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Handwriting recognition for computer systems has been in research for a long time, with different 

researchers having an extensive variety of methods at their disposal. The problem is that most of these 

experiments are done inEnglish, as it is the most spoken language in the world. But other languages such as 

Arabic, Mandarin, Spanish, French, and Russian also need research done on them since there are millions of 

people who speak them. In this work, recognizing and developing Arabic handwritten characters is 

proposed by cleaning the state-of-the-art Arabic dataset called Hijaa, developing Conventional Neural 

Network (CNN) with a hybrid model using Support Vector Machine (SVM) and eXtreme Gradient Boosting 

(XGBoost) classifiers. The CNN is used for feature extraction of the Arabic character images, which are then 

passed on to the Machine Learning classifiers. A recognition rate of up to 96.3% for 29classes is achieved, far 

surpassing the already state-of-the-art results of the Hijaa dataset.  

INDEX TERMS Convolutional Neural Network, Machine Learning, Backpropagation, Arabic Character 
Recognition, Hijja Dataset, Optimizers. 

I. INTRODUCTION 

Handwritten language forms a timeless and inevitable 
aspect of human life. No matter how digital the world 
becomes, handwritten language will always remain. Even 
though the world is moving to a digital era, there are still 
some scenarios where the use of paper and pen cannot be 
avoided. 

Character recognition technologies provide the users an 
automatic mechanism for recognizing the text on the image 
and converting the characters to their corresponding digital 
format. They are used in many verification applications, 
e.g., verifying official documents and bank cheques and 
helping visually impaired people read, e.g., reading paper 
currency or street signs. Character recognition system can 
be used to read both typed and handwritten scripts. The 
handwriting varies, especially in cursive script, where the 
writers' handwritten characters' size and style vary. 
Therefore, handwriting recognition is considered a more 
difficult task in computer vision [1].  

Handwritten character recognition has been under study 
for a long time, with different researchers having many 
methods at their disposal. However, the problem is the 
majority of these experiments are done in Latin script, e.g., 
English, as it is the most popular language in the world [2]. 

Therefore, there are many available character recognition 
applications for English language. On the other hand, 
Arabic is one of the top-5 spoken languages globally, with 
315 million native speakers [3],  which means now, more 
than ever, computers need to also understand what these 
speakers are writing. However, due to the Arabic script’s 
unique characteristics, e.g., cursive nature, presence of 
diacritics, and diagonal strokes, as well as the absence of 
publicly available standard datasets, developing an Arabic 
character recognition system is still challenging [4].  

Recently, Arabic Handwritten Character Recognition 
(AHCR) became an active area in pattern recognition and 
computer vision. AHCR technologies improved 
significantly by using different Machine Learning (ML) 
algorithms, such as Support Vector Machines (SVM) and 
Artificial Neural Networks (ANN). However, the AHCR 
models that use Convolutional Neural Networks (CNNs) 
achieved the state-of-the-art results in different Arabic 
handwritten datasets[5] [1] [6]. CNNs automatically detect 
and extract the distinctive and representative features of the 
images, outperforming the classical ML algorithms that 
need to manually define the features (e.g., SVM [7] [8]). 
Therefore, CNNs achieve better results with large datasets 
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that have a large number of classes. At the classification 
stage, Niu and Suen [9] claim that SVM provides better 
results when it is replaced with MLP at the classification 
stage in deep learning. They explain the reason isthat MLP is 
based on the Empirical Risk Minimization, which attempts to 
minimize the errors in the training set. Therefore, the training 
process is stopped when the first separating hyperplane is 
found by the back-propagation algorithm. On the other hand, 
an SVM classifier aims to minimize the generalization errors 
by using the Structural Risk Minimization principle. The 
algorithm tries to find the hyperplane that maximizes the 
margin area between two classes of training samples. 
Therefore, the generalization ability of SVM is maximized to 
enhance the classification accuracy of the hybrid model after 
replacing the MLP output units in the CNN.  

SVM is a binary classifier natively but can also be used for 
the case of multi-class classification. For multi-class 
classification, the same principal of binary classification is 
used, but SVM changes the problem into a multiple binary-
classification problem. The main idea is to map the data into 
high-dimensional space and apply mutual linear separation 
between two classes. 

 To summarize, CNNs outperform conventional ML 
classifiers in feature extraction, while the latter outperform 
CNNs in classification. Therefore, different hybrid CNN 
architectures have been proposed [10] to compensate the 
limitations of CNN and conventional ML classifiers by 
integrating their features. 

The hybrid CNN architectures can be defined as the 
CNN architectures that replace the softmax fully connected 
layer (FCL) of the CNNs with a classical ML classification 
algorithm [9]. Therefore, our main contribution in this work 
is to study the recognition of Arabic handwritten into 
different hybrid CNN architectures to show how the state-
of-the-art methods can be enhanced based on hybrid 
models. Therefore, we study the effect of different aspects 
of hybrid CNN architecture on the AHCR performance. 
They include the base CNN architectures, the ML 
classification algorithms, and the optimizers and weight 
initializers that are used to train the models.  

The rest of the paper is organized as follows: Section 2 
reviews the AHCR state-of-the-art, and Section 3 presents 
the methodology Section 4 describe the experiment. Section 
5 presents and discusses the experimental results, and 
Section 6 concludes the paper. 

II. LITERATURE REVIEW 

The state-of-the-art deep learning models in AHCR can be 
broadly categorized to standalone CNN models and hybrid 
CNN models. The following subsections outline them with 
tables to summarize them. 

A. AHCR CNNs Models 

El-Sawy et al. [11] claim that CNN approaches outperform 
other methods in feature extraction and classification tasks, 

and that they are suitable for use in Arabic character-
recognition models. However, they requir a large dataset to 
achieve good results, while the available Arabic Handwritten 
Characters datasets are limited in the number of images. 
Therefore, they developed Arabic Handwritten Characters 
Dataset (AHCD) and designed a CNN model. The CNN 
approach provides an accuracy of 94.9%. Similar to the 
previous study, Altwaijry et al. in [1] introduced the Hijja 
dataset,  a new Arabic handwritten characters dataset written 
by children aged from 7 to 12 years old. They also proposed 
a CNN-based model for recognizing Arabic handwritten 
characters. To evaluate their model, they compared its 
performance with the one introduced in El-Sawy’s paper [11] 
on both AHCD and Hijja datasets. From the empirical 
results, Altwaijry’s model outperformed the other model with 
an accuracy of 88% and 97% on Hijja and AHCD datasets, 
respectively. While the other model achieved an accuracy of 
80% and 93.84% on Hijja and AHCD datasets, respectively. 
Balaha et al. in [12] introduced an Arabic handwritten 
character dataset (HMDB) and two CNN-based architectures, 
HMB1 and HMB2, where the former has a larger number of 
hidden layers and trainable parameters to investigate the 
impact of the architecture complexity in recognizing Arabic 
handwritten script. The two proposed architectures were 
trained and tested on three datasets: HMBD, CMATER, and 
AIA9k. Through 16 experiments, the effect of data 
augmentation, regularization, weight initializers and 
optimizers on the models’ performance were studied. The 
best results were 90.7%, 97.3% and 98.4% for HMBD, 
CMATER, and AIA9k, respectively. They compared their 
architecture with the one proposed in [11] by training and 
testing it on HMBD—the accuracy of the model did not 
exceed 47.7%.  

Boufenar et al. in [7] used Alexnet, a popular CNN 
architecture that consists of 5 convolutional layers and 3 
max-pooling layers followed by 3 fully connected layers.  
They studied the effect of preprocessing in improving the 
model results. The Alexnet model was trained and 
evaluated in two datasets, OIHACDB-40 and AHCD, with 
three learning strategies: training the CNN model from 
scratch, using transfer-learning strategy and fine-tuning the 
CNN. The experimental results showed that the first 
strategy outperformed the others with 100% and 99.98% 
accuracies for OIHACDB-40 and AHCD, respectively. 

VGG16  [13] is a very deep CNN architecture that was 
built to investigate how the network depth affects the 
accuracy in a large-scale image-recognition setting. It 
consists of 16 layers and is used in different Handwritten 
recognition applications. De Sousa [6] and Mudhsh [8] 
designed models for Arabic handwritten character 
recognition that were inspired by VGG-16. De Sousa in [6] 
proposed two deep CNN-based models, VGG-12 and 
REGU, for recognizing Arabic Handwritten characters and 
digits. The VGG-12 model is inspired by VGG-16 by 
removing the fifth convolutional block and adding a 
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dropout layer before the softmax FCL that is used as a 
classifier. While the REGU  
Table 1.  An overview of works related to CNN architectures in AHCR 

model was designed from scratch by adding different 
dropout and batch-normalization layers at both CNN and 
the Fully Connected Layers. The two models were trained 
once without data augmentation and once with data 
augmentation. Then, an ensemble model of the four models 
was created by averaging the predictions of each of the 4 
models. The best test accuracy of the ensemble model was 
99.47%. Mudhsh et al. in  [8] proposed a model for Arabic 
handwritten digits and characters recognition. The model 
consists of thirteen convolutional layers, two max-pooling 
layers, followed by three Fully Connected Layers. To 
reduce model complexity and training time, only one-eighth 
of the filter in each layer of the original VGG-16 was used 
in the proposed model. Two different datasets were used to 
train and evaluate the model: ADBase was used for the 
digit recognition task, while HACDB was used for the 
character recognition task. To avoid the overfitting 
problem, they used dropout and data augmentation. The 
achieved accuracy of the model using the ADBase database 
was 99.66% and 97.32% for the HACDB database.  

Alyahya et al. in [15] investigated the performance of 
ResNet-18 architecture in recognizing Arabic handwritten 
characters when FCL and Dropout are added to the original 
architecture. They designed 4 deep models: 2 models that 
used a Fully Connected Layer with/without dropout layer 
after all convolutional layers and 2 models that used 2 Fully 
Connected Layers with/without a dropout layer. They used 
AHCD dataset to train and evaluate the CNN based ResNet-
18 model and the best test result was 98.30%, achieved by 
the original ResNet-18 in AHCR. Table 1 summarizes the 
CNN state-of-the-art models. The table illustrates the author 
of each article, the year of publication, the dataset used for 
training and evaluating the model, the optimization 
techniques used to improve the model and the testing result 
in terms of accuracy. 

B. AHCR Hybrid CNNs Models 

Elluch et al. [16] claimed that CNN achieves excellent results 
in term of feature extraction; however, they use Fully 
Connected Layers (FCLs) as the last layer to perform the 
classification task. They designed a CNN-SVM hybrid model 
and trained it with the HACDB dataset. The model achieved 
6.59% Error Classification Rate (ECR), whereas the 
standard CNN model achieved an ECR of 14.71%. Also, 
Elluch et al. in [17] improved the previous model by adding 
the dropout technique. The ECR is reduced to be 5.83%.  

Shams et al in [18] proposed a deep learning model 
composed of CNN with FCL, then the SVM were used to 
boost the results of the FCL. They focused on solving the 
problem of multi-stroke Arabic characters recognition, i.e. 
recognition of letters that have the same stroke but are 
different in the number and position of the dot(s), by using 
unsupervised K-mean clustering algorithm to group the 
characters into 13 clusters. They used AHCD [11] for 
training and evaluating the model. The model achieved 
95.07% in term of accuracy outperforming Elsawy [11] 
model that achieved 94.90%. 

The details of hybrid approaches for recognizing isolated 
Arabic Handwritten Characters are summarized in Table 2. 
The results in this table are presented in terms of Error 
Character Rate. 

 
Table 2.  An overview of works related to Hybrid CNN Architectures in 

AHCR 

 

Paper Year Dataset Method Optimization Result in 

Accuracy 

El-sawy 

et al. [11] 

2017 AHCD  CNN Mini-batch 94.9 

Altwaijry 

et al. [4] 

2017 AHCD CNN Dropout 

Weight Decay 

97%  

Hijja [4] 88%  

Balaha et 

al. [27] 

2020  HMBD 

[15] 

CNN Dropout 90.7%  

AHCD 

[38] 

97.3%  

AIA9k 

[14] 

98.4%  

Boufenar 

et al. [7] 

2017 AHCD 

[38] 

CNN 

(Alexn

et) 

Dropout 

Mini-batch 

99.98%  

 

OIHAC

DB-40 

[5] 

100%  

De Sousa 

[6] 

2018 AHCD  

[11] 

CNN 

(based 

on 

VGG) 

- Dropout. 

- Batch 

Normalization 

- Data 

Augmentation : 

zoom, 

translation. 

98.42%.  

 

Mudhsh 

et al. [8] 

2017 HACDB CNN 

(based 

on 

VGG) 

- Dropout  

- Data 

Augmentation 

97.32% 

Alyahya et 

al. [15] 

 

2020 AHCD 

[11] 

CNN  -  98.30% 

Paper Year Dataset Hybrid 

Model 

Architecture 

 Results in 

ECR 

Elluch 

et al. 

[16] 

2016 HACDB CNN+SVM 6.59% 

Elluch 

et al. 

[17] 

2016 HACDB CNN+SVM 5.83 %. 

Shams 

et al. 

[18] 

2020 AHCD 

[11] 

CNN + FCL + SVM 4.93% 

ECR: Error Character Rate 
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I. METHODOLOGY  

As mentioned earlier, the hybrid CNN architecture 

comprises  CNN architecture and ML classifiers.  However, 
CNN trained with backpropagation and cannot be directly 
trained with the ML classifier. Therefore, the CNNs trained 
first with the softmax FCL then used as feature extractor for 
training and testing the ML classifier. A general framework 
of the hybrid CNN system is introduced in the first 
subsection. The second subsection elaborates the component 
of hybrid CNN architecture used in this study and the 
enhanced training procedure of hybrid models. The third 
subsection introduces the experiment design of evaluating the 
CNN hybrid model. 

A. HYBRID CNN FRAMEWORK DESCRIPTION 

Figure 1 describes how the proposed hybrid CNN system 
works. It is composed of four parts: the inputs of the system, 
a CNN for feature extraction, an ML classifier that takes the 
extracted features from CNN as input and uses them to 
perform classification, and the outputs of the system.  The 

top section represents the inputs to the system, which 
includes the data, optimizer and weight initializer used as 
inputs to CNN.  It can be seen that the dataset is split for 
training and testing. The middle section illustrates the CNN 
model and the lower represents the ML classifiers. After 
training the CNN, it is evaluated by the testing data and used 
in the next part as feature extractor. 

In the ML classifiers section, the previously trained CNN 
receives the training and testing data and transforms them 
into feature vectors. Then the ML classifiers are trained and 
evaluated by these feature vectors. The outputs of the system 
are the training and testing results of the CNN model and 
CNN hybrid model. 

B. Hybrid CNN Architecture 

1) CNN ARCHITECTURES 

Figure 1.  General Diagram for Hybrid CNN System 
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In this study, we consider 2 deep CNN architectures: 
HMB1, and HMB2[19], as they are CNN architectures of the 
top-performing architectures from related works evaluated on 
the AHCD dataset [20]. The CNN models, which consist of 
alternating layers of convolutional, activation, and pooling 
layers, are used for feature extraction. The following two 
subsections explain the details of CNNs layers. 
a: HMB1 

The input to the model is 32´32 images. All the 
convolutional layers used are kernel size of 3´3 while the 
max-pooling layers used pool size of 2´2. It includes 13 
convolutional blocks where each block has a different 
arrangement of convolutional, batch normalization and 
pooling layers. These blocks are followed by 5 FCL with 
ReLU activation function. The original output layer of the 
model is an FCL with 115 neurons, and softmax is used as an 
activation function. To improve the model, both dropout with 
a ratio of 0.25 and Batch Normalization are applied to reduce 
the overfitting. The total number of parameters in HMB1 is 
6,076,525, and 6,071,693 parameters out of them are 
trainable. Therefore, it is considered as a complex CNN 
architecture. Figure 2 and table 3 depict the design of the 
HMB1 architecture. 
b: HMB2 

Same as HMB1, the input to HMB2 is 32´32 images. As 
shown in figure 3, HMB2 includes 9 convolutional blocks. 

different arrangements of convolutional, max-pooling, batch 
normalization, and dropout layers used in the blocks. After 
the convolutional blocks, a flattened layer of 2048 neurons 
was used as a connection between the convolutional blocks 
and the FCL classifier. A total number of parameters is 
181,373, and 179,869 out of them are trainable parameters. 
Therefore, it is considered less complex architecture than 
HMB1. Figure 3 and table 4 depict the design of the HMB2 
architecture.  

 
Table 3.  Architecture of HMB1 

Layer Type Output 

Shape 

Layer Type Output Shape 

Convolutional Layer (32, 32, 16) Batch Normalization (8, 8, 256) 

Convolutional Layer (32, 32, 16) Max-Pooling Layer (4, 4, 256) 

Batch Normalization (32, 32, 16) Flatten Layer (4096) 

Convolutional Layer (32, 32, 32) Dense Layer (1024) 

Convolutional Layer (32, 32, 32) Batch Normalization (1024) 

Batch Normalization (32, 32, 32) Dropout Layer (1024) 

Max-Pooling Layer (16, 16, 32) Dense Layer (512) 

Convolutional Layer (16, 16, 64) Batch Normalization (512) 

Convolutional Layer (16, 16, 64) Dropout Layer (512) 

Batch Normalization (16, 16, 64) Dense Layer (256) 

Convolutional Layer (16, 16, 128) Batch Normalization (256) 

Convolutional Layer (16, 16, 32) Dropout Layer (256) 

Batch Normalization (16, 16, 64) Dense Layer (128) 

Max-Pooling Layer (16, 16, 64) Batch Normalization (128) 

Convolutional Layer (16, 16, 64) Dropout Layer (128) 

Convolutional Layer (16, 16, 128) Dense Layer (115) 

Figure 2.  HMB2 Architecture from  [27] 

Figure 3.  HMB1 Architecture from [27] 
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Table 4.  Architecture of HMB2 

Layer Type Output  

Shape 

Layer Type Output  

Shape 

Convolutional Layer (32, 32, 32) Max-Pooling Layer (8, 8, 64) 

Batch Normalization (32, 32, 32) Dropout Layer (8, 8, 64) 

Convolutional Layer (32, 32, 32) Convolutional Layer (8, 8, 128) 

Batch Normalization (32, 32, 32) Batch Normalization (8, 8, 128) 

Max-Pooling Layer (16, 16, 32) Convolutional Layer (8, 8, 128) 

Dropout Layer (16, 16, 32) Batch Normalization (8, 8, 128) 

Convolutional Layer (16, 16, 64) Max-Pooling Layer (4, 4, 128) 

Batch Normalization (16, 16, 64) Dropout Layer (4, 4, 128) 

Convolutional Layer (16, 16, 64) Flatten Layer (2048) 

Batch Normalization (16, 16, 64) Dense Layer (115) 

 

2) ML CLASSIFIERS 

The extracted features from the trained CNN are used as 
inputs to 2 different classifiers:  SVM and XGBoost to 
perform the classification tasks. 

a: SUPPORT VECTOR MACHINE (SVM)  

SVM is a machine-learning algorithm that can be used for 
both classification and regression. It has been used in many 
fields to achieve state-of-the-art results. SVM works by 
assuming that training examples are plotted in high-
dimensional feature space. The role of SVM is to find 
hyperplanes that perfectly divide the dataset samples. Kenel, 
C and gamma are the parameters that are used in building the 
SVM models, and the performance highly depends on them. 
In this work, the output of the CNN network is a matrix that 
is flattened to be a vector of features. SVM is a well-known 
classifier for its effectiveness in classifying data with high 
dimensional features. Therefore, we chose SVM as a 
classifier in the hybrid models. 

b: EXTREME GRADIENT BOOSTING (XGBOOST)   

Many boosting classifiers are available as free open-source 
ML libraries, e.g., Adaptive Boosting (Adaboost) [21] and 
gradient boosting [22]. The basic idea behind boosting [23] is 
adding weak learners sequentially to the classification model 
to correct previously misclassified training samples and 

enhance the overall model performance. The weak learner is 
the model whose performance is slightly better than random 
guessing. The gradient boosting is a boosting algorithm that 
uses gradient descent to minimize the cost function. 
XGBoost is an improved and scalable implementation of a 
gradient boosting framework. Since it offers enhanced 
features such as faster speed, customization of the objective 
function and evaluation function, plus  better overall 
performance [24], it was chosen for use in this study. 

3) TRAINING PROCEDURE OF HYBRID CNN MODELS 

The previous subsections present the details of the hybrid 
architecture components: CNN architectures and the ML 
classification algorithms. The basic idea behind the hybrid 
CNN models is replacing the original CNN output layer 
(softmax FCL) of the CNN with an ML classifier. This 
section illustrates the enhanced two-stage training procedure 
of the hybrid CNN models.  
• First Stage (training the CNN with backpropagation): the 

convolutional layers in CNN learn their weights during the 
training by backpropagating the error from the output layer 
back through the FCLs to the first convolutional layer. Due 
to the nature of the learning process, the FCL should be 
used as an output layer during the training of CNN. The 
output of the CNN after this step is the features vector, 
which is the linear combination of the outputs from the 
previous hidden FCL with trainable weights, plus a bias 
term. It seems meaningless to humans, but it makes sense 
to be used as features for any classifier [9].   

• Second Stage (training the ML classifier): the output FCL 
in the trained CNN is replaced with the ML classifier, 
namely SVM or XGBoost. The classifier is trained with the 
feature vector produced by the trained CNN. They are 
trained by the same training data used to train the CNN 
model.  
The stages of the enhanced training procedure are 
illustrated in figure 4 and figure 5.   

Figure 4.  First Stage of Training Hybrid Models 
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C. Experiment Design   

In this study, extensive experiments were designed to study 
the effect of different CNN architectures, ML classifiers, and 
optimizers and weight initializers on the performance of the 
hybrid models. 30 different combinations of 5 optimizers 
(Adam [25], AdaDelta [26], AdaMax [27], AdaGrad [28] and 
stochastic gradient descent (SGD) [29]) and 6 weights 
initializers (Glorot uniform and Glorot normal initializers 
[30],   He uniform and He normal initializers [31] and LeCun 
uniform and LeCun normal initializer [32]) were used in 
training the hybrid models. We used accuracy as a 
performance metric since the used dataset is a balanced 
dataset, i.e., the number of samples in each class is equal. 
The pseudocode below illustrates the experiment procedures. 
It should be mentioned that the enhanced 2-stage procedure 
is part of the experiment.  
 
For optimizer in optimizers lists do  
      For initializer in weight initializers list do  

Train the CNN with the selected optimizer and 
initializer using training data  

Evaluate the CNN with testing data  
For classifier in ML classifiers list do  

Replace the last FCL with classifier  
Train the classifier using training set  
Evaluate the classifier with testing set  

End_For  

End_For  

End_For  

III. EXPERIMENTS  

This section introduced the experiments that are conducted 
on AHCR hybrid CNN architectures. It includes the dataset 
and the training parameters.  

A. DATASET  

The Hijja dataset is a free and publicly available dataset 
collected by Altwaijry et al  [1]. It includes images of 

separated Arabic handwritten letters collected from children 
between the ages of 7 and 12. The dataset has 108 classes, 
which represent the Arabic letter in 4 shapes: beginning, 
middle, and end of the word and letter in isolated shape. The 
size of the image is 32*32 pixels. The total number of images 
in the dataset is 47,434. The hybrid CNN architectures are 
trained and evaluated using Hijja dataset. We used a total of 
12,776 images that belong to the letters in isolated shape, 
with 29 classes corresponding to the Arabic letters in 
addition to “Hamza”. The dataset is randomly split into 80% 
for training and validation (the 80% set is split internally into 
80% for training and 20% for validation) and 20% for 
testing. Thus 8,174 images are used for training, 2,059 
images for validation and 2,543 images for testing. Table 5 
shows an image sample with the corresponding Arabic typed 
character for each class in Hijja dataset. The participants of 
Hijja are children and the resolution of the images is very 
low. Therefore, it has many distorted or unclear characters. 
Figure 6 shows distorted samples of Arabic letters. The 
character Kaf “ك” and the character Faa “ف” can be 
misclassified with Noon “ن”, the character Meem “م” can be 
misclassified with Ha “ح”, and the characters Haa “ ـھ ” and 
Qaf “ق” are distorted and unreadable. Hijja is a new dataset 
that was published in 2020 and there are not many 
experiments on it. However, as far as we know, the best 
result has been achieved with the Hijja dataset was 88% in 
terms of accuracy. Therefore, in this experiment, the Hijja 
dataset has been chosen to fairly evaluate the CNN hybrid 
models.  
 

Figure 5.  Second Stage of Training Hybrid Models 

Figure 6.  Distorted and Unclear Samples from Hijja Dataset 
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Google Colaboratory (Colab) ) [33] was chosen to implement 
the Hybrid CNN architecture and conduct the experiments. 
For this research, we used different open-source Python 
libraries and frameworks to deal with the images, implement 
the DL and ML models. They are: 
• Tensorflow [34] for implementation and evaluation of the 

CNN models.  
• Scikit-learn for dealing with multi-dimensional arrays and 

implementing ML models. 
• OpenCV was used widely through the study for reading, 

resizing, and saving images. 
• CSV library provides methods to deal with the CSV 

(Comma Separated Values) format which is used to save 
and analyze the experiment results. 

• Glob is used in the experiments to find all the file names 
that follow a specific pattern.  

B. TRAINING PARAMETERS 

In this study, we trained and evaluated the CNN hybrid 
models separately, but using the same parameters and 
metrics. Relu [35]  is used as an activation function for all 
convolutional and hidden FC layers, while softmax [36]  is 
used for the output layer in CNN-FCL architecture. Max 
pooling is chosen to be used in the pooling layer as they are 
preferable in handwritten recognition tasks. We trained the 
model on different epochs and batch-size values and found 
that training the model on 50 epochs with a batch size equal 
to 32 achieves the best results. Categorical Cross entropy is 
used as loss function. The learning rate of the optimizers is 
illustrated in table 6.  
In training the CNN+SVM model, we used radial basis 
function (RBF) as the kernel function, C with value equal to 
1 and gamma is “Scale”. In the XGBoost+CNN model, 
deviance was used as activation function and max_depth was 
set to 3. 

Table 6. Learning Rate Values of the Optimizers 
Optimizer Learning rate 

Adam [25] 0.001 

AdaDelta  [26] 1.0 

AdaMax  [27] 0.002 

AdaGrad [28] 0.01 

 (SGD) [29] 0.01 

IV. RESULTS AND DISCUSSION 

A. RESULTS 

Table 7 presents the experimental results. The table consists 
of 30 rows that correspond to the combination of 5 
optimizers and 6 weight initializers, and 6 columns that 
illustrate the performance of the 3 models in the 2 
experiments in terms of accuracy. The labels Experiment 1 
and Experiment 2 in the first row refer to the experiments 
that used HMB1 and HMB2, respectively. The second row in 
the table illustrates the Hybrid CNN models: CNN+FCL, 
CNN+SVM and CNN+XGBoost. The first and second 
columns present the optimizers and weight initializers. The 
third through eighth columns are the results in accuracy of 
the classifiers as illustrated in the second row. 

Figure 7 and figure 8 show the three hybrid CNN models' 
testing accuracy as a line chart in Experiment 1 and 
Experiment 2, respectively. The rows in experiment tables 
are presented in the x-axis of the line chart and the y-axis 
refers to the classifiers' test accuracies. The blue line refers to 
the testing accuracy of the standalone CNN model. While the 
orange and green lines refer to the hybrid models that used 
SVM and XGBoost, respectively. 

From the conducted experiments, the highest accuracy 
reported in Experiment 1 was 96.3% achieved by SVM, 
while XGBoost achieved a comparable result with the 
highest accuracy equal to 95.7%. The best result reported by 
CNN was 89.7%. The average testing accuracies of CNN, 
SVM and XGBoost in the same experiment are 74%, 91.4% 
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Table 5.  Samples of Hijja Classes 
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and 90.2%, respectively. It can be noted that hybrid models 
that used SVM and XGBoost as classifiers outperform the 
original model that uses FCL.  

Table 8 and table 9 represent the average and the 
maximum accuracies with respect to the optimizers and 
weight initializers in Experiment 1, respectively.  

 From the conducted experiments, the highest accuracy 
reported in Experiment 2 is 94.5%. It is achieved by the 
SVM classifier. The highest accuracy reported by XGBoost 
and CNN are 92.5% and 84.6%, respectively. The average 
testing accuracies of CNN, SVM and XGBoost in the same 
experiment are 54%, 90% and 88.5%, respectively. Table 10 
and table 11 below represent the average and the maximum 
accuracies with respect to the optimizers and weight 
initializers, respectively. 
 

Table 8. Aggregated Results Based on Optimizers in Experiment 1 

Optimizer\ 

Model 

CNN+FCL CNN+SVM CNN+XGBoost 

average Max average max average max 

Adamax 0.753 0.874 0.927 0.959 0.917 0.953 

Adadelta 0.841 0.897 0.957 0.963 0.950 0.957 

Adam 0.845 0.882 0.952 0.962 0.946 0.955 

SGD 0.393 0.857 0.779 0.949 0.745 0.945 

Adagrad 0.874 0.877 0.956 0.960 0.951 0.957 

Table 9. Aggregated Results Based on weight initializers in Experiment1 

Weight  

Initializers  

\ Model 

CNN+FCL CNN+SVM CNN+Xgboost 

Average Max Average Max Average Max 

HeNormal 0.863 0.888 0.955 0.962 0.950 0.955 

He Uniform 0.730 0.897 0.893 0.962 0.874 0.957 

GlorotNormal 0.682 0.874 0.917 0.960 0.900 0.953 

Glorot Uniform 0.736 0.886 0.922 0.962 0.910 0.955 

Lecun Normal 0.679 0.882 0.849 0.963 0.837 0.957 

Lecun Uniform 0.755 0.873 0.950 0.959 0.940 0.951 

Table 10. Aggregated Results Based on Optimizers in Experiment2 

Optimizer\ 

Model 

CNN+FCL CNN+SVM CNN+XGBoost 

average Max average max average max 

Adamax 0.551 0.817 0.925 0.939 0.910 0.921 

Adadelta 0.514 0.738 0.911 0.941 0.897 0.925 

Adam 0.398 0.743 0.914 0.945 0.902 0.924 

SGD 0.424 0.790 0.869 0.886 0.852 0.869 

Adagrad 0.812 0.846 0.881 0.908 0.862 0.889 

Table 11: Aggregated Results Based on weight initializers in Experiment 2 

Weight  

Initializers  

\ Model 

CNN+FCL CNN+SVM CNN+Xgboost 

Average Max Average Max Average Max 

HeNormal 0.629 0.790 0.904 0.941 0.888 0.925 

He Uniform 0.533 0.787 0.885 0.922 0.869 0.903 

GlorotNormal 0.555 0.841 0.914 0.932 0.899 0.917 

Glorot Uniform 0.417 0.817 0.902 0.934 0.886 0.921 

Lecun Normal 0.648 0.817 0.910 0.945 0.894 0.924 

Lecun Uniform 0.457 0.846 0.885 0.930 0.872 0.914 

B. Discussion  

 

 Experiment 1 Experiment 2 
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HN 0.838 0.953 0.950 0.642 0.934 0.921 

HU 0.873 0.959 0.953 0.634 0.922 0.903 

GN 0.874 0.957 0.951 0.281 0.914 0.904 

GU 0.210 0.776 0.748 0.573 0.931 0.917 

LN 0.871 0.958 0.951 0.817 0.939 0.921 

LU 0.850 0.956 0.950 0.360 0.910 0.897 

A
d

a
d

e
lta

 
 

HN 0.888 0.962 0.955 0.738 0.941 0.925 

HU 0.897 0.962 0.957 0.608 0.898 0.876 

GN 0.666 0.940 0.932 0.647 0.928 0.917 

GU 0.886 0.962 0.954 0.435 0.934 0.921 

LN 0.882 0.963 0.957 0.587 0.934 0.921 

LU 0.826 0.951 0.946 0.069 0.829 0.822 

A
d

a
m

 
 

HN 0.859 0.960 0.955 0.207 0.910 0.903 

HU 0.870 0.958 0.953 0.093 0.883 0.877 

GN 0.872 0.960 0.953 0.623 0.932 0.917 

GU 0.882 0.962 0.955 0.096 0.882 0.875 

LN 0.733 0.919 0.917 0.623 0.945 0.924 

LU 0.851 0.953 0.945 0.743 0.930 0.914 

S
G

D
 

 

HN 0.857 0.949 0.945 0.790 0.885 0.860 

HU 0.135 0.630 0.560 0.541 0.865 0.854 

GN 0.129 0.773 0.714 0.385 0.886 0.869 

GU 0.827 0.949 0.942 0.164 0.856 0.829 

LN 0.035 0.446 0.404 0.396 0.862 0.851 

LU 0.376 0.929 0.907 0.268 0.862 0.851 

A
d

a
g

r
a

d
 

  

HN 0.875 0.949 0.946 0.766 0.851 0.831 

HU 0.875 0.954 0.948 0.787 0.857 0.834 

GN 0.869 0.955 0.950 0.841 0.908 0.886 

GU 0.877 0.959 0.953 0.817 0.908 0.889 

LN 0.874 0.960 0.957 0.815 0.871 0.851 

LU 0.873 0.959 0.951 0.846 0.893 0.877 

 HN = HeNormal  

LN = LecunNormal 

GN 

 = GlorotNormal 

HU = HeUniform 

LU = LechunUniform 

GU = GlorotUniform 

Table 7.  Results of the Experiments 
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The main objective of the research is to build a hybrid 
model that delivers better performance in recognizing Arabic 
Handwritten Characters. In this section, the performance of 
the hybrid CNN-based architectures will be discussed 
according to three aspects: the base CNN architectures, the 
ML classifiers used in the hybrid models, and optimizers and 
weight initializers. 

Hijja was the dataset used to evaluate the hybrid models. 
As mentioned in [1], the performance of different CNN-
based models produced significantly lower results in the 
Hijja compared to other Arabic Handwritten Characters 
datasets. Therefore, it is considered a more complex and 
difficult dataset. To the best of our knowledge, the highest 
accuracy achieved in Hijja dataset was 88%. The base CNN 
models of HMB1 and HMB2 with softmax FCL as output 
layer achieved very close results to the Hijja’s best results 
with accuracies of 89% and 87%, respectively. The results of 
the HMB1 are better than HMB2 in all three classifiers. 
However, HMB1 is a more complex architecture with 

6,071,693 trainable parameters compared to HMB2’s179,869 
trainable parameters. 

From the results of Experiment 1 and Experiment 2, the 
best results in terms of test accuracy for FCL, SVM and 
XGBoost as classifiers were 89%, 96.3% and 95.7%, 
respectively. While the lowest testing accuracies for FCL, 
SVM and XGBoost were 3.5%, 44.6% and 40.4%, 
respectively. It can be concluded that the performance of 
SVM and XGBoost as classifiers in hybrid models 
outperforms the FCL as classifier by a large margin. From 
tables 8, 9, 10 and 11, SVM achieved slightly better results 
than XGBoost. 

In general, Adadelta achieved the highest accuracy in 
HMB1 with the three classifiers and Adam in HMB2. 
HeNormal achieved the best aggregated accuracy in HMB1, 
while GlorotNormal achieved best aggregated accuracies in 
both models.  

Poor performance of the CNN model with FCL can be 
justified in that CNN as a whole requires a larger dataset 
when compared to other algorithms like SVM and XGBoost. 

Figure 7.  Results of Experiment 2 in Term of Test Accuracy 

Figure 8.  Results of Experiment 1 in Term of Test Accuracy 
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Zhang et al. [37] stated that in case of a simple 2-layer CNN, 
a 2n+d number of parameters are sufficient to classify a 
dataset with n number of samples with d dimensions. 
Implementing this approach to our dataset, the number of 
parameters of CNN models were 6,071,693 and 179,869 for 
HMB1 and HMB2 respectively. Our dataset had 8,174 
training examples in 29 classes. Thus, 2*8,174+29 = 16,377 
is quite small in comparison with this high number of 
parameters. This verifies that our dataset was too small to be 
classified by a classic CNN. In comparison, SVM and 
XGBoost have no such limitation of a large dataset. 

 
The only thing that has remained same in our classification 

model is the CNN architecture for feature extraction. The 
things that have changed are FCL, SVM and XGBoost at 
classification stage. When the comparison of parameters is 
done for these architectures, it can be seen that there is a 
huge difference of parameters. For FCL the total number of 
parameters depends on number of layers and neurons, these 
parameters are weights and biases that needs to be tuned. 
Total number of trainable parameters in FCL that we used 
are 698,653. Which is still a large number in comparison 
with 16,377. In contrast this is not the case for SVM and 
XGBoost. SVM and XGBoost have a limited number of 
parameters when compared with CNN (including FCL). [38, 
39]. The number of parameters to be tuned in SVM and 
XGBoost can not be calculated accurately as many factors 
involved in them are dynamic i.e. number of trees, depth of 
trees. Despite of it, we can still make a comparison. Only a 
few parameters are needed to be tuned in case of SVM and 
XGBoost [38, 39], for SVM these parameters are to tune the 
parameter values of the kernel that is being used for 
classification i.e. linear, radial basis function (RBF) etc. and 
in XGBoost these parameters depends on booster that has 
been selected and learning task that needs to be done i.e. 
regression or tree. Regression has a few parameters to be 
tuned depending upon number of variables in the dataset but 
in case of tree the number of parameters to be tuned are the 
depth of the tree of the number of the trees to be used. Which 
in comparison are still smaller than the number of parameters 
in FCL. 

C. Comparison 

An explained literature review of how much work is 
present in the field of Arabic character recognition. Table 1 
shows the work done using CNN models and Table 2 shows 
the work done on Arabic character recognition using hybrid 
models. In case of using normal CNN models 6 different 
types of datasets has been used which are AHCD, HMBD, 
AIA9k, OIHAC, HACDB and Hijja. The dataset used in 
abundance and in almost every study was AHCD [11], for 
which a maximum accuracy was obtained of 99.98% by [7] 
by using AlexNet.  

In the case of hybrid models, HACDB and AHCD was 
used. Accuracy achieved by using AHCD in its original 

paper was 94.90%, which was improved with hybrid model 
[18], which achieved 95.07% accuracy. 

We compare our methodology and the one that was 
conducted by the creators of the Hijja dataset to see the 
differences and effectiveness in how both models performed. 
The Hijja dataset is new so there is not much work present 
which uses it, [4] used the Hijja dataset and achieved an 
accuracy of 88%, which we improved by using hybrid 
models. The maximum accuracy we achieved was 96.3% by 
using SVM at classification stage. 

V. CONCLUSION 
The original Hijja experiment designed a convolutional 
neural network (CNN) and used it for both feature extraction 
and classification of the Arabic characters.  It ended up with 
its best accuracy being 88%. But the same CNN was used to 
experiment on the AHCD dataset and it achieved an accuracy 
of 97%, which shows that at that time, the Hijja dataset was 
imbalanced and needed to be reevaluated. 

In our experiment, we analyzed the Hijja dataset and found 
irregularities, like some blurry letters and some distorted and 
unclear symbols. We combined an ML model and Deep 
Learning model to form a hybrid model, since CNNs are 
great for feature extraction and ML models are great at 
classification, implementing a combination of the two with 
each one serving the purpose it is best at, giving  us an 
effective hybrid model. We conducted two experiments and 
attained an accuracy of 96.3%, which is 8% higher than the 
original Hijja experiment. Our hybrid model even achieved 
an accuracy comparable to the one conducted on the AHCD 
dataset using the Hijja model, which shows that our hybrid 
model is highly effective.   
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