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ABSTRACT CIPDE and JADE are two powerful and effective Differential Evolution (DE) algorithms

with strong exploration and exploitation capabilities. In order to take advantage of these two algorithms,

we present a hybrid differential evolution algorithm combining modified CIPDE (MCIPDE) with modified

JADE (MJADE) called CIJADE. In CIJADE, the population is first partitioned into two subpopulations

according to the fitness value, i.e., superior and inferior subpopulations, to maintain the population diversity.

The superior subpopulation evolves using the operation defined in MCIPDE. The MCIPDE adds an external

archive to the mutation scheme to enhance the population diversity and exploration capability of original

CIPDE. While the inferior subpopulation evolves using the operation defined in MJADE. The MJADE

modifies the original JADE by adjusting the parameter p in linear decreasing way to balance the exploration

and exploitation ability of original JADE. A new crossover operation is designed to original JADE to deal

with the problem of stagnation. Furthermore, the parameters CR and F values of CIJADE are updated

according to a modified parameter adaptation strategy in each generation. We validate the performance

of the proposed CIJADE algorithm over 28 benchmark functions of the CEC2013 benchmark set. The

experimental results indicate that the proposed CIJADE performs better than the eleven popular state-

of-the-art DE variants. What’s more, we apply the proposed CIJADE to deal with Unmanned Combat

Aerial Vehicle (UCAV) path planning problem. The simulation results show that the proposed CIJADE can

efficiently find the optimal or near optimal flight path for UCAV.

INDEX TERMS Differential evolution, hybrid algorithm, modified CIPDE, modified JADE, UCAV path

planning.

I. INTRODUCTION

Differential evolution(DE) [1] first introduced by Storn and

Price in 1995 is an efficient and robust optimization algorithm

for dealing with different types of benchmark functions and

practical optimization problems [2], [3]. DE is one of the

most popular evolutionary algorithms (EAs) because it needs

few control parameters, is very powerful, and is easy to

implement. As an important paradigm of EAs, DE is also a

population-based global stochastic search algorithm. DE uti-

lizes three main operators mutation, crossover and selection

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

to make the population move toward the global optimum

gradually [4]. In the last two decades, DE and other meta-

heuristic algorithms have been widely utilized to deal with

a variety of scientific and real-world optimization problems,

such as concept drift detectors in data streams [5], opti-

mum bandwidth allocation [6], time series forecasting [7],

job scheduling [8], maritime hybrid energy system [9] and

vehicle fuel consumption [10].

The overall performance of DE is significantly affected by

its three control parameters (i.e., scale factor F , crossover

rate CR and population size NP) and trial vector gen-

eration schemes (i.e., mutation and crossover operators)

[11], [12]. A lot of evidences show that the most proper
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mutation schemes and parameters of DE are usually different

when it is used to different types of optimization problems

[4], [13], [14]. The reason is that DE has different exploitation

and exploration capabilities when it owns different mutation

schemes and parameter settings [2]. In fact, it is a time-

consuming and challenging task to select proper control

parameters and mutation operators for DE because differ-

ent optimization problems possess different characteristics

[15], [16]. It is still an open issue in the field of DE research.

So far, there are more than five mutation schemes (i.e., DE/

rand/1, DE/best/1, DE/rand/2, DE/best/2, DE/target-to-

rand/1, and DE/target-to-best/1) and more than two crossover

operations (i.e., binomial and exponential crossover) in the

DE family [3]. Among thesemutation schemes, ‘‘DE/rand/1’’

and ‘‘DE/rand/2’’ are random in nature and they have strong

exploration ability. While ‘‘DE/best/1’’ and ‘‘DE/best/2’’ are

greedy in nature and they have strong exploitation ability.

Zhang and Sanderson [17] proposed a very effective and

powerful mutation scheme ‘‘DE/target-to-pbest/1’’ which is

less greedy than other best individual guided mutation strat-

egy and it can make a good balance between the exploration

and exploitation capabilities. Recently, Zheng et al. [18]

proposed a new powerful mutation scheme ‘‘DE/target-to-

ci_mbest/1’’ which adopts collective information of top m

good individuals. The experimental results demonstrated this

mutation scheme also can make a good trade-off the explo-

ration and exploitation capabilities. These mutations schemes

are suitable for different problems. To make better use of

these mutations schemes, many researchers have proposed

several improvedDE variants which adoptmultiplemutations

schemes adaptively and cooperatively [13], [15], [19]–[21].

Qin et al. [13] presented a self-adaptive DE (SaDE) in which

four mutation schemes (i.e., ‘‘DE/rand/1’’, ‘‘DE/target-

to-best/1’’, ‘‘DE/rand/2’’, ‘‘DE/target-to-rand/1’’) are adap-

tively selected by each individual according to their previous

experiences of successfully generating solutions. Wang et al.

presented a composite DE algorithm named CoDE [19]

which employs three mutation schemes (i.e., ‘‘DE/rand/1’’,

‘‘DE/rand/2’’, ‘‘DE/target-to-rand/1’’) and three parameter

control schemes in a random manner to generate candidate

solutions. Mallipeddi et al. [20] presented a DE variant

with ensemble of mutation schemes and parameters, named

EPSDE, which has a strategy pool containing three distinct

mutation strategies (i.e., ‘‘DE/best/2’’, ‘‘DE/rand/1’’ and

‘‘DE/target-to-rand/1’’). Wu et al. [21] presented a multi-

population ensemble DE, named MPEDE, which consists of

three mutation schemes (i.e., ‘‘DE/rand/1’’, ‘‘DE/target-to-

pbest/1’’ and ‘‘DE/target-to-rand/1’’) with dynamic resource

allocation strategy. All of the above algorithms combine the

mutation schemes having strong exploration ability with the

mutation schemes having strong exploitation ability.

