The authors mapped the results

obtained from computed tomography (CT) and layer-wise

thermography to find defects. Krauss et al. [28] developed

a model to detect flaws in selective laser melting (SLM)

process using thermography measurements of molten pool.

B. MELT POOL TEMPERATURE MODELLING

Analytical models of temperature distributions of wire-based

DED have been extensively studied in literature.

Rosenthal [29] and Rykalin [30] developed analytical models

to calculate weld dimensions from temperature distributions

of moving point heat source. Several analytical models

have been developed for additive manufacturing processes.

Pinkerton and Li [31] derived a model that is applicable

for low travel speeds from Rosenthal equations. Beuth and

Klingbeil [32] developed analytical model to predict melt

pool length. However, the performance of analytical models

for in-situ monitoring of additive manufacturing processes is

questionable. Also, physics-based analytical models cannot

address the uncertainties and variances that occur during a

process. Numerical models of additive manufacturing pro-

cesses have been shown to be efficient in predicting thermal

profile given all the boundary conditions. Hejripour et al. [33]

developed a fluid flow and heat transfer model for WAAM

process. The author predicted the shape of deposited mate-

rial for single layer using an arbitrary Lagrangian-Eulerian

method. Kou [34] proposed a 3D model of WAAM process

to predict material dimensions and temperature distributions

from machine operating parameters. The model was devel-

oped by taking into account electromagnetism, fluid flow and

heat transfer. Zhang et al. [35] derived a relationship between

thermal profile and microstructures evolution in melt pool by

using finite element method. Numerical models have some

important limitations that include high computational costs,

oversimplified assumptions and various meshing schemes.

Data-driven models of melt pool temperature during

DED processes have recently gained a considerable amount

of interest among the researchers. Khanzadeh et al. [36]

detected porosity in additively manufactured samples from

melt pool temperature profile using supervised machine

learning techniques. The extracted features of melt pool

images were fed to k-nearest neighbor (kNN) method and

the predicted results were in good coherence with experimen-

tal results. Mozaffar et al. [37] estimated high-dimensional
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thermal profile in DED process using the large amount of

data obtained from the fine element code. A gated recurrent

unit (GRU) model was used to predict the temperature profile

and the results of model shown high accuracy. However, gen-

eral applicability of these models are questionable due to the

stand-alone models used. For example, in CMT technology,

the process behaviour leads to a seasonal trend and that need

to be addressed during forecasting. The stand-alone models

may fail to understand the process profoundly.

C. APPLICATIONS OF CNN-LSTM MODELS

In recent years, many researchers have combined CNN and

LSTM model to exploit the benefit of spatial and sequential

features in variety of applications. Huang et al. proposed a

particulate matter (PM2.5) concentration forecasting system

by combining CNN and LSTMnetworks. Further, the authors

evaluated model using MAE and RMSE and concluded

that the performance of model is better than the traditional

machine learning models [38]. A similar work was reported

for forecasting PM2.5 using CNN-LSTM network [39].

Kim et al. proposed a hybrid CNN-LSTM model to predict

the residential electrical energy consumption and analysed

the various variables that affect the prediction of energy con-

sumption [40]. Rehman et al. improved the accuracy of movie

reviews sentiment analysis [41]. A considerable amount of

research has been conducted in the field of natural language

processing using CNN-LSTM networks [42], [43]. In the

field of medical image processing, Petmezas et al. devel-

oped an automatic atrial fibrillation detection system from

electrocardiogram (ECG) signals using CNN-LSTM network

with a high sensitivity and specificity [44]. Vidal et al. used

CNN-LSTM network to predict the future volatility of gold

prices and the performance is compared with the other classic

models [45]. The CNN-LSTM network proved to be a poten-

tial technique in forecasting time series and opening up new

possibilities in various areas of applications.

III. METHODOLOGY

The main idea of this research is the development of hybrid

deep learning model for forecasting melt pool temperature

during additive manufacturing process by exploiting the ben-

efits of convolutional and long short-term memory networks.

