
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

A Hybrid Deep Model for Recognizing Arabic

Handwritten Characters

 Naseem Alrobah1 and Saleh Albahli1,2

1Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
2Department of Computer Science, Kent State University, Kent, OH, USA.

Corresponding author: Saleh Albahli (e-mail: salbahli@qu.edu.com).

Handwriting recognition for computer systems has been in research for a long time, with different

researchers having an extensive variety of methods at their disposal. The problem is that most of these

experiments are done inEnglish, as it is the most spoken language in the world. But other languages such as

Arabic, Mandarin, Spanish, French, and Russian also need research done on them since there are millions of

people who speak them. In this work, recognizing and developing Arabic handwritten characters is

proposed by cleaning the state-of-the-art Arabic dataset called Hijaa, developing Conventional Neural

Network (CNN) with a hybrid model using Support Vector Machine (SVM) and eXtreme Gradient Boosting

(XGBoost) classifiers. The CNN is used for feature extraction of the Arabic character images, which are then

passed on to the Machine Learning classifiers. A recognition rate of up to 96.3% for 29classes is achieved, far

surpassing the already state-of-the-art results of the Hijaa dataset.

INDEX TERMS Convolutional Neural Network, Machine Learning, Backpropagation, Arabic Character
Recognition, Hijja Dataset, Optimizers.

I. INTRODUCTION

Handwritten language forms a timeless and inevitable
aspect of human life. No matter how digital the world
becomes, handwritten language will always remain. Even
though the world is moving to a digital era, there are still
some scenarios where the use of paper and pen cannot be
avoided.

Character recognition technologies provide the users an
automatic mechanism for recognizing the text on the image
and converting the characters to their corresponding digital
format. They are used in many verification applications,
e.g., verifying official documents and bank cheques and
helping visually impaired people read, e.g., reading paper
currency or street signs. Character recognition system can
be used to read both typed and handwritten scripts. The
handwriting varies, especially in cursive script, where the
writers' handwritten characters' size and style vary.
Therefore, handwriting recognition is considered a more
difficult task in computer vision [1].

Handwritten character recognition has been under study
for a long time, with different researchers having many
methods at their disposal. However, the problem is the
majority of these experiments are done in Latin script, e.g.,
English, as it is the most popular language in the world [2].

Therefore, there are many available character recognition
applications for English language. On the other hand,
Arabic is one of the top-5 spoken languages globally, with
315 million native speakers [3], which means now, more
than ever, computers need to also understand what these
speakers are writing. However, due to the Arabic script’s
unique characteristics, e.g., cursive nature, presence of
diacritics, and diagonal strokes, as well as the absence of
publicly available standard datasets, developing an Arabic
character recognition system is still challenging [4].

Recently, Arabic Handwritten Character Recognition
(AHCR) became an active area in pattern recognition and
computer vision. AHCR technologies improved
significantly by using different Machine Learning (ML)
algorithms, such as Support Vector Machines (SVM) and
Artificial Neural Networks (ANN). However, the AHCR
models that use Convolutional Neural Networks (CNNs)
achieved the state-of-the-art results in different Arabic
handwritten datasets[5] [1] [6]. CNNs automatically detect
and extract the distinctive and representative features of the
images, outperforming the classical ML algorithms that
need to manually define the features (e.g., SVM [7] [8]).
Therefore, CNNs achieve better results with large datasets

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

that have a large number of classes. At the classification
stage, Niu and Suen [9] claim that SVM provides better
results when it is replaced with MLP at the classification
stage in deep learning. They explain the reason isthat MLP is
based on the Empirical Risk Minimization, which attempts to
minimize the errors in the training set. Therefore, the training
process is stopped when the first separating hyperplane is
found by the back-propagation algorithm. On the other hand,
an SVM classifier aims to minimize the generalization errors
by using the Structural Risk Minimization principle. The
algorithm tries to find the hyperplane that maximizes the
margin area between two classes of training samples.
Therefore, the generalization ability of SVM is maximized to
enhance the classification accuracy of the hybrid model after
replacing the MLP output units in the CNN.

SVM is a binary classifier natively but can also be used for
the case of multi-class classification. For multi-class
classification, the same principal of binary classification is
used, but SVM changes the problem into a multiple binary-
classification problem. The main idea is to map the data into
high-dimensional space and apply mutual linear separation
between two classes.

 To summarize, CNNs outperform conventional ML
classifiers in feature extraction, while the latter outperform
CNNs in classification. Therefore, different hybrid CNN
architectures have been proposed [10] to compensate the
limitations of CNN and conventional ML classifiers by
integrating their features.

The hybrid CNN architectures can be defined as the
CNN architectures that replace the softmax fully connected
layer (FCL) of the CNNs with a classical ML classification
algorithm [9]. Therefore, our main contribution in this work
is to study the recognition of Arabic handwritten into
different hybrid CNN architectures to show how the state-
of-the-art methods can be enhanced based on hybrid
models. Therefore, we study the effect of different aspects
of hybrid CNN architecture on the AHCR performance.
They include the base CNN architectures, the ML
classification algorithms, and the optimizers and weight
initializers that are used to train the models.

The rest of the paper is organized as follows: Section 2
reviews the AHCR state-of-the-art, and Section 3 presents
the methodology Section 4 describe the experiment. Section
5 presents and discusses the experimental results, and
Section 6 concludes the paper.

II. LITERATURE REVIEW

The state-of-the-art deep learning models in AHCR can be
broadly categorized to standalone CNN models and hybrid
CNN models. The following subsections outline them with
tables to summarize them.