From a higher level point of view, different DE vari-

ants have different characteristics and show different abil-

ities in solving different optimization problems [4]. Such

as JADE [17] has strong exploitation ability and is suitable

for tackling unimodal and simple multimodal functions, and

CoDE [19] has strong exploration ability and is suitable for

dealing with complicated multimodal functions [22]. Many

powerful and efficient DE variants have been proposed in

last few decades. These DE variants have their own advan-

tages and disadvantages. In order to make the full use of

the advantages of these DE variants, some researchers have

used ensemble and hybrid technology to combine these DE

variants, and then put forward even better DE algorithms.

Wu et al. [4] proposed a high-level ensemble of different

DE variants (EDEV) which consists of three highly popular

and efficient DE variants, namely JADE, CoDE and ESPDE.

Li et al. [22] proposed hybrid DE algorithm HMJCDE which

uses hybrid technology to combine the two well-known DE

variants JADE and CoDE. DE has been also mixed with other

swarm intelligence algorithms, such as particle swarm opti-

mization (PSO) [23] and Artificial Bee Colony [24]. These

hybrid algorithms can take advantage of different methods

and enhance the overall optimization performance. However,

there are no work to mix two powerful DE variants JADE and

CIPDE [18] to combine their advantages.

Meanwhile, population partitioning approaches for

improving the performance of swarm intelligence algorithms,

such as DE and PSO, attracted more and more attention

[4], [21], [25]–[27]. Dividing the whole population into

multiple sub-populations can maintain the population diver-

sity [28]. Zhong et al. [25] presented a DE variant DP-DE

based on dual populations. In the DP-DE, first population

focuses on global search and the second one focuses on local

fine tuning. Wu et al. [4] proposed multi-population based

framework (MPF) to implement the ensemble of several DE

variants named EDEV. Yu and Zhang [26] presented aMPDE

in which each subpopulation uses the same mutation scheme

‘‘DE/best/1’’ in the evolution.

Based on the above consideration, a hybrid differential

evolution algorithm combining modified CIPDE with mod-

ified JADE called CIJADE is proposed in this paper. In the

CIJADE, the population is first divided into two subpop-

ulation according to the fitness value, i.e., superior and

inferior subpopulations. The superior subpopulation evolves

using the operation defined in modified CIPDE and the

inferior subpopulation evolves using the operation defined

in modified JADE. Furthermore, the parameters CR and F

values are updated according to a modified parameter adap-

tation strategy in each generation. CIJADE has been verified

on 28 benchmark functions developed for the 2013 IEEE

Congress on Evolutionary Computation (IEEE CEC2013).

The experimental results indicate that the proposed CIJADE

performs better than the comparing algorithms.Moreover, we

also apply the CIJADE to the unmanned combat aerial vehicle

(UCAV) path planning problem and compare it with other

meta-heuristic algorithms.

The rest of this paper is organized as follows.

Section 2 briefly introduces the standard DE, JADE and

CIPDE. Then, our hybrid DE algorithm combining modified

CIPDE with modified JADE, called CIJADE, is given in

Section 3. Section 4 presents the experimental results on
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CEC2013 benchmark set. Moreover, the application of the

CIJADE to the UCAV path planning problem is given in

Section 5. Finally, Section 6 concludes this study.

II. RELATED WORKS

In this section, we briefly introduce basic DE, JADE and

CIPDE algorithms. They are closely related to our proposed

algorithm CIJADE. Some reviews on other state-of-the-art

DE variants such as jDE, SaDE, and CoDE can be found

in the previous paper of Meng et al. [14]. A detailed review

of other improved DE variants can be found in the elaborate

surveys [2], [3].

A. DIFFERENTIAL EVOLUTION (DE)

Similar to other EAs, DE has three main operators: mutation,

crossover, and selection. The DE population is represented

by a set of real parameter vectors Xi,g = (xi,1,g, xi,2,g, . . .,

xi,D,g), i = 1, 2, . . . ,NP, g = 1, 2, . . . ,Gmax, where g

is the generation number, NP is the population size, and D

is the dimension of the target problem. DE begins with an

initial population including NP D-dimensional individuals

randomly generated by the following equation.

xi,j,0=xmin,j+rand(0, 1) · (xmax,j−xmin,j) j=1, 2, . . . ,D

(1)

where i = 1, 2, . . . ,NP represents the index of the individual,

j represents the variable index in the ith individual at the

generation g = 0, rand(0, 1) is a uniformly distributed

random real number in the interval [0, 1], and xmin,j, xmax,j are

the lower and the upper bounds of the variable xi,j. Then DE

enters a cycle of evolutionary operations including mutation,

crossover and selection until a termination criterion is met.

These three components are presented in detail as follows.

Mutation: DE performs the mutation operation to create

a donor vector Vi,g = (vi,1,g, vi,2,g, . . . , vi,D,g) for each tar-

get vector of the population. Six commonly used mutation

schemes are given as follows.

DE/rand/1:

Vi,g = Xr1,g + F · (Xr2,g − Xr3,g) (2)

DE/rand/2:

Vi,g=Xr1,g+F · (Xr2,g−Xr3,g)+F · (Xr4,g − Xr5,g) (3)

DE/best/1:

Vi,g = Xbest,g + F · (Xr1,g − Xr2,g) (4)

DE/best/2:

Vi,g=Xbest,g+F · (Xr1,g−Xr2,g) + F · (Xr3,g−Xr4,g) (5)

DE/target-to-best/1:

Vi,g=Xi,g+F · (Xbest,g−Xi,g) + F · (Xr1,g−Xr2,g) (6)

DE/target-to-rand/1:

Vi,g=Xi,g+F · (Xr1,g−Xi,g) + F · (Xr2,g − Xr3,g) (7)

where g stands for the generation, Xbest,g is the best individual

in current generation, the indices r1, . . . , r5 are randomly

chosen from the interval [1,NP] and r1 6= r2 6= r3 6= r4 6=

r5 6= i. A positive control parameterF is called scaling factor,

which is adopted to scale the difference vectors.

Crossover: DE performs the crossover operation to cre-

ate a trial vector Ui,g = (ui,1,g, ui,2,g, . . . , ui,D,g) for each

individual by crossing the mutation vector and target vector.

The most commonly used binomial crossover operation is

formulated as follows.

ui,j,g =

{

vi,j,g if (randi,j(0, 1) ≤ CR or j = jrand )

xi,j,g otherwise
(8)

where CR ∈ [0, 1] is a user-defined parameter called

crossover rate, randi,j(0, 1) ∈ [0, 1] is a uniformly dis-

tributed random number, and jrand is a uniform random inte-

ger between 1 and D.

Selection: DE performs the selection operation by using

a one-to-one competition to select the trial vector or the

target vector to enter the next generation based on the fitness

value. For a minimization problem, the selection operation is

formulated as follows.

Xi,g+1 =

{

Ui,g if f (Ui,g) ≤ f (Xi,g)

Xi,g otherwise
(9)

where f (.) are the fitness values of the trial vector Ui,g and

the target vector Xi,g.

B. JADE

JADE [17] has twomain features, i.e., a newmutation scheme

with an optional external archive and the control parameter

values of the F,Cr are updated in adaptive way.

The new mutation scheme is denoted by DE/target-to-

pbest/1, which is given in Eqs. (10) and (11). It is a variant of

the DE/target-to-best/1.

Mutation without archive:

Vi,g=Xi,g+F · (Xpbest,g−Xi,g)+F · (Xr1,g − Xr2,g) (10)

Mutation with archive:

Vi,g=Xi,g+F · (Xpbest,g−Xi,g)+F · (Xr1,g − Xr2,g) (11)

This new mutation scheme adopts the optional external

archive to reserve the population diversity and give use-

ful information on the promising evolutionary direction.

In Eqs. (10) and (11), the Xpbest,g represents the randomly

selected individual from the top 100p%(p ∈ (0, 1]) individu-

als at the g generation. The control parameter p determines

the greediness of this new mutation scheme and balances

exploitation and exploration. The difference between Eq. (10)

and Eq. (11) depends on the second difference vector. Xr2,g
in Eq. (10) is selected from the current population solutions

P while Xr2,g in Eq. (11) is selected from the union P ∪ A,

where A is a set of archived inferior solutions. At the begin-

ning, the archive A is empty and then unsuccessful target

vectors (inferior solutions) are added to A at each generation.
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The archive size is set to the same as the population size. If the

number of inferior solutions exceeds archive size, randomly

selected inferior solutions are removed from the archive A to

make space for the newly inserted vectors.

In JADE, control parameters F,Cr for each vector are

updated in an adaptive way. F is updated according to a

Cauchy distribution, which is shown in Eq. (12). Cr is

updated according to a Gaussian distribution, which is shown

in Eq. (13).

F = randc(µF, 0.1) (12)

Cr = randn(µCr, 0.1) (13)

where both µF and µCr are initialized to 0.5. When the

value of Cr is outside of the range [0, 1], it is replaced by

the boundary value (0 or 1) close to the generated value. F is

truncated to 1 when F > 1, while F is regenerated when

F < 0. In each generation, successful values for F and Cr

are saved in the set of SF and SCr , and utilized to update µF

and µCr . At the end of the generation, when SF and SCr are

not empty, µF and µCr are updated as follows.

µF = (1 − c) · µF + c · meanL(SF ) (14)

µCr = (1 − c) · µCr + c · meanA(SCr ) (15)

where c is a learning rate, and usually 1/c ∈ [5, 20].MeanA(.)

is the usual arithmetic mean while meanL(.) is the Lehmer

mean which is defined as follows [18].

meanL(SF ) =
∑

F∈SF
F2/

∑

F∈SF
F (16)

C. CIPDE

CIPDE [18] also has two main features, i.e., a new mutation

scheme collective information-based mutation (CIM) and a

new collective information-based crossover (CIX) to deal

with stagnation. CIPDE uses the parameter control scheme

proposed in JADE.

The new mutation scheme CIM is denoted by DE/target-

to-ci_mbest/1, which is given in Eq. (17). CIM uses the

collective information of top m good vectors corresponding

to the target vector.

Vi,g=Xi,g+F · (Xci_mbesti,g−Xi,g) + F · (Xr1,g−Xr2,g) (17)

where target vector Xi,g with a fitness ranking of i, Xr1,g and

Xr2,g are randomly chosen distinct vector and different from

base vector. The collective vector Xci_mbesti,g is defined as

follows.

Xci_mbesti,g =

m
∑

k=1

wk · Xk,g (18)

Xci_mbesti,g is a linear weighting combination of the top

m,m ∈ [1, i], vectors in population with fitness values

better than or equal to Xi,g. wk is a weighting factor using to

denote the contributions of different vectors, which is defined

as Eq. (19).

wk =
(m− k + 1)

(1 + 2 + ... + m)
for k = 1, 2, . . . ,m (19)

In order to deal with the stagnation problem of DE,

the authors proposed the collective information-based

crossover (CIX). Stagnation is the situation where the algo-

rithm cannot produce better trivial vectors even though the

population still has a certain level of diversity. In the lit-

erature [18], they use the consecutive unsuccessful update

CUUi(i = 1, 2, . . . ,NP) to identify the stagnant individual

and it can be defined as Eq. (20).

CUUi,g+1 =

{

0 if f (Ui,g) ≤ f (Xi,g)

CUUi+g + 1 otherwise
(20)

where CUUi,g stands for the consecutive unsuccessful update

of the ith population individual, whose initial value is 0.

If CUUi,g > T , where T represents the user-defined thresh-

old of stagnation, which means that ith individual is stagnant

[18], [29], [30]. In the literature [18], the recommended value

of T is set to 90. The individual uses the Eq. (21) as crossover

operation when the stagnation occurs, otherwise, it uses the

Eq. (8) as crossover operation.

ui,j,g=

{

vi,j,g if (randi,j(0, 1) ≤ CR or j = jrand )

xci_mbesti,j,g otherwise

(21)

where xci_mbesti,j,g is the jth variable of the Xci_mbesti,g.