Convolutional networks are special kind of neural networks

for processing grid-like topology, such as time series (1D) and

images (2D) [46]. They have been effective for learning spa-

tial information of time series. Whereas, LSTM networks are

tremendously successful in identifying short and long-term

dependencies. Thus, the proposed CNN-LSTM model for

forecasting melt pool temperature combines the advantages

of both CNN and LSTMnetworks. The hybrid model consists

of two components: The first component consists of convo-

lutional and pooling layers, in which features are developed

from the internal representation of time series data, while

the second component exploits the features generated by

LSTM and dense layers. Each layer is briefly discussed in

the following sections.

A. CONVOLUTION AND POOLING LAYERS

Figure 1 shows the 1D convolutional operation. Convolu-

tional networks have advantages such as sparse interactions

and weight sharing over multilayer perceptron networks. This

effectively reduces the number of parameters used in model

computation. The output s in Fig. 1 is the convolved output of

three inputs, that is, the output is only affected by the kernel

width.

FIGURE 1. Schematic of 1D convolutional operation: s is formed with
kernel size of 3.

The CNN layer receives step-wise melt pool tempera-

ture variables as inputs. The inputs must be represented in

a structured matrix form, since the technique is originally

developed for grid-like topologies. The convolutional filter

consists of coefficient values in a matrix form and can be

considered as a tiny window. This window slides through

input matrix performing convolution operation. The output

layer of CNN provides extracted feature information to sev-

eral hidden layers and LSTM network. Each hidden layer

of CNN consists of an activation, convolution and pooling

layers respectively. Convolution layer performs convolution

operation on an input sequence. This operation reduces the

number of parameters and leads to a deeper CNN-LSTM

network. If xi, where i= 1, 2, . . . , n is the input vector of melt

pool temperature steps and n is the normalized unit window,

then the resultant output vector, yij of the l
th convolutional

layer is as follows.

ylij = σ

(

blj +

M
∑

m=1

wlm,jxi+m−1,j

)

(1)

where σ is the activation function, blj is the bias for j
th feature

map, w is the kernel weight, and m is the index value of

filter. The output of each neuron cluster is mapped to the next

layer by pooling operation. This helps in reducing the number

of computational parameters and cost. The pooling layers

produce summarized values of the convolved features. The

max-pooling for predicting melt pool temperature utilizes

the maximum value of a convolved matrix, which adjusts

overfitting issue also [47]. The max pooling layer operation

is represented in Eq. (2), where T is the stride and R is the

size of pooling. The equation performs pooling operation on

the previous convolutional layer.

plij = maxr∈R

(

yli×T+r,j

)

(2)
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B. LSTM LAYER

LSTMs are a special kind of artificial RNN architecture

that are capable of learning long-term dependencies of a

time-series data [40]. The issue in long-term memory of

traditional RNNs was successfully addressed by LSTMs for

sequential data. The hidden layers of these models employ

cyclic connections which store useful information from

previous states. Further, LSTM networks effectively tackle

vanishing gradient problem of RNNs by storing useful

information and discarding unnecessary information. Thus,

LSTM networks provide better performance over classical

RNN models. The LSTM layer of CNN-LSTM network

stores the important information of melt pool temperature

distribution that is extracted by the CNN layer. The output of

LSTM layers is the resultant of consolidatedmemory units by

storing long-term memory of previous hidden states. These

memory cell units are able to extract and analyse temporal

information of sequential data. The output information of

CNN layer is fed to the gated units of LSTM network. For

forecasting melt pool temperature time-series data, LSTM

networks are well suited, by addressing the vanishing and

explosive gradient problems that occur in traditional recurrent

neural networks.

The three-gate unit mechanism shown in Fig. 2, represents

the working of each memory cell at a particular run. The gate

unit is a combination of input, forget and output gate. The

input gate along with control gate ct , controls the information

that has to be stored in the memory cells at given time t . The

forget gate ft controls the previous intervals information and

decides which information has to be kept on memory cell,

while output gate ot decides which information could be used

for the memory cell output. Equations. (3) – (5) describes the

operation of a LSTM unit.

it = σ
(

Wpipt +Whiht−1 +Wci ∗ ct−1 + bi
)

(3)

ft = σ
(

Wpf pt +Whf ht−1 +Wcf ∗ ct−1 + bf
)

(4)

ot = σ
(

Wpopt +Whoht−1 +Wco ∗ ct + bo
)

(5)

FIGURE 2. LSTM network structure.

Equations (6) and (7) provides the cell and hidden (ht )

states derived from the input, forget and output gates. σ is

an activation function, andW and b represents weight matrix

and their associated biases. The output, pt of pooling layer at

time t contains crucial information of melt pool temperature

time-series data and passed to an LSTM cell.

ct = ft ∗ ct−1 + it ∗ σ
(

Wpcpt +Whcht−1 + bc
)

(6)

ht = ot ∗ σ (ct ) (7)

The output of LSTM layer is fed to the fully connected

layer. This can be used to generate melt pool temperature

forecasting over a certain interval of time. Here, we fore-

casted the melt pool temperature for the final layer while

producing thin-wall structures.

C. CNN-LSTM ARCHITECTURE

The proposed CNN-LSTM architecture is shown in Fig. 3.

The input of the network is melt-pool temperature mea-

surements for nine layers of deposition. The output of the

network is forecasted values of melt pool temperature for

10th layer. The network in convolution and pooling layer

consists of two Conv1D layers, two max-pooling layers and

one time-distributed layer. Subsequently, features extracted

from the convolutional layer is passed through LSTM layer,

followed by dense layers. Rectified Linear unit (ReLu) is used

as an activation function for convolutional layers. Though

there are other modified activation functions, ReLu shown

to be effective for melt pool temperature forecasting with no

sign of exploding or vanishing gradient problems. To avoid

overfitting during training, dropout was used. Dropout is a

widely used technique to avoid overfitting that randomly

ignores the neurons during training phase. Further, number of

epochs was carefully selected to avoid overfitting and same

number of epochs were used for each sample. The design

parameters of CNN-LSTM model are shown in Table 1. This

table provides the information on number of filters used,

kernel width, stride window and the number of parameters

for each layer.

FIGURE 3. The architecture of proposed CNN-LSTM network.

The complexity of CNN-LSTM can be calculated by

calculating the time complexities of the convolutional lay-

ers and the LSTM layer individually. The complexity of
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TABLE 1. The proposed CNN-LSTM architecture.

CNN layer is estimated as O(
∑d

l=1 nl−1.s
2
l .nl .q

2
l ), where d ,

nl−1, sl and ql are the number of convolutional layers, number

of filters in l th layer, spatial size of filter and spatial size

of output feature map respectively [48]. The complexity of

the convolution layer grows quadratically with kernel width,

number of kernels and cache unfriendly memory access [49].

Whereas, input length does not affect storage requirements

of LSTM network, local in space and time [50]. Thus,

the overall complexity of LSTM network is O(ω), where

ω corresponds to number of weights. Therefore, overall com-

plexity of CNN-LSTM network is the sum of complexi-

ties of CNN and LSTM layers and can be expressed as:

O
(

(
∑d

l=1(nl−1.s
2
l .nl .q

2
l ) + ω).i.e

)

, where i is the length of

input and e is the number of epochs.

IV. DATA COLLECTION

A. MATERIALS AND EXPERIMENTAL SETUP

Thin-walled structures are produced with aluminium alloy

4043/AA4043 wire with diameter of 2 mm and melting

temperature is in range of 573◦C and 632◦C. The mate-

rial is deposited on aluminium alloy 6061/AA6061 sub-

strates. Nominal chemical compositions of AA6061 and

AA4043 used in this study are shown in Table 1.

Thin-walled structures were produced using a CMT

7000 VR power source. Fig. 3 illustrates the schematic of

directed energy deposition platform used in this study. The

wire feedstock was thoroughly cleaned and dried before

experimentation. The substrate was firmly clamped onto

the workbench and movement of welding torch in X and

Y directions was controlled by a linear actuation system. The

wire is deposited in single pass layers along the Z direc-

tion and the alternating layers are deposited in the opposite

direction.

A total of nine samples were produced by varying current

and speed levels in order to collect the temperature data. Other

parameters were maintained constant throughout the metal

deposition process. Table 2 shows the process parametric

levels used in this study. Each parameter has three levels and

a sample of thin-walled structure has ten layers in total. The

length, height and width of each sample are 80 ± 2 mm,

30 ± 2 mm and 3 ± 0.5 mm respectively.

TABLE 2. Nominal chemical composition of materials used in this study.

B. MELT POOL TEMPERATURE MEASUREMENTS

The melt pool temperature data of wire feedstock was contin-

uously monitored and recorded using a Fluke Ti480 infrared

thermal imaging camera. A high-resolution video (480×360

pixels) was captured for each sample using an IR camera with

a frequency of 9 Hz. The temperature of the IR camera was

adjusted in the range of 10◦C to 1600◦C. The emissivity value

of camera was adjusted to 0.60. The layer wise temperature

data of layer 1, 3, 5, 7, 9 and 10 are shown in Fig. 4.

The data collected from nine samples each with ten layers

was recorded. The data of first nine layers was used to model

the time-series models. The last layer (10th layer) data of

each sample was forecasted and the same has been validated

with performance metrics. All the forecasting experiments

were performed using a computer with the specifications

as follows: 24 GB graphics card (NVIDIA TITAN RTX),

64 GB random access memory (RAM), Intel i9 processor and

Windows 10 operating system. The melt pool temperature

forecasting results for last layer of thin-walled structure were

simulated with faster response times. All the models were

implemented using Python 3.7 and the libraries used are

Statsmodels, Scikit − Learn and Keras.

The melt pool temperature of wire-based directed energy

deposition process was continuously recorded using an

IR thermal camera. The diameter of melt pool was in the

range of 1.5 mm to 2.0 mm. The peak temperature recorded

in the region was taken as melt pool temperature. The melt

pool temperature distribution of sample 1 for ten layered

thin-walled structure is shown in Fig. 6. Layer 1 represents the

ground layer and the 10th layer indicates roof layer. The aver-

age temperature recorded in each layer of sample 1 is shown

in Table 3. The mean temperature tends to increase with each

layer, due to the heat accumulation effect. The dwell time was

maintained at a constant value for all the experiments. Fur-

ther, temperature observed during dwell time is around 455◦C

and was constant for all the layers. The dwell time melt pool

temperature value was omitted duringmodelling process. The

temperature fluctuations persisted during each layer as can

be clearly seen in Fig. 6. The temperature fluctuations are

mainly due to the current cycling phases of CMT process and

material’s varying emissivity during the DED process. The

melt pool temperature is plotted against the time indices by

removing dwell time into consideration. The deposition time

of each layer was made to remain constant. Fig. 7 shows the

effects of varied process parameters, current and speed on the

melt pool temperature profile of thin-walled structures. Each

point on the line plots represent the average recorded melt

pool temperature of that corresponding layer on X-axis. The

temperature in Figs. 7(a) and 7(b) increases gradually from

one layer to the adjacent layer. This is attributed to the heat
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FIGURE 4. Schematic of directed energy deposition platform using cold metal transfer technology.

TABLE 3. Process parameters and their associated average melt pool
temperature.

accumulation effect. The melt pool temperature increases

with increase in the current level (Fig. 7(a)). Whereas, melt

pool temperature decreases with increase in speed level and

the same can be observed in Fig. 7(b). However, similar

pattern of temperature variation is observed from layer to the

adjacent layer and that holds true for both current and speed

variations.

Fig. 6 shows the effects of varied process parameters,

current and speed on the melt pool temperature profile

of thin-walled structures. Each point on the line plots

represent the average recorded melt pool temperature of

that corresponding layer on X-axis. The temperature in

Figs. 6(a) and 6(b) increases gradually from one layer to the

adjacent layer. This is attributed to the heat accumulation

effect. The melt pool temperature increases with increase in

the current level (Fig. 6(a)). Whereas, melt pool temperature

decreases with increase in speed level and the same can be

observed in Fig. 6(b). However, similar pattern of temperature

variation is observed from layer to the adjacent layer and that

holds true for both current and speed variations.

V. RESULTS

The performance of the proposed model for forecasting melt

pool temperature is evaluated from various metrics. The sta-

tistical metrics are utilized to assess the performance of all

time-series models. The following commonly used statistical

metrics for performance evaluation of time-series models are

used.

RMSE =

[

1

N

N
∑

i=1

(x̄i − xi)
2

]1/2

(8)

MAE =
1

N

N
∑

i=1

|x̄i − xi| (9)

MAPE = 100 ×
1

N

N
∑

i=1

|x̄i − xi|

xi
(10)

where xi and x̄i are the actual and forecasted values of

melt pool temperature ranging from i = 1, 2, 3, . . . ,N .

The performance metrics of various statistical, machine

learning and deep learning models are summarized

in Tables 4, 6 and 7 respectively.

The performance measures of proposed CNN-LSTM algo-

rithm for all the experiments are provided in Table 4. Themet-

rics for experiments with various process parameters remains

almost same. This shows the model’s good repeatability char-

acteristics for forecasting melt pool temperature in wire arc

additive manufacturing process. Fig. 8 shows the comparative
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FIGURE 5. Melt pool temperature distribution in various layers of deposition.

plots of forecasted melt pool temperature values with actual

values. All the forecasts are made for the roof layer (layer 10).

The model exhibits robustness against noises. The average

RMSE,MAE andMAPE of proposed CNN-LSTMmodel for

sample 1 are 95.16, 75.43 and 12.19% respectively.

A. PERFORMANCE COMPARISON WITH TRADITIONAL

METHODS

Among all the time-series forecasting models, statistical

models still hold tremendous usability and considered as

reference models for forecasting applications. Hence, in this

study we compared the performance of the proposed model

for melt pool temperature forecasting with both statistical

and machine learning algorithms. The proposed CNN-LSTM

model achieved the lowest mean square error over the

TABLE 4. Performance measures of the proposed CNN-LSTM model for
melt pool temperature forecasting.

other models. Table 5 provides the model settings and hyper-

parameters used for statistical and machine learning meth-

ods for forecasting melt pool temperature during WAAM.
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FIGURE 6. Melt pool temperature distribution of sample 1 (current – 50 A and speed – 5 mm/s).

FIGURE 7. Layer-wise average melt pool temperature versus: (a) current and (b) speed.

Statistical models include exponential smoothing (ETS),

autoregressive integrated moving average (ARIMA), linear

regression (LR), support vector machines (SVM) and random

forests (RF). Optimal hyperparameters were chosen from grid

search method. The careful selection of optimal parameters

was made in order to achieve the best performance of each

model, and compared with the proposed model.

The results obtained for various statistical and machine

learning models are shown in Table 6. The RMSE obtained

for ETS and ARIMA models are 118.98 and 100.44

respectively. The performance of statistical models lags

when compared to the machine learning models. The

RMSE of random forest model at 99.25 outperforms other

models. Linear regression was performed with degree

2-interaction. The results are quite competitive over ETS,

ARIMA and SVM, as can be seen in Fig. 9. How-

ever, the superior performance of proposed CNN-LSTM

model with high flexibility and repeatability shows
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FIGURE 8. Forecasted values of proposed method for three different
samples: (a) sample 1, (b) sample 2 and (c) sample 3.

the capability of forecasting melt pool temperature in

real-time.

B. PERFORMANCE COMPARISON WITH DEEP LEARNING

MODELS

To validate the superior performance of the proposed method,

we compared results with other existing deep learning

models available for time-series forecasting. The perfor-

mance metrics of various deep learning models and the

method are shown in Table 7. MLP (Multi-layer percep-

tron), CNN, GRU (gated recurrent unit), LSTM, Bi-LSTM

and Attention-LSTM models were chosen for comparative

analysis. The results indicated the superior performance of

CNN-LSTM method over other deep learning methods for

melt pool temperature forecasting. Fig. 10 shows the compar-

ative results of RMSE (10-fold cross-validation) of various

deep learning techniques.

The performance measures of the proposed CNN-LSTM

method are significantly better than traditional methods. The

RMSE value of the proposed model is decreased by 28.5%,

FIGURE 9. Forecasted values of time series models (a) ETS and ARIMA
and (b) SVM and RF.

TABLE 5. Parameters setting for statistical and machine learning models.

TABLE 6. Comparative results of various statistical and machine learning
models.

12%, 29.6%, 35.81%, 22.8% and 21.94% over MLP, CNN,

GRU, LSTM,Bi-LSTMandAttention-LSTMmodels respec-

tively. The percentage improvement of the proposed model

over other models were calculated using the following for-

mula: (RMSEmodel−RMSECNN−LSTM )/RMSEmodel∗100. The

performance of stand-alone CNNmodel is slightly better over

Bi-LSTM and Attention-LSTM models. Figure 11 shows the

forecasted results of stand-alone CNN and LSTM models.

However, accuracy of the proposed hybrid model is signifi-

cantly better than other conventional deep-learning models.

From the results obtained for various time-series models

(statistical, machine learning and deep learning techniques),

the proposed method proves to be a competitive technique
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FIGURE 10. Comparative results of RMSE of deep learning methods
(10-fold cross validation).

FIGURE 11. Forecasted values of CNN and LSTM.

TABLE 7. Comparative results of various deep learning models.

for real-time melt pool temperature forecasting, and thus for

in-situ monitoring.

VI. DISCUSSIONS

The proposed CNN-LSTM network for forecasting melt pool

temperature during additive manufacturing process is found

to be an effective and competitive technique for online mon-

itoring of process. The existing methods for online monitor-

ing mostly used defect detection techniques such as x-ray,

computed tomography measurements that are mapped with

temperature profile to adjust process parameters. However,

temperature profile itself provides an abundant information

regarding the quality of products. Thus, forecasting temper-

ature profile for each layer during additive manufacturing

process is most feasible, by subsequently controlling the pro-

cess parametric deviations, particularly with higher efficiency

and faster response times. Melt pool temperature profile is

dynamic and complex in nature. Thus, utilizing stand-alone

traditional statistical or machine learning or deep learning

models may not be effective. We have improved the fore-

casting performance by linearly combining CNN and LSTM

networks to address the non-linearity from both spatial and

sequential point of view.

The comparative results with traditional machine learning

models are shown in Table 6. All experiments were per-

formed using 10-fold cross validation approach to maintain

generalization for performance comparison. The forecasted

results and their comparison with observed values are shown

in Fig. 10.We have compared themethodwith the benchmark

statistical, machine learning and deep learning models for

melt pool temperature forecasting. Figs. 9 & 11 shows the

comparative plots of forecasted values for various machine

learning and deep learning techniques. It is observed that the

predictions made by the proposed method are better than the

conventional models.

The best performance for the proposed model with RMSE

of 95.169. Also, the model performed much better than other

methods as shown in Tables 6 & 7. The average melt pool

temperature obtained for each sample during experimenta-

tion is shown in Table 3. The average forecasted melt pool

temperature values for the proposed model are 643.86◦C,

671.47◦C and 696.06◦C for 50 A, 60 A and 70 A respec-

tively, while at a constant speed of 5 mm/s. The average

forecasted and observed values are close to each other and

also smaller standard deviation is observed when compared

to other forecasting models. Thus, forecasting results by the

proposed method are quite reliable for real-time monitoring

of additive manufacturing process.

VII. CONCLUSION

Time-series analysis and forecasting is becoming an impor-

tant research topic in recent years due to the availability of

large amounts of data and high computational power. The

present study demonstrated the application of CNN-LSTM

model for layer-wise melt pool temperature forecasting dur-

ing WAAM process. The melt pool temperature of the roof

layer (layer 10) is forecasted by training the network with

the previous layer’s (from layer 1 to layer 9) temperature

data. The performance of proposed CNN-LSTM model for

all the experiments was evaluated using RMSE, MAE and

MAPE. Further, results of proposed model were compared

with the traditional benchmark time series models. The major

conclusions drawn from this study are the following.

• The performance metrics of CNN-LSTM model

for melt pool temperature forecasting followed a

similar pattern for all the experiments, that shows

the good repeatability of the proposed model.

• The comparative results with traditional models

such as ETS, ARIMA, LR, SVM and RF have
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shown that the proposed model is capable of fore-

casting temperature with high accuracy.

• The RMSE value of the proposed model is

decreased by 28.5%, 12%, 29.6%, 35.81%,

22.8% and 21.94% over MLP, CNN, GRU,

LSTM, Bi-LSTM and Attention-LSTM models

respectively.

The right selection of hyperparameters of deep learning mod-

els is a major limitation for their general applicability. This

usually follows a trial-and-error approach. In future work,

inner structure of CNN-LSTM can be extensively studied for

further improvement of the model’s performance.
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