A. AHCR CNNs Models

El-Sawy et al. [11] claim that CNN approaches outperform
other methods in feature extraction and classification tasks,

and that they are suitable for use in Arabic character-
recognition models. However, they requir a large dataset to
achieve good results, while the available Arabic Handwritten
Characters datasets are limited in the number of images.
Therefore, they developed Arabic Handwritten Characters
Dataset (AHCD) and designed a CNN model. The CNN
approach provides an accuracy of 94.9%. Similar to the
previous study, Altwaijry et al. in [1] introduced the Hijja
dataset, a new Arabic handwritten characters dataset written
by children aged from 7 to 12 years old. They also proposed
a CNN-based model for recognizing Arabic handwritten
characters. To evaluate their model, they compared its
performance with the one introduced in El-Sawy’s paper [11]
on both AHCD and Hijja datasets. From the empirical
results, Altwaijry’s model outperformed the other model with
an accuracy of 88% and 97% on Hijja and AHCD datasets,
respectively. While the other model achieved an accuracy of
80% and 93.84% on Hijja and AHCD datasets, respectively.
Balaha et al. in [12] introduced an Arabic handwritten
character dataset (HMDB) and two CNN-based architectures,
HMB1 and HMB2, where the former has a larger number of
hidden layers and trainable parameters to investigate the
impact of the architecture complexity in recognizing Arabic
handwritten script. The two proposed architectures were
trained and tested on three datasets: HMBD, CMATER, and
AIA9k. Through 16 experiments, the effect of data
augmentation, regularization, weight initializers and
optimizers on the models’ performance were studied. The
best results were 90.7%, 97.3% and 98.4% for HMBD,
CMATER, and AIA9k, respectively. They compared their
architecture with the one proposed in [11] by training and
testing it on HMBD—the accuracy of the model did not
exceed 47.7%.

Boufenar et al. in [7] used Alexnet, a popular CNN
architecture that consists of 5 convolutional layers and 3
max-pooling layers followed by 3 fully connected layers.
They studied the effect of preprocessing in improving the
model results. The Alexnet model was trained and
evaluated in two datasets, OIHACDB-40 and AHCD, with
three learning strategies: training the CNN model from
scratch, using transfer-learning strategy and fine-tuning the
CNN. The experimental results showed that the first
strategy outperformed the others with 100% and 99.98%
accuracies for OIHACDB-40 and AHCD, respectively.

VGG16 [13] is a very deep CNN architecture that was
built to investigate how the network depth affects the
accuracy in a large-scale image-recognition setting. It
consists of 16 layers and is used in different Handwritten
recognition applications. De Sousa [6] and Mudhsh [8]
designed models for Arabic handwritten character
recognition that were inspired by VGG-16. De Sousa in [6]
proposed two deep CNN-based models, VGG-12 and
REGU, for recognizing Arabic Handwritten characters and
digits. The VGG-12 model is inspired by VGG-16 by
removing the fifth convolutional block and adding a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

dropout layer before the softmax FCL that is used as a
classifier. While the REGU
Table 1. An overview of works related to CNN architectures in AHCR

model was designed from scratch by adding different
dropout and batch-normalization layers at both CNN and
the Fully Connected Layers. The two models were trained
once without data augmentation and once with data
augmentation. Then, an ensemble model of the four models
was created by averaging the predictions of each of the 4
models. The best test accuracy of the ensemble model was
99.47%. Mudhsh et al. in [8] proposed a model for Arabic
handwritten digits and characters recognition. The model
consists of thirteen convolutional layers, two max-pooling
layers, followed by three Fully Connected Layers. To
reduce model complexity and training time, only one-eighth
of the filter in each layer of the original VGG-16 was used
in the proposed model. Two different datasets were used to
train and evaluate the model: ADBase was used for the
digit recognition task, while HACDB was used for the
character recognition task. To avoid the overfitting
problem, they used dropout and data augmentation. The
achieved accuracy of the model using the ADBase database
was 99.66% and 97.32% for the HACDB database.

Alyahya et al. in [15] investigated the performance of
ResNet-18 architecture in recognizing Arabic handwritten
characters when FCL and Dropout are added to the original
architecture. They designed 4 deep models: 2 models that
used a Fully Connected Layer with/without dropout layer
after all convolutional layers and 2 models that used 2 Fully
Connected Layers with/without a dropout layer. They used
AHCD dataset to train and evaluate the CNN based ResNet-
18 model and the best test result was 98.30%, achieved by
the original ResNet-18 in AHCR. Table 1 summarizes the
CNN state-of-the-art models. The table illustrates the author
of each article, the year of publication, the dataset used for
training and evaluating the model, the optimization
techniques used to improve the model and the testing result
in terms of accuracy.

B. AHCR Hybrid CNNs Models

Elluch et al. [16] claimed that CNN achieves excellent results
in term of feature extraction; however, they use Fully
Connected Layers (FCLs) as the last layer to perform the
classification task. They designed a CNN-SVM hybrid model
and trained it with the HACDB dataset. The model achieved
6.59% Error Classification Rate (ECR), whereas the
standard CNN model achieved an ECR of 14.71%. Also,
Elluch et al. in [17] improved the previous model by adding
the dropout technique. The ECR is reduced to be 5.83%.

Shams et al in [18] proposed a deep learning model
composed of CNN with FCL, then the SVM were used to
boost the results of the FCL. They focused on solving the
problem of multi-stroke Arabic characters recognition, i.e.
recognition of letters that have the same stroke but are
different in the number and position of the dot(s), by using
unsupervised K-mean clustering algorithm to group the
characters into 13 clusters. They used AHCD [11] for
training and evaluating the model. The model achieved
95.07% in term of accuracy outperforming Elsawy [11]
model that achieved 94.90%.

The details of hybrid approaches for recognizing isolated
Arabic Handwritten Characters are summarized in Table 2.
The results in this table are presented in terms of Error
Character Rate.

Table 2. An overview of works related to Hybrid CNN Architectures in

AHCR

Paper Year Dataset Method Optimization Result in

Accuracy

El-sawy

et al. [11]

2017 AHCD CNN Mini-batch 94.9

Altwaijry

et al. [4]

2017 AHCD CNN Dropout

Weight Decay

97%

Hijja [4] 88%

Balaha et

al. [27]

2020 HMBD

[15]

CNN Dropout 90.7%

AHCD

[38]

97.3%

AIA9k

[14]

98.4%

Boufenar

et al. [7]

2017 AHCD

[38]

CNN

(Alexn

et)

Dropout

Mini-batch

99.98%

OIHAC

DB-40

[5]

100%

De Sousa

[6]

2018 AHCD

[11]

CNN

(based

on

VGG)

- Dropout.

- Batch

Normalization

- Data

Augmentation :

zoom,

translation.

98.42%.

Mudhsh

et al. [8]

2017 HACDB CNN

(based

on

VGG)

- Dropout

- Data

Augmentation

97.32%

Alyahya et

al. [15]

2020 AHCD

[11]

CNN - 98.30%

Paper Year Dataset Hybrid

Model

Architecture

 Results in

ECR

Elluch

et al.

[16]

2016 HACDB CNN+SVM 6.59%

Elluch

et al.

[17]

2016 HACDB CNN+SVM 5.83 %.

Shams

et al.

[18]

2020 AHCD

[11]

CNN + FCL + SVM 4.93%

ECR: Error Character Rate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

I. METHODOLOGY

As mentioned earlier, the hybrid CNN architecture

comprises CNN architecture and ML classifiers. However,
CNN trained with backpropagation and cannot be directly
trained with the ML classifier. Therefore, the CNNs trained
first with the softmax FCL then used as feature extractor for
training and testing the ML classifier. A general framework
of the hybrid CNN system is introduced in the first
subsection. The second subsection elaborates the component
of hybrid CNN architecture used in this study and the
enhanced training procedure of hybrid models. The third
subsection introduces the experiment design of evaluating the
CNN hybrid model.

A. HYBRID CNN FRAMEWORK DESCRIPTION

Figure 1 describes how the proposed hybrid CNN system
works. It is composed of four parts: the inputs of the system,
a CNN for feature extraction, an ML classifier that takes the
extracted features from CNN as input and uses them to
perform classification, and the outputs of the system. The

top section represents the inputs to the system, which
includes the data, optimizer and weight initializer used as
inputs to CNN. It can be seen that the dataset is split for
training and testing. The middle section illustrates the CNN
model and the lower represents the ML classifiers. After
training the CNN, it is evaluated by the testing data and used
in the next part as feature extractor.

In the ML classifiers section, the previously trained CNN
receives the training and testing data and transforms them
into feature vectors. Then the ML classifiers are trained and
evaluated by these feature vectors. The outputs of the system
are the training and testing results of the CNN model and
CNN hybrid model.

B. Hybrid CNN Architecture

1) CNN ARCHITECTURES

Figure 1. General Diagram for Hybrid CNN System

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

In this study, we consider 2 deep CNN architectures:
HMB1, and HMB2[19], as they are CNN architectures of the
top-performing architectures from related works evaluated on
the AHCD dataset [20]. The CNN models, which consist of
alternating layers of convolutional, activation, and pooling
layers, are used for feature extraction. The following two
subsections explain the details of CNNs layers.
a: HMB1

The input to the model is 32´32 images. All the
convolutional layers used are kernel size of 3´3 while the
max-pooling layers used pool size of 2´2. It includes 13
convolutional blocks where each block has a different
arrangement of convolutional, batch normalization and
pooling layers. These blocks are followed by 5 FCL with
ReLU activation function. The original output layer of the
model is an FCL with 115 neurons, and softmax is used as an
activation function. To improve the model, both dropout with
a ratio of 0.25 and Batch Normalization are applied to reduce
the overfitting. The total number of parameters in HMB1 is
6,076,525, and 6,071,693 parameters out of them are
trainable. Therefore, it is considered as a complex CNN
architecture. Figure 2 and table 3 depict the design of the
HMB1 architecture.
b: HMB2

Same as HMB1, the input to HMB2 is 32´32 images. As
shown in figure 3, HMB2 includes 9 convolutional blocks.

different arrangements of convolutional, max-pooling, batch
normalization, and dropout layers used in the blocks. After
the convolutional blocks, a flattened layer of 2048 neurons
was used as a connection between the convolutional blocks
and the FCL classifier. A total number of parameters is
181,373, and 179,869 out of them are trainable parameters.
Therefore, it is considered less complex architecture than
HMB1. Figure 3 and table 4 depict the design of the HMB2
architecture.

Table 3. Architecture of HMB1

Layer Type Output

Shape

Layer Type Output Shape

Convolutional Layer (32, 32, 16) Batch Normalization (8, 8, 256)

Convolutional Layer (32, 32, 16) Max-Pooling Layer (4, 4, 256)

Batch Normalization (32, 32, 16) Flatten Layer (4096)

Convolutional Layer (32, 32, 32) Dense Layer (1024)

Convolutional Layer (32, 32, 32) Batch Normalization (1024)

Batch Normalization (32, 32, 32) Dropout Layer (1024)

Max-Pooling Layer (16, 16, 32) Dense Layer (512)

Convolutional Layer (16, 16, 64) Batch Normalization (512)

Convolutional Layer (16, 16, 64) Dropout Layer (512)

Batch Normalization (16, 16, 64) Dense Layer (256)

Convolutional Layer (16, 16, 128) Batch Normalization (256)

Convolutional Layer (16, 16, 32) Dropout Layer (256)

Batch Normalization (16, 16, 64) Dense Layer (128)

Max-Pooling Layer (16, 16, 64) Batch Normalization (128)

Convolutional Layer (16, 16, 64) Dropout Layer (128)

Convolutional Layer (16, 16, 128) Dense Layer (115)

Figure 2. HMB2 Architecture from [27]

Figure 3. HMB1 Architecture from [27]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

Table 4. Architecture of HMB2

Layer Type Output

Shape

Layer Type Output

Shape

Convolutional Layer (32, 32, 32) Max-Pooling Layer (8, 8, 64)

Batch Normalization (32, 32, 32) Dropout Layer (8, 8, 64)

Convolutional Layer (32, 32, 32) Convolutional Layer (8, 8, 128)

Batch Normalization (32, 32, 32) Batch Normalization (8, 8, 128)

Max-Pooling Layer (16, 16, 32) Convolutional Layer (8, 8, 128)

Dropout Layer (16, 16, 32) Batch Normalization (8, 8, 128)

Convolutional Layer (16, 16, 64) Max-Pooling Layer (4, 4, 128)

Batch Normalization (16, 16, 64) Dropout Layer (4, 4, 128)

Convolutional Layer (16, 16, 64) Flatten Layer (2048)

Batch Normalization (16, 16, 64) Dense Layer (115)

2) ML CLASSIFIERS

The extracted features from the trained CNN are used as
inputs to 2 different classifiers: SVM and XGBoost to
perform the classification tasks.

a: SUPPORT VECTOR MACHINE (SVM)

SVM is a machine-learning algorithm that can be used for
both classification and regression. It has been used in many
fields to achieve state-of-the-art results. SVM works by
assuming that training examples are plotted in high-
dimensional feature space. The role of SVM is to find
hyperplanes that perfectly divide the dataset samples. Kenel,
C and gamma are the parameters that are used in building the
SVM models, and the performance highly depends on them.
In this work, the output of the CNN network is a matrix that
is flattened to be a vector of features. SVM is a well-known
classifier for its effectiveness in classifying data with high
dimensional features. Therefore, we chose SVM as a
classifier in the hybrid models.

b: EXTREME GRADIENT BOOSTING (XGBOOST)

Many boosting classifiers are available as free open-source
ML libraries, e.g., Adaptive Boosting (Adaboost) [21] and
gradient boosting [22]. The basic idea behind boosting [23] is
adding weak learners sequentially to the classification model
to correct previously misclassified training samples and

enhance the overall model performance. The weak learner is
the model whose performance is slightly better than random
guessing. The gradient boosting is a boosting algorithm that
uses gradient descent to minimize the cost function.
XGBoost is an improved and scalable implementation of a
gradient boosting framework. Since it offers enhanced
features such as faster speed, customization of the objective
function and evaluation function, plus better overall
performance [24], it was chosen for use in this study.

3) TRAINING PROCEDURE OF HYBRID CNN MODELS

The previous subsections present the details of the hybrid
architecture components: CNN architectures and the ML
classification algorithms. The basic idea behind the hybrid
CNN models is replacing the original CNN output layer
(softmax FCL) of the CNN with an ML classifier. This
section illustrates the enhanced two-stage training procedure
of the hybrid CNN models.
• First Stage (training the CNN with backpropagation): the

convolutional layers in CNN learn their weights during the
training by backpropagating the error from the output layer
back through the FCLs to the first convolutional layer. Due
to the nature of the learning process, the FCL should be
used as an output layer during the training of CNN. The
output of the CNN after this step is the features vector,
which is the linear combination of the outputs from the
previous hidden FCL with trainable weights, plus a bias
term. It seems meaningless to humans, but it makes sense
to be used as features for any classifier [9].

• Second Stage (training the ML classifier): the output FCL
in the trained CNN is replaced with the ML classifier,
namely SVM or XGBoost. The classifier is trained with the
feature vector produced by the trained CNN. They are
trained by the same training data used to train the CNN
model.
The stages of the enhanced training procedure are
illustrated in figure 4 and figure 5.

Figure 4. First Stage of Training Hybrid Models

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

C. Experiment Design

In this study, extensive experiments were designed to study
the effect of different CNN architectures, ML classifiers, and
optimizers and weight initializers on the performance of the
hybrid models. 30 different combinations of 5 optimizers
(Adam [25], AdaDelta [26], AdaMax [27], AdaGrad [28] and
stochastic gradient descent (SGD) [29]) and 6 weights
initializers (Glorot uniform and Glorot normal initializers
[30], He uniform and He normal initializers [31] and LeCun
uniform and LeCun normal initializer [32]) were used in
training the hybrid models. We used accuracy as a
performance metric since the used dataset is a balanced
dataset, i.e., the number of samples in each class is equal.
The pseudocode below illustrates the experiment procedures.
It should be mentioned that the enhanced 2-stage procedure
is part of the experiment.

For optimizer in optimizers lists do
 For initializer in weight initializers list do

Train the CNN with the selected optimizer and
initializer using training data

Evaluate the CNN with testing data
For classifier in ML classifiers list do

Replace the last FCL with classifier
Train the classifier using training set
Evaluate the classifier with testing set

End_For

End_For

End_For

III. EXPERIMENTS

This section introduced the experiments that are conducted
on AHCR hybrid CNN architectures. It includes the dataset
and the training parameters.

A. DATASET

The Hijja dataset is a free and publicly available dataset
collected by Altwaijry et al [1]. It includes images of

separated Arabic handwritten letters collected from children
between the ages of 7 and 12. The dataset has 108 classes,
which represent the Arabic letter in 4 shapes: beginning,
middle, and end of the word and letter in isolated shape. The
size of the image is 32*32 pixels. The total number of images
in the dataset is 47,434. The hybrid CNN architectures are
trained and evaluated using Hijja dataset. We used a total of
12,776 images that belong to the letters in isolated shape,
with 29 classes corresponding to the Arabic letters in
addition to “Hamza”. The dataset is randomly split into 80%
for training and validation (the 80% set is split internally into
80% for training and 20% for validation) and 20% for
testing. Thus 8,174 images are used for training, 2,059
images for validation and 2,543 images for testing. Table 5
shows an image sample with the corresponding Arabic typed
character for each class in Hijja dataset. The participants of
Hijja are children and the resolution of the images is very
low. Therefore, it has many distorted or unclear characters.
Figure 6 shows distorted samples of Arabic letters. The
character Kaf “ك” and the character Faa “ف” can be
misclassified with Noon “ن”, the character Meem “م” can be
misclassified with Ha “ح”, and the characters Haa “ ـھ ” and
Qaf “ق” are distorted and unreadable. Hijja is a new dataset
that was published in 2020 and there are not many
experiments on it. However, as far as we know, the best
result has been achieved with the Hijja dataset was 88% in
terms of accuracy. Therefore, in this experiment, the Hijja
dataset has been chosen to fairly evaluate the CNN hybrid
models.

Figure 5. Second Stage of Training Hybrid Models

Figure 6. Distorted and Unclear Samples from Hijja Dataset

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

Google Colaboratory (Colab)) [33] was chosen to implement
the Hybrid CNN architecture and conduct the experiments.
For this research, we used different open-source Python
libraries and frameworks to deal with the images, implement
the DL and ML models. They are:
• Tensorflow [34] for implementation and evaluation of the

CNN models.
• Scikit-learn for dealing with multi-dimensional arrays and

implementing ML models.
• OpenCV was used widely through the study for reading,

resizing, and saving images.
• CSV library provides methods to deal with the CSV

(Comma Separated Values) format which is used to save
and analyze the experiment results.

• Glob is used in the experiments to find all the file names
that follow a specific pattern.

B. TRAINING PARAMETERS

In this study, we trained and evaluated the CNN hybrid
models separately, but using the same parameters and
metrics. Relu [35] is used as an activation function for all
convolutional and hidden FC layers, while softmax [36] is
used for the output layer in CNN-FCL architecture. Max
pooling is chosen to be used in the pooling layer as they are
preferable in handwritten recognition tasks. We trained the
model on different epochs and batch-size values and found
that training the model on 50 epochs with a batch size equal
to 32 achieves the best results. Categorical Cross entropy is
used as loss function. The learning rate of the optimizers is
illustrated in table 6.
In training the CNN+SVM model, we used radial basis
function (RBF) as the kernel function, C with value equal to
1 and gamma is “Scale”. In the XGBoost+CNN model,
deviance was used as activation function and max_depth was
set to 3.

Table 6. Learning Rate Values of the Optimizers
Optimizer Learning rate

Adam [25] 0.001

AdaDelta [26] 1.0

AdaMax [27] 0.002

AdaGrad [28] 0.01

 (SGD) [29] 0.01

IV. RESULTS AND DISCUSSION

A. RESULTS

Table 7 presents the experimental results. The table consists
of 30 rows that correspond to the combination of 5
optimizers and 6 weight initializers, and 6 columns that
illustrate the performance of the 3 models in the 2
experiments in terms of accuracy. The labels Experiment 1
and Experiment 2 in the first row refer to the experiments
that used HMB1 and HMB2, respectively. The second row in
the table illustrates the Hybrid CNN models: CNN+FCL,
CNN+SVM and CNN+XGBoost. The first and second
columns present the optimizers and weight initializers. The
third through eighth columns are the results in accuracy of
the classifiers as illustrated in the second row.

Figure 7 and figure 8 show the three hybrid CNN models'
testing accuracy as a line chart in Experiment 1 and
Experiment 2, respectively. The rows in experiment tables
are presented in the x-axis of the line chart and the y-axis
refers to the classifiers' test accuracies. The blue line refers to
the testing accuracy of the standalone CNN model. While the
orange and green lines refer to the hybrid models that used
SVM and XGBoost, respectively.

From the conducted experiments, the highest accuracy
reported in Experiment 1 was 96.3% achieved by SVM,
while XGBoost achieved a comparable result with the
highest accuracy equal to 95.7%. The best result reported by
CNN was 89.7%. The average testing accuracies of CNN,
SVM and XGBoost in the same experiment are 74%, 91.4%

 ر ذ د خ ح ج ث ت ب أ

 ف غ ع ظ ط ض ص ش س ز

ـھ ن م ل ك ق ء ي و

Table 5. Samples of Hijja Classes

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

and 90.2%, respectively. It can be noted that hybrid models
that used SVM and XGBoost as classifiers outperform the
original model that uses FCL.

Table 8 and table 9 represent the average and the
maximum accuracies with respect to the optimizers and
weight initializers in Experiment 1, respectively.

 From the conducted experiments, the highest accuracy
reported in Experiment 2 is 94.5%. It is achieved by the
SVM classifier. The highest accuracy reported by XGBoost
and CNN are 92.5% and 84.6%, respectively. The average
testing accuracies of CNN, SVM and XGBoost in the same
experiment are 54%, 90% and 88.5%, respectively. Table 10
and table 11 below represent the average and the maximum
accuracies with respect to the optimizers and weight
initializers, respectively.

Table 8. Aggregated Results Based on Optimizers in Experiment 1

Optimizer\

Model

CNN+FCL CNN+SVM CNN+XGBoost

average Max average max average max

Adamax 0.753 0.874 0.927 0.959 0.917 0.953

Adadelta 0.841 0.897 0.957 0.963 0.950 0.957

Adam 0.845 0.882 0.952 0.962 0.946 0.955

SGD 0.393 0.857 0.779 0.949 0.745 0.945

Adagrad 0.874 0.877 0.956 0.960 0.951 0.957

Table 9. Aggregated Results Based on weight initializers in Experiment1

Weight

Initializers

\ Model

CNN+FCL CNN+SVM CNN+Xgboost

Average Max Average Max Average Max

HeNormal 0.863 0.888 0.955 0.962 0.950 0.955

He Uniform 0.730 0.897 0.893 0.962 0.874 0.957

GlorotNormal 0.682 0.874 0.917 0.960 0.900 0.953

Glorot Uniform 0.736 0.886 0.922 0.962 0.910 0.955

Lecun Normal 0.679 0.882 0.849 0.963 0.837 0.957

Lecun Uniform 0.755 0.873 0.950 0.959 0.940 0.951

Table 10. Aggregated Results Based on Optimizers in Experiment2

Optimizer\

Model

CNN+FCL CNN+SVM CNN+XGBoost

average Max average max average max

Adamax 0.551 0.817 0.925 0.939 0.910 0.921

Adadelta 0.514 0.738 0.911 0.941 0.897 0.925

Adam 0.398 0.743 0.914 0.945 0.902 0.924

SGD 0.424 0.790 0.869 0.886 0.852 0.869

Adagrad 0.812 0.846 0.881 0.908 0.862 0.889

Table 11: Aggregated Results Based on weight initializers in Experiment 2

Weight

Initializers

\ Model

CNN+FCL CNN+SVM CNN+Xgboost

Average Max Average Max Average Max

HeNormal 0.629 0.790 0.904 0.941 0.888 0.925

He Uniform 0.533 0.787 0.885 0.922 0.869 0.903

GlorotNormal 0.555 0.841 0.914 0.932 0.899 0.917

Glorot Uniform 0.417 0.817 0.902 0.934 0.886 0.921

Lecun Normal 0.648 0.817 0.910 0.945 0.894 0.924

Lecun Uniform 0.457 0.846 0.885 0.930 0.872 0.914

B. Discussion

 Experiment 1 Experiment 2

O
p

tim
iz

e
r

W
eig

h
t

In
itializer

C
N

N

C
N

N
 +

 S
V

M

C
N

N
+

X
G

B
o

o
st

C
N

N

C
N

N
 +

 S
V

M

C
N

N
+

X
G

B
o

o
st

A
d

a
m

a
x

HN 0.838 0.953 0.950 0.642 0.934 0.921

HU 0.873 0.959 0.953 0.634 0.922 0.903

GN 0.874 0.957 0.951 0.281 0.914 0.904

GU 0.210 0.776 0.748 0.573 0.931 0.917

LN 0.871 0.958 0.951 0.817 0.939 0.921

LU 0.850 0.956 0.950 0.360 0.910 0.897

A
d

a
d

e
lta

HN 0.888 0.962 0.955 0.738 0.941 0.925

HU 0.897 0.962 0.957 0.608 0.898 0.876

GN 0.666 0.940 0.932 0.647 0.928 0.917

GU 0.886 0.962 0.954 0.435 0.934 0.921

LN 0.882 0.963 0.957 0.587 0.934 0.921

LU 0.826 0.951 0.946 0.069 0.829 0.822

A
d

a
m

HN 0.859 0.960 0.955 0.207 0.910 0.903

HU 0.870 0.958 0.953 0.093 0.883 0.877

GN 0.872 0.960 0.953 0.623 0.932 0.917

GU 0.882 0.962 0.955 0.096 0.882 0.875

LN 0.733 0.919 0.917 0.623 0.945 0.924

LU 0.851 0.953 0.945 0.743 0.930 0.914

S
G

D

HN 0.857 0.949 0.945 0.790 0.885 0.860

HU 0.135 0.630 0.560 0.541 0.865 0.854

GN 0.129 0.773 0.714 0.385 0.886 0.869

GU 0.827 0.949 0.942 0.164 0.856 0.829

LN 0.035 0.446 0.404 0.396 0.862 0.851

LU 0.376 0.929 0.907 0.268 0.862 0.851

A
d

a
g

r
a

d

HN 0.875 0.949 0.946 0.766 0.851 0.831

HU 0.875 0.954 0.948 0.787 0.857 0.834

GN 0.869 0.955 0.950 0.841 0.908 0.886

GU 0.877 0.959 0.953 0.817 0.908 0.889

LN 0.874 0.960 0.957 0.815 0.871 0.851

LU 0.873 0.959 0.951 0.846 0.893 0.877

 HN = HeNormal

LN = LecunNormal

GN

 = GlorotNormal

HU = HeUniform

LU = LechunUniform

GU = GlorotUniform

Table 7. Results of the Experiments

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

The main objective of the research is to build a hybrid
model that delivers better performance in recognizing Arabic
Handwritten Characters. In this section, the performance of
the hybrid CNN-based architectures will be discussed
according to three aspects: the base CNN architectures, the
ML classifiers used in the hybrid models, and optimizers and
weight initializers.

Hijja was the dataset used to evaluate the hybrid models.
As mentioned in [1], the performance of different CNN-
based models produced significantly lower results in the
Hijja compared to other Arabic Handwritten Characters
datasets. Therefore, it is considered a more complex and
difficult dataset. To the best of our knowledge, the highest
accuracy achieved in Hijja dataset was 88%. The base CNN
models of HMB1 and HMB2 with softmax FCL as output
layer achieved very close results to the Hijja’s best results
with accuracies of 89% and 87%, respectively. The results of
the HMB1 are better than HMB2 in all three classifiers.
However, HMB1 is a more complex architecture with

6,071,693 trainable parameters compared to HMB2’s179,869
trainable parameters.

From the results of Experiment 1 and Experiment 2, the
best results in terms of test accuracy for FCL, SVM and
XGBoost as classifiers were 89%, 96.3% and 95.7%,
respectively. While the lowest testing accuracies for FCL,
SVM and XGBoost were 3.5%, 44.6% and 40.4%,
respectively. It can be concluded that the performance of
SVM and XGBoost as classifiers in hybrid models
outperforms the FCL as classifier by a large margin. From
tables 8, 9, 10 and 11, SVM achieved slightly better results
than XGBoost.

In general, Adadelta achieved the highest accuracy in
HMB1 with the three classifiers and Adam in HMB2.
HeNormal achieved the best aggregated accuracy in HMB1,
while GlorotNormal achieved best aggregated accuracies in
both models.

Poor performance of the CNN model with FCL can be
justified in that CNN as a whole requires a larger dataset
when compared to other algorithms like SVM and XGBoost.

Figure 7. Results of Experiment 2 in Term of Test Accuracy

Figure 8. Results of Experiment 1 in Term of Test Accuracy

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

Zhang et al. [37] stated that in case of a simple 2-layer CNN,
a 2n+d number of parameters are sufficient to classify a
dataset with n number of samples with d dimensions.
Implementing this approach to our dataset, the number of
parameters of CNN models were 6,071,693 and 179,869 for
HMB1 and HMB2 respectively. Our dataset had 8,174
training examples in 29 classes. Thus, 2*8,174+29 = 16,377
is quite small in comparison with this high number of
parameters. This verifies that our dataset was too small to be
classified by a classic CNN. In comparison, SVM and
XGBoost have no such limitation of a large dataset.

The only thing that has remained same in our classification

model is the CNN architecture for feature extraction. The
things that have changed are FCL, SVM and XGBoost at
classification stage. When the comparison of parameters is
done for these architectures, it can be seen that there is a
huge difference of parameters. For FCL the total number of
parameters depends on number of layers and neurons, these
parameters are weights and biases that needs to be tuned.
Total number of trainable parameters in FCL that we used
are 698,653. Which is still a large number in comparison
with 16,377. In contrast this is not the case for SVM and
XGBoost. SVM and XGBoost have a limited number of
parameters when compared with CNN (including FCL). [38,
39]. The number of parameters to be tuned in SVM and
XGBoost can not be calculated accurately as many factors
involved in them are dynamic i.e. number of trees, depth of
trees. Despite of it, we can still make a comparison. Only a
few parameters are needed to be tuned in case of SVM and
XGBoost [38, 39], for SVM these parameters are to tune the
parameter values of the kernel that is being used for
classification i.e. linear, radial basis function (RBF) etc. and
in XGBoost these parameters depends on booster that has
been selected and learning task that needs to be done i.e.
regression or tree. Regression has a few parameters to be
tuned depending upon number of variables in the dataset but
in case of tree the number of parameters to be tuned are the
depth of the tree of the number of the trees to be used. Which
in comparison are still smaller than the number of parameters
in FCL.

C. Comparison

An explained literature review of how much work is
present in the field of Arabic character recognition. Table 1
shows the work done using CNN models and Table 2 shows
the work done on Arabic character recognition using hybrid
models. In case of using normal CNN models 6 different
types of datasets has been used which are AHCD, HMBD,
AIA9k, OIHAC, HACDB and Hijja. The dataset used in
abundance and in almost every study was AHCD [11], for
which a maximum accuracy was obtained of 99.98% by [7]
by using AlexNet.

In the case of hybrid models, HACDB and AHCD was
used. Accuracy achieved by using AHCD in its original

paper was 94.90%, which was improved with hybrid model
[18], which achieved 95.07% accuracy.

We compare our methodology and the one that was
conducted by the creators of the Hijja dataset to see the
differences and effectiveness in how both models performed.
The Hijja dataset is new so there is not much work present
which uses it, [4] used the Hijja dataset and achieved an
accuracy of 88%, which we improved by using hybrid
models. The maximum accuracy we achieved was 96.3% by
using SVM at classification stage.

V. CONCLUSION
The original Hijja experiment designed a convolutional
neural network (CNN) and used it for both feature extraction
and classification of the Arabic characters. It ended up with
its best accuracy being 88%. But the same CNN was used to
experiment on the AHCD dataset and it achieved an accuracy
of 97%, which shows that at that time, the Hijja dataset was
imbalanced and needed to be reevaluated.

In our experiment, we analyzed the Hijja dataset and found
irregularities, like some blurry letters and some distorted and
unclear symbols. We combined an ML model and Deep
Learning model to form a hybrid model, since CNNs are
great for feature extraction and ML models are great at
classification, implementing a combination of the two with
each one serving the purpose it is best at, giving us an
effective hybrid model. We conducted two experiments and
attained an accuracy of 96.3%, which is 8% higher than the
original Hijja experiment. Our hybrid model even achieved
an accuracy comparable to the one conducted on the AHCD
dataset using the Hijja model, which shows that our hybrid
model is highly effective.

 Acknowledgment: We would like to thank the Deanship

of Scientific Research, Qassim University for funding the
publication of this project.

REFERENCES

[1] N. Altwaijry and I. Al-Turaiki, “Arabic handwriting

recognition system using convolutional neural network,”

Neural Comput. Appl., pp. 1–13, Jun. 2020, doi:

10.1007/s00521-020-05070-8.

[2] H. T. Weldegebriel, H. Liu, A. U. Haq, E. Bugingo, and D.

Zhang, “A New Hybrid Convolutional Neural Network and

eXtreme Gradient Boosting Classifier for Recognizing

Handwritten Ethiopian Characters,” IEEE Access, vol. 8, pp.

17804–17818, 2020, doi: 10.1109/ACCESS.2019.2960161.

[3] “Babbel Magazine.” [Online]. Available:

https://www.babbel.com/en/magazine/ (accessed Mar. 09,

2021).

[4] U. Porwal, Z. Shi, and S. Setlur, “Machine learning in

handwritten arabic text recognition,” in Handbook of Statistics,

vol. 31, Elsevier B.V., 2013, pp. 443–469.

[5] C. Boufenar, A. Kerboua, and M. Batouche, “Investigation on

deep learning for off-line handwritten Arabic character

recognition,” Cogn. Syst. Res., vol. 50, pp. 180–195, Aug.

2018, doi: 10.1016/j.cogsys.2017.11.002.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 1

[6] I. P. de Sousa, “Convolutional ensembles for Arabic

Handwritten Character and Digit Recognition,” PeerJ Comput.

Sci., vol. 2018, no. 10, p. e167, Oct. 2018, doi: 10.7717/peerj-

cs.167.

[7] M. Elleuch, H. Lahiani, and M. Kherallah, “Recognizing

Arabic Handwritten Script using Support Vector Machine

classifier,” in International Conference on Intelligent Systems

Design and Applications, ISDA, Jun. 2016, vol. 2016-June, pp.

551–556, doi: 10.1109/ISDA.2015.7489176.

[8] M. A. Mudhsh and R. Almodfer, “Arabic Handwritten

Alphanumeric Character Recognition Using Very Deep Neural

Network,” Information, vol. 8, no. 3, p. 105, Aug. 2017, doi:

10.3390/info8030105.

[9] X. X. Niu and C. Y. Suen, “A novel hybrid CNN-SVM

classifier for recognizing handwritten digits,” Pattern

Recognit., vol. 45, no. 4, pp. 1318–1325, Apr. 2012, doi:

10.1016/j.patcog.2011.09.021.

[10] M. Szarvas, A. Yoshizawa, M. Yamamoto, and J. Ogata,

“Pedestrian Detection with Convolutional Neural Networks

Feature Gray-scale value Haar-wavelet coefficients Four

directional features Vertical and horizontal edge intensities

Edge intensities Gradient image Rectangular filter Chamfer,” in

IEEE Intelligent Vehicles Symposium, 2005, pp. 224–229.

[11] A. El-Sawy, M. Loey, and H. El-Bakry, “Arabic Handwritten

Characters Recognition using Convolutional Neural Network,”

WSEAS Trans. Comput. Res., vol. 5, no. 1, pp. 11–19, 2017.

[12] H. M. Balaha, H. A. Ali, and M. Badawy, “Automatic

recognition of handwritten Arabic characters: a comprehensive

review,” Neural Computing and Applications. Springer, pp. 1–

24, Jul. 17, 2020, doi: 10.1007/s00521-020-05137-6.

[13] K. Simonyan and A. Zisserman, “VERY DEEP

CONVOLUTIONAL NETWORKS FOR LARGE-SCALE

IMAGE RECOGNITION,” 2015. Accessed: Nov. 15, 2020.

[Online]. Available: http://www.robots.ox.ac.uk/.

[14] M. Torki, M. E. Hussein, A. Elsallamy, M. Fayyaz, and S.

Yaser, “WINDOW-BASED DESCRIPTORS FOR ARABIC

HANDWRITTEN ALPHABET RECOGNITION: A

COMPARATIVE STUDY ON A NOVEL DATASET.”2014,

arXiv: 1411.3519 [Online]. Available:

http://arxiv.org/abs/1411.3519

[15] H. Alyahya, M. M. Ben Ismail, and A. Al-Salman, “Deep

ensemble neural networks for recognizing isolated Arabic

handwritten characters,” Accent. Trans. Image Process.

Comput. Vis., vol. 6, no. 21, pp. 68–79, Nov. 2020, doi:

10.19101/tipcv.2020.618051.

[16] M. Kherallah, M. Elleuch, and N. Tagougui, “A novel

architecture of CNN based on SVM classifier for recognising

Arabic handwritten script,” Int. J. Intell. Syst. Technol. Appl.,

vol. 15, no. 4, p. 323, 2016, doi: 10.1504/ijista.2016.10000779.

[17] M. Elleuch, R. Maalej, and M. Kherallah, “A New design

based-SVM of the CNN classifier architecture with dropout for

offline Arabic handwritten recognition,” in Procedia Computer

Science, Jan. 2016, vol. 80, pp. 1712–1723, doi:

10.1016/j.procs.2016.05.512.

[18] M. Shams, A. A., and W. Z., “Arabic Handwritten Character

Recognition based on Convolution Neural Networks and

Support Vector Machine,” Int. J. Adv. Comput. Sci. Appl., vol.

11, no. 8, pp. 144–149, 2020, doi:

10.14569/IJACSA.2020.0110819.

[19] H. M. Balaha, H. A. Ali, M. Saraya, and M. Badawy, “A new

Arabic handwritten character recognition deep learning system

(AHCR-DLS),” Neural Comput. Appl., pp. 1–43, Oct. 2020,

doi: 10.1007/s00521-020-05397-2.

[20] A. El Sawy, H. El-Bakry, and M. Loey, “Arabic Handwritten

Characters Dataset (AHCD),” 2017. Accessed: Jan. 18, 2021.

[Online]. Available: https://www.kaggle.com/mloey1/ahcd1.

[21] Y. Freund and R. E. Schapire, “A Decision-Theoretic

Generalization of On-Line Learning and an Application to

Boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139,

Aug. 1997, doi: 10.1006/jcss.1997.1504.

[22] J. H. Friedman, “Greedy function approximation: A gradient

boosting machine,” Ann. Stat., vol. 29, no. 5, pp. 1189–1232,

Oct. 2001, doi: 10.1214/aos/1013203451.

[23] R. E. Schapire, “The strength of weak learnability,” Mach.

Learn., vol. 5, no. 2, pp. 197–227, Jun. 1990, doi:

10.1007/bf00116037.

[24] T. Chen and T. He, “xgboost: eXtreme Gradient Boosting,”

2021. R package version. 0.4-4, 2016, [online] Available:

https://CRAN.R-project.org/package=xgboost.

[25] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic

optimization,” Dec. 2015, arXiv: 1412.6980v9. [Online].

Available: https://arxiv.org/abs/1412.6980v9.

[26] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate

Method,” Dec. 2012, arXiv: 1212.5701. [Online]. Available:

http://arxiv.org/abs/1212.5701.

[27] S. Ruder, “An overview of gradient descent optimization

algorithms,” Sep. 2016, arXiv: 1609.04747. [Online].

Available: http://arxiv.org/abs/1609.04747.

[28] J. Duchi, E. Hazan and Y. Singer, "Adaptive subgradient

methods for online learning and stochastic optimization", J.

Mach. Learn. Res., vol. 12, pp. 2121-2159, Jul. 2011.

[29] L. Bottou, “Stochastic gradient descent tricks,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 7700 LECTURE NO, pp. 421–436,

2012, doi: 10.1007/978-3-642-35289-8_25.

[30] X. Glorot and Y. Bengio, “Understanding the difficulty of

training deep feedforward neural networks,” JMLR Workshop

and Conference Proceedings, Mar. 2010. Accessed: Mar. 02,

2021. [Online]. Available: http://www.iro.umontreal.

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into

Rectifiers: Surpassing Human-Level Performance on ImageNet

Classification,” in Proceedings of the 2015 IEEE International

Conference on Computer Vision (ICCV), 2015, pp. 1026–1034,

doi: https://doi.org/10.1109/ICCV.2015.123.

[32] Y. A. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, “Efficient

backprop,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7700

LECTURE NO, pp. 9–48, 2012, doi: 10.1007/978-3-642-

35289-8_3.

[33] “Welcome To Colaboratory - Colaboratory.” Accessed:Mar.

01, 2021 [online] Available:

https://colab.research.google.com/notebooks/intro.ipynb.

[34] Giancarlo Zaccone, Getting Started with TensorFlow -. Packt

Publishing, 2016.

[35] K. Hara, D. Saito, and H. Shouno, “Analysis of function of

rectified linear unit used in deep learning,” in Proceedings of

the International Joint Conference on Neural Networks, Sep.

2015, vol. 2015-September, doi:

10.1109/IJCNN.2015.7280578.

[36] R. A. Dunne and N. A. Campbell, “On The Pairing Of The

Softmax Activation And Cross Entropy Penalty Functions And

The Derivation Of The Softmax Activation Function,” in

Conference on Neural Networks, 1997, pp. 181–185.

[37] C. Zhang, S. Bengio, M. Hardt, B.Recht and O. Vinyals,

"Understanding deep learning requires rethinking

generalization," Nov. 2016, arXiv:1611.03530 [Online].

Available: http://arxiv.org/abs/1611.03530

[38] S. Thongsuwan, S. Jaiyen, A. Padcharoen, and P. Agarwal,

"ConvXGB: A new deep learning model for classification

problems based on CNN and XGBoost," Nuclear Engineering

and Technology 53, no. 2 (2021): 522-531.

[39] Hasan, Hayder, Helmi ZM Shafri, and Mohammed Habshi. "A

Comparison Between Support Vector Machine (SVM) and

Convolutional Neural Network (CNN) Models For

Hyperspectral Image Classification." In IOP Conference Series:

Earth and Environmental Science, vol. 357, no. 1, p. 012035.

IOP Publishing, 2019.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3087647, IEEE Access

VOLUME XX, 2017 9