III. THE PROPOSED ALGORITHM CIJADE

The main idea of our algorithm CIJADE is described in this

section. In CIJADE,we adopt a dual-population framework to

hybrid themodified CIPDE andmodified JADE. CIJADE can

combine the advantages of both modified CIPDE and modi-

fied JADE. Figure 1 shows an illustration of the main frame-

work of our proposed CIJADE algorithm. From Figure 1,

we can see that CIJADE is composed of population initial-

ization, population division with sort strategy, subpopulation

evolution through MCIPDE algorithm or MJADE algorithm,

and parameters update.

A. POPULATION DIVISION

Dual or multi subpopulations and every subpopulation adopt-

ing different evolutionary method is an effective and efficient

technology to enhance evolutionary algorithms’ performance

[4], [21], [25], since this technology can benefit the evolu-

tionary algorithms to make good trade-off between explo-

ration and exploitation ability during evolution process,

reserve population diversity and avoid premature conver-

gence. Therefore, in our proposed CIJADE, we divide the

whole population into two subpopulations with sort strategy

based on the fitness values, name popsuperior and popinf erior .

NP1, NP2 are the sizes of popsuperior and popinf erior , respec-

tively. λ is the proportion between NP1 and NP. NP1 +

NP2 = NP. In CIJADE, subpopulation popsuperior evolves

by employing the operation defined in MCIPDE. The reason

is that the individuals in popsuperior have better fitness values

using the collective information of topm best vectors to guide

them can avoid trapping local optima. While, subpopulation
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FIGURE 1. The main framework of CIJADE.

popinf erior evolves by employing the operation defined in

MJADE. The reason is that the individuals in popinf erior have

worse fitness values using one of the top 100p% best vectors

to guide them can accelerate convergence speed.

B. MODIFIED CIPDE: MCIPDE

In CIPDE, the authors proposed a new mutation scheme col-

lective information-based mutation (CIM), which is effective

and efficient. However, the performance of this mutation

scheme still can be improved. An external archive A is inte-

grated into this new mutation scheme for the improvement

of population diversity and exploration ability, which saves

the inferior solutions defeated by their corresponding trial

vectors in selection process. The modified mutation scheme

is defined as Eq. (22).

Vi,g=Xi,g + F · (Xci_mbesti,g − Xi,g) + F · (Xr1,g − Xr2,g)

(22)

where Xr2,g is selected from the union P ∪ A.

C. MODIFIED JADE: MJADE

In JADE, the authors proposed an effective and powerful

mutation scheme DE/target-to-pbest/1 in Eqs. (10) and (11).

In this study, we use the DE/target-to-pbest/1 with archive,

i.e., Eq. (11). The parameter p is used to balance the greed-

iness of this mutation scheme. However, in original JADE,

the value of parameter p is static and set manually. In this

study, the value of p is linearly adjusted as follows.

p = pmax − (pmax − pmin) · gen/(MaxGen) (23)

where pmax and pmin are the maximum value and the mini-

mum value for p, respectively. gen is the number of current

generation, gen = [1, 2, . . . ,MaxGen], MaxGen is the max-

imum number of generations.

In JADE, the Eq. (8) is used to perform the crossover oper-

ation. However, the effective of standard crossover operation

in original DE can be improved. In paper [18], the authors

use the collective vector to perform the crossover operation

when stagnation occurs. Their experiment results demon-

strate that the proposed crossover operation is an effective and

efficient crossover to deal with stagnation problem. Inspired

by this, a p-Best crossover proposed in [31] is incorporated

in the crossover operation of MJADE, named the modi-

fied crossover operation pBX. When the ith target vector

traps in stagnation, i.e., CUUi,g > T , pBX is defined as

follows.

ui,j,g =

{

vi,j,g if rand ≤ CR or j = jrand

xpbest,j,g otherwise
(24)

where Xpbest,g represents the randomly selected individual

from the top 100p% individuals at the g generation.

D. PARAMETER ADAPTION

The parameter control scheme has an important influence

on the performance of DE algorithm. An effective adaptive

parameter control scheme is proposed in JADE in which

each individual Xi,g has its own Fi,g and Cri,g. They obey

the Cauchy distribution and Gaussian distribution, respec-

tively. Since this parameter control scheme is very effective,

it was also adopted by the CIPDE. However, the authors of

paper [32] found that this parameter control scheme can be

improved by repairing the Cri,g value. This effective repair-

ing method is also incorporated in our proposed CIJADE.

To clearly explain the repair technique, we rewrite the bino-

mial crossover Eq. (8) as follows [32].

bi,j =

{

1 if rand ≤ CR or j = jrand

0 otherwise
(25)

ui,j,g = bi,j · vi,j,g + (1 − bi,j) · xi,j,g (26)

Suppose that the repaired crossover rate is denoted by

Cri,g, which is calculated as Eq. (27).

Cri,g =

∑D
j=1 bi,j

D
(27)

The pseudo-code of the proposed CIJADE algorithm is

summarized in Algorithm 1.

IV. EXPERIMENTS ON BENCHMARK FUNCTIONS

To assess the efficiency of CIJADE, a test suit with 28 well-

benchmarked optimization functions proposed for CEC2013

special session on real-parameter single objective optimiza-

tion is adopted [33]. These 28 functions can be divided

VOLUME 8, 2020 17695
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Algorithm 1 CIJADE Algorithm

1: Initialization: Initialize the population P randomly, set

FES = 0, FESmax = 10000 ∗ D, µF = 0.5, µCR = 0.5,

T = 90, pmax = 0.2, pmin = 0.1, c = 0.1,CUUi=1:NP = 0,

λ = 0.2

2: Calculate each individual’s fitness value;

FES = FES + NP;

3: while FES ≤ FES maxdo

4: SF = ∅, SCR = ∅;

5: Sort the population P based on the fitness value and then

partition the population into popsup erior and popinf erior
// popsup erior evolve

6: for i = 1; i ≤ NP1; i+ +do

7: Generate Fi according to Eq (12), generate CRi
according to Eq (13);

8: Generate mutant vector Vi,g according to Eq (22);

9: if CUUi < T then

10: Generate trial vector Ui,g according to Eq (8);

11: else

12: Generate trial vector Ui,g according to Eq (21);

13: end if

14: Calculate the fitness value f (Ui); FES = FES + 1;

15: if f (Ui) ≤ f (Xi) then

16: Xi,g+1 = Ui,g; CUUi = 0; Fi → SF ; CRi → SCR;

17: else

18: Xi,g+1 = Xi,g; CUUi = CUUi + 1;

19: end if

20: end for

// popinf erior evolve

21: Update parameter p using Eq (23)

22: fori = 1; i ≤ NP2; i+ +do

23: Generate Fi according to Eq (12), Generate CRi
according to Eq (13);

24: Generate mutant vector Vi,g according to Eq (11);

25: if CUUi < T then

26: Generate trial vector Ui,g according to Eq (8);

27: else

28: Generate trial vector Ui,g according to Eq (24);

29: end if

30: Calculate the fitness value f (Ui); FES = FES + 1;

31: if f (Ui) ≤ f (Xi) then

32: Xi,g+1 = Ui,g; CUUi = 0; Fi → SF ; CRi → SCR;

33: else

34: Xi,g+1 = Xi,g; CUUi = CUUi + 1;

35: end if

36: end for

37: UpdateµF using Eq. (14); UpdateµCR using Eq.(15);

38: Gen = Gen+ 1;

39: end while

into three categories, F1-F5 are unimodal functions, F6-F20

are basic multimodal functions, and F21-F28 are compo-

sition functions. All of them are considered as black-box

test functions, and their search ranges are [−100, 100]D

TABLE 1. Parameter configurations for all of these comparative
algorithms.

(D is the number of decision dimensions). The full description

of all these benchmark functions are given in [33]. And these

28 benchmark functions are rotated and shifted to the same

global optimum O={o1, o2, . . . , oD}T [33].

In our experiments, the numbers of variables D for all

benchmark functions are set to 50 and 100. The maximal

function evaluation (FESmax) is set to D × 104 accord-

ing to the guidelines provided in the special session of

CEC2013 [33]. The comparative algorithms are run 20 times

independently over the benchmark functions due to the

stochastic property of comparative algorithms. Both the

mean and the standard deviation of the function error val-

ues 1f = fi − f ∗
i are reported. The Wilcoxon signed-

rank test at a 0.05 significance level is used for comparing

CIJADE with each comparative algorithm on each func-

tion. Symbols ‘‘-’’ and ‘‘+’’ represent that one compara-

tive algorithm is significantly worse performance and better

performance than CIJADE, respectively, while ‘‘=’’ means
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TABLE 2. Comparison results of mean and standard deviation of 20-run fitness error of CIJADE with other state-of-the-art DE variants.
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TABLE 3. Comparison results of mean and standard deviation of 20-run fitness error of CIJADE with other state-of-the-art DE variants.
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that the performance achieved by two algorithms is similar.

All the experiments were performed on a computer with

Intel(R) Core(TM) i5 3.3 GHz dual-core CPU, 8.0 GB RAM

and Windows 7 Operating System. All the algorithms were

coded using Matlab 2016a.

A. COMPARISON OF CIJADE WITH STATE-OF-THE-ART

DE VARIANTS

In this subsection, the proposed CIJADE is contrasted

with several state-of-the-art DE variants including jDE

[34], JADE [17], SaDE [13], CoDE [19], Rcr-JADE [32],

CobiDE [35], MPEDE [21], AGDE [36], CIPDE [18],

EFADE [37] and EDEV [4] on F1-F28 benchmark func-

tions with 50D and 100D. These DE variants are selected

due to their popularity and competitive performance. SaDE,

CoDE, MPEDE, and EDEV are DE variants employing

multi-mutation strategies or multi-DE variants. The parame-

ters configurations of these comparative algorithms are listed

in Table 1 according to the original papers’ recommended

values.

1) COMPUTATIONAL RESULTS OF BENCHMARK

FUNCTIONS WITH 50D

The experimental results of all the benchmark functions with

50D are reported in Table 2. From Table 2, we can find that

CIJADE performs the best among the twelve state-of-the-art

DE variants on all the 28 benchmark functions with 50D.

Comparing with the jDE algorithm, the CIJADE achieves

18 better performances, 9 similar performances, and 1 worse

performance out of the total 28 functions. Comparing with

the JADE algorithm, the CIJADE achieves 11 better perfor-

mances, 16 similar performances, and 1 worse performance

out of the total 28 functions. Comparing with the SaDE algo-

rithm, the CIJADE achieves 16 better performances, 9 similar

performances, and 3 worse performances out of the total 28

functions. Comparing with the CoDE algorithm, the CIJADE

achieves 17 better performances, 6 similar performances,

and 5 worse performances out of the total 28 functions.

Comparing with the Rcr-JADE algorithm, the CIJADE

achieves 13 better performances, 15 similar performances,

and 0 worse performance out of the total 28 func-

tions. Comparing with the CobiDE algorithm, the CIJADE

achieves 13 better performances, 8 similar performances,

and 7 worse performances out of the total 28 functions.

Comparingwith theMPEDE algorithm, the CIJADE achieves

12 better performances, 12 similar performances, and 4worse

performances out of the total 28 functions. Comparing with

the AGDE algorithm, the CIJADE achieves 18 better per-

formances, 10 similar performances, and 0 worse perfor-

mance out of the total 28 functions. Comparing with the

CIPDE algorithm, the CIJADE achieves 10 better perfor-

mances, 15 similar performances, and 3 worse performances

out of the total 28 functions. Comparing with the EFADE

algorithm, the CIJADE achieves 15 better performances,

11 similar performances, and 2 worse performances out of

the total 28 functions. Comparing with the EDEV algorithm,

the CIJADE achieves 13 better performances, 13 similar

performances, and 2 worse performances out of the total

28 functions. Overall, CIJADE achieves better performance

than the other eleven DE variants in dealing with CEC

2013 benchmark functions with 50D. This is because the

CIJADE can make full use of the advantages of CIPDE and

JADE algorithms.

2) COMPUTATIONAL RESULTS OF BENCHMARK

FUNCTIONS WITH 100D

Table 3 gives the experimental results for all comparative

algorithms on each benchmark function with 100D. From

Table 3, it is find that CIJADE perform the best among the

twelve state-of-the-art DE variants on all the 28 benchmark

functions with 100D. Comparing with the jDE algorithm,

the CIJADE achieves 16 better performances, 6 similar per-

formances, and 6 worse performance out of the total 28

functions. Comparing with the JADE algorithm, the CIJADE

achieves 13 better performances, 14 similar performances,

and 1 worse performance out of the total 28 functions.

Comparing with the SaDE algorithm, the CIJADE achieves

18 better performances, 5 similar performances, and 5 worse

performances out of the total 28 functions. Comparing with

the CoDE algorithm, the CIJADE achieves 15 better perfor-

mances, 8 similar performances, and 5 worse performances

out of the total 28 functions. Comparing with the Rcr-JADE

algorithm, the CIJADE achieves 13 better performances,

14 similar performances, and 1 worse performance out of

the total 28 functions. Comparing with the CobiDE algo-

rithm, the CIJADE achieves 12 better performances, 6 sim-

ilar performances, and 10 worse performances out of the

total 28 functions. Comparing with the MPEDE algorithm,

the CIJADE achieves 14 better performances, 6 similar per-

formances, and 8worse performances out of the total 28 func-

tions. Comparing with the AGDE algorithm, the CIJADE

achieves 20 better performances, 6 similar performances,

and 2 worse performances out of the total 28 functions.

Comparing with the CIPDE algorithm, the CIJADE achieves

13 better performances, 11 similar performances, and 4worse

performances out of the total 28 functions. Comparing with

the EFADE algorithm, the CIJADE achieves 15 better perfor-

mances, 4 similar performances, and 9 worse performances

out of the total 28 functions. Comparing with the EDEV

algorithm, the CIJADE achieves 16 better performances,

8 similar performances, and 4 worse performances out of the

total 28 functions. Overall, our CIJADE also achieves better

performance than the other eleven DE variants in dealing

with CEC 2013 benchmark functions with 100D. It also can

find that when the dimension of the problem is increased

from 50 to 100, the performance of CIJADE will not degrade

too much.

3) CONVERGENCE CURVES FOR ALL

COMPARATIVE ALGORITHMS

The comparisons of convergence curves are given in Figs. 2-5

for algorithm evaluation. The median values of the 20-run
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FIGURE 2. Convergence comparison on F1-F8.
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FIGURE 3. Convergence comparison on F9-F16.

fitness errors achieved by these comparative algorithms on

each benchmark function with 50D are selected for this

comparison. Fig. 2 gives the first part including 8 figures,

F1-F8, of the total 28-figure comparison, Fig. 3 gives the

second part including 8 figures, F9-F16, of the total 28-figure

comparison, Fig. 4 gives the third part including 8 figures,
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FIGURE 4. Convergence comparison on F17-F24.
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FIGURE 5. Convergence comparison on F25-F28.

F17-F24, of the total 28-figure comparison, and Fig. 5 gives

the last part 4 figures from F25 to F28. From all these

figures, it can be seen that for convergence speed our pro-

posed CIJADE algorithm outperforms jDE on F2-F4, F8-F10,

F13, F15, F19, F20, F22-F24, and F27. It also outperforms

JADE on F2, F8-F10, F13, F15, F17, F19-F20, F23, and

F25-F27. It also outperforms SaDE on F2-F4, F7-F8, F10,

F13-F17, F19-F23, and F26. It also outperforms CoDE on

F2-F4, F7, F10- F11, F13-F15, F17, F19-F20, F22-F24, and

F27. It also outperforms Rcr-JADE on F3, F8-F10, F13,

F15, F17, F19, F20, F23, and F25-F27,. It also outperforms

CobiDE on F2-F4, F5, F7-F8, F10-F11, F13-F14, F16-F17,

F19-F20, and F22-F23. It also outperforms MPEDE on F2,

F4, F8, F11, F13, F14-F15, F17, F19-F20, and F22-F23.

It also outperforms AGDE on F2-F4, F7, F8, F9, F10-F20,

F22-F23, and F26. It also outperforms CIPDE on F2-F4,

F8-F10, F14-F15, F19-F20, F22-F23, and F25-F26. It also

outperforms EFADE on F2-F4, F8, F10-F20, and F22-F23.

It also outperforms EDEV on F2-F4, F8-F11, F13-F15, F17,

F19-F23, and F25-F27. In conclusion, our CIJADE is com-

petitive with the other eleven state-of-the-art DE variants in

terms of convergence speed.

B. EFFECTIVENESS OF MCIPDE AND MJADE

In this subsection, in order to assess the effects of MCIPDE

and MJADE, we compare the modified algorithms with

original algorithms CIPDE and JADE, respectively. The

parameter settings of these comparative algorithms are given

in Table 1. Table 4 reports the mean and the standard

deviation of 20 independent runs of function error values on

CEC2013 benchmark functions with 50D.

As shown in Table 4, comparing with the CIPDE algo-

rithm, the MCIPDE achieves 6 better performances, 19 sim-

ilar performances, and 3 worse performances out of the total

28 benchmark functions from the ‘‘Mean/Std’’ perspective

of view. Comparing with the JADE algorithm, the MJADE

achieves 15 better performances, 12 similar performances,

and 1 worse performance out of the total 28 benchmark func-

tions from the ‘‘Mean/Std’’ perspective of view. These results

indicate that these modifications on two original algorithms

are effective.

C. ANALYSIS OF THE PARAMETERS λ

In CIJADE, the parameter λ determine the population size

of the popsup erior , in which the individuals evolve using the

operation of MCIPDE. When analyzing the impact of λ,

pmax, pmin and T are fixed to 0.2, 0.1 and 90 respectively.

We conduct the proposed CIJADE with different λ values.

The other parameter configurations of CIJADE are the same

as subsection 4.1. The Mean/Std of function error values

of 20 independent runs on CEC2013 functions with 50D are

reported in Table 5. From the Table 5, we can see that the

performance of CIJADE is not very sensitive to the setting

of λ for most of the functions. When λ = 0.2 or λ = 0.1,

the CIJADE has relative better results, in our study we use

the 0.2 as the recommended value.
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TABLE 4. Comparison results of the MCIPDE with CIPDE and MJADE with JADE.

D. ANALYSIS OF THE PARAMETERS pmax, pmin

In CIJADE, the parameters pmax and pmin affect the

greediness of the ‘‘DE/target-to-pbest/1’’ mutation scheme.

To study the effects of these two parameters on the perfor-

mance of CIJADE, the proposed CIJADE with different pmax

and pmin values are conducted. When analyzing the impact of

pmax and pmin, λ and T are fixed to 0.2, and 90 respectively.

The other parameter configurations of CIJADE are the same

as subsection 4.1. The Mean/Std of function error values

of 20 independent runs on CEC2013 functions with 50D are

reported in Table 6.

From Table 6, we can see that when the CIJADE algorithm

with the combination of pmax = 0.1 and pmin = 0.05, it has

relatively poor performance. When the CIJADE algorithm

with the combination of pmax = 0.5 and pmin = 0.4, and

the combination of pmax = 0.4 and pmin = 0.3, it also has

poor performance.

When the CIJADE algorithm with the combination of

pmax = 0.3 and pmin = 0.2, and the combination of pmax =

0.2 and pmin = 0.1, it has relatively better performance.

From these comparison results, we chose the combination of

pmax = 0.2 and pmin = 0.1 as the recommended values.

E. ANALYSIS OF THE PARAMETER T

In CIJADE, the parameter T is the stagnation threshold which

determines the frequency of CIX and pBX are executed.

To study the effects of this parameter on the performance of

CIJADE, the proposed CIJADE with different T values are

conducted. When analyzing the impact of T , pmax, pmin, and

λ are fixed to 0.2, 0.1, and 0.2, respectively. The other param-

eter configurations of CIJADE are the same as subsection 4.1.

TheMean/Std of function error values of 20 independent runs

on CEC2013 functions with 50D are reported in Table 7.

From table 7, when T is set to 90, the CIJADE has better

performance. If T value is smaller than or lager than 90, the

CIJADE has relatively poor performance. The reason is that

when T value is too small the CIX and pBX will execute

frequently, which makes the algorithm too greedy and dete-

riorates CIJADE’s exploration ability. On the contrary, when

the T value is too large the CIX and pBXwill be idle and their

benefits are diminished. Therefore, from these comparison

results, we chose the T = 90 as the recommended values.

V. APPLICATION OF THE CIJADE TO THE UCAV

PATH PLANNING PROBLEM

We present the proposed CIJADE algorithm for the UCAV

path planning problem in this section. In recent years, UCAV

have become an important part of the civilian and military

fields due to their outstanding abilities to work in remote and

extremely dangerous environments [38], [39]. Path planning

plays a vital role in the control of UCAV to accomplish the

combat missions quickly and reliably, which aims to find an
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TABLE 5. Comparison results of the CIJADE with different λ values.

optimal or near-optimal path between the starting point and

the desired destination under the artificial threats and some

specific constraints. In general, the methodology of path

planning is to find a path which minimizes the flight distance,

fuel consumption, and exposure to threat sources. Path plan-

ning of UCAV is considered as an NP-complete optimization
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TABLE 6. Comparison results of the CIJADE with different pmax, pmin values.

problem [40]. In order to find the optimal flight path, globally

optimized path planning algorithm such as meta-heuristic

algorithms, can be used to instead of the deterministic algo-

rithm, such as the A ∗ algorithm [41]. Using meta-heuristic

algorithm has the advantage of being able to jump out of the

local optima. Some popular meta-heuristic algorithms have

been proposed to deal with the UCAV path planning problem,

such as Particle Swarm Optimization (PSO) [42], Artificial

Bee Colony (ABC) algorithm [39], and differential evolu-

tion (DE) [43]. In this study, we apply the proposed CIJADE

to deal with UCAV path planning problem and compare it

with standard PSO, DE, ABC, JADE and CIPDE algorithms.

FIGURE 6. UCAV battle field model.

A. MODEL AND INDIVIDUAL ENCODING

In the model for UCAV path planning (see Figure 6),

S represents the starting point of the path, and T represents the

FIGURE 7. Computation of the threat cost.

end point of the path. There are some threatening areas, such

as radars, missiles, and artilleries, in the combat field. The

effects of threatening areas are presented in terms of circles

with different radiuses and threat weights [44]. If a part of its

path falls in a threatening areas, the UCAVwill be vulnerable

to the threat with a certain probability which is proportional

to its distance away from the center of threat. While, when its

path is outside of the threatening areas, the probability of the

UCAV being attacked is zero. The mission of path planning is

to find an optimal path between S and T considering all these

threatening areas and fuel costs.

We first draw a straight line ST connecting the starting

point and the end point and then divide ST into (D+1) equal

segments by D vertical dash lines {L1,L2, . . . ,Li, . . . ,LD} as

shown in Figure 6. We take these lines as new axes and select
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FIGURE 8. Path planning results of (a) CIJADE, (b) PSO, (c) DE, (d) ABC, (e) JADE, and (f) CIPDE when D=20.
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TABLE 7. Comparison results of the CIJADE with different T values.

D pointsPi from each Li to form a feasible path from starting

point S to end point T, which can be described as follows.

path = {S,P1,P2, . . . ,Pi, . . . ,PD,T} (28)

In this sense, to find optimal path is to determine the

location of Pi. Since the location of Li can be easily obtained,

we only need to determine the distance from point Pi to

the straight line ST. In other words, we need to determine

D parameters in Eq. (28), therefore, it can be considered as

D-dimensional optimization problem. To make the problem

solving faster, it is encourage to transform the space coordi-

nate system [39]. We take the line ST as the x axis and the

straight line perpendicular to ST as the y axis. Let (x, y) stand

for the coordinates in the original combat field and (x′, y′)

stand for the coordinates after the coordinate transformation,

the relationships between these two coordinates are defined

in Eq. (29).

[

x ′

y′

]

=

[

cos θ sin θ

− sin θ cos θ

] [

x

y

]

(29)

where θ represents the angle between the original x axis and

the new x axis line ST.

B. FITNESS EVALUATION

The evaluation of the flight path mainly composes of the

threat cost fthreat and the fuel consumption ffuel . The objective

FIGURE 9. Convergence curves of all algorithms when D=20.

function (f ) can be expressed as follows.

f = λ · fthreat + (1 − λ) · ffuel (30)

fthreat =

∫ T

S

wthreatdl (31)

ffuel =

∫ T

S

wfueldl (32)

From Eq. (30), the objective function of UCAV flight path

is the weighted sum of the threat cost and fuel consumption
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FIGURE 10. Path planning results of (a) CIJADE, (b) PSO, (c) DE, (d) ABC, (e) JADE, and (f) CIPDE when D=30.
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cost. λ ∈ [0, 1] indicates the weighting parameter. In this

study, λ is set to 0.5 according to [45], [39]. wthreat and wfuel
are variables depend on every instantaneous position on the

flight path. In this study, it is assumed that the UCAV flies

at a constant speed, then its fuel consumption rate wfuel will

be a constant value (i.e., wfuel ≡ 1) and the fuel consumption

cost ffuel is considered in direct proportion to the length of the

flight path.

The threat cost from the point Pi to the point Pi+1 is

calculated by an approximation at five sample points as

shown in Figure 7 [46]. If the sub path (Pi,Pi+1) falls into

a threatening area, the threat cost is calculated as fellows.

wthreat,Li

=
Li

5
·

Nt
∑

k=1

tk ·(
1

d40.1,i,k
+

1

d40.3,i,k
+

1

d40.5,i,k
+

1

d40.7,i,k
+

1

d40.9,i,k
)

(33)

where the number of threatening areas is represented by Nt .

The length of ith sub path is represented by Li. The distance

between the 1/10 point on the sub path and the kth threat

center is represented by d0.1,i,k . The degree of kth threat

center is denoted by tk .

TABLE 8. Information of threatening objects.

C. SIMULATION EXPERIMENT

In this section, we verity the performance of the CIJADE

for the UCAV path planning problem. The flight scenario of

UCAV path planning is the same as the [47] and the parame-

ters of threat areas are listed in Table 8. The coordinates of the

start point and end point are set to (0, 0) and (80,100), respec-

tively. We compare the simulation results of the proposed

CIJADE algorithm with standard PSO, DE, ABC, JADE,

and CIPDE algorithms. The population size is set to 60 for

all compared algorithms. The maximum number of iteration

is set to 100. The parameters for the CIJADE, JADE, and

CIPDE are the same as subsection 4.1. The parameters for

the PSO are c1 = c2 = 2, wmax = 0.9, wmin = 0.4.

The parameters for the DE are F = 0.5, Cr = 0.1. The

parameters for the ABC are FoodNumber = 30, limit = 100.

All compared algorithms are run 20 times with different

random seeds.

TABLE 9. The best, worst, mean and standard deviations of fitness values.

The experimental results are reported in Table 9.

Table 9 lists the best, the worst, the mean and the standard

deviation (Std) of the fitness value. The best results are

shown in bold. Path planning results optimized by different

algorithms are shown in Figures 8 and 10 when D=20 and

D=30, respectively. Their corresponding convergence curves

of average fitness value are plotted in Figures 9 and 11.

FIGURE 11. Convergence curves of all algorithms when D=30.

As can be seen in Table 9, CIJADE outperforms the other

algorithms in terms of the best, the worst, the mean, and the

standard deviation on 20D and 30D problem. It should be

noted that all algorithms’ fitness values become larger when

D=30 because a larger D leads to the search space larger.

From the figures 8 and 10, we can see that all the compared

algorithms can guarantee UCAV avoiding the collision and

obstacle. In terms of flight path smooth, from the figure 8,

the planning paths optimized by CIJADE and JADE are

smoother than the other three algorithms. From the figure 10,

the planning path optimized by CIJADE is smoother than the

other three algorithms. As can be seen from figures 9 and 11,

the convergence rates of CIJADE for 20D and 30D are better

than the PSO, DE, and ABC algorithms and competitive to
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JADE and CIPDE algorithms. We also can notice that the

advantage of CIJADE is more obvious when D=30.

VI. CONCLUSIONS

In this paper, we present a hybrid differential evolution

algorithm combining modified CIPDE with modified JADE

called CIJADE. Both CIPDE and JADE are powerful and

effective DE variant with strong exploration and exploitation

capabilities. The goal of our proposed CIJADE algorithm is to

take advantage of these two approaches and further improve

the optimization performance. In CIJADE, the population is

first divided into two subpopulations based on the fitness

value, i.e., superior and inferior subpopulations. This dual-

population framework can maintain the population diver-

sity. The superior subpopulation evolves using the operation

defined in MCIPDE. The MCIPDE adds an external archive

to the mutation scheme to enhance the population diversity

and exploration capability of original CIPDE. While the

inferior subpopulation evolves using the operation defined

in MJADE. The MJADE modifies the original JADE by

adjusting the parameter p in linear decreasing way, with the

aim of balancing the exploration and exploitation ability of

JADE. Furthermore, a new crossover operation is added to

original JADE to deal with the problem of stagnation. Finally,

the parameters CR and F values of CIJADE are updated

according to a modified parameter adaptation strategy in each

generation.

We use the CEC2013 test suite with 28 benchmark

functions to assess the performance of the proposed CIJADE

algorithm. The effectiveness of the MCIPDE and MJADE

is evaluated by comparisons with original CIPDE and

JADE. The parameters of CIJADE are also analyzed. The

experimental results demonstrate that the proposed CIJADE

algorithm offers better performance than eleven popular state-

of-the-art DE variants including jDE, JADE, SaDE, CoDE,

Rcr-JADE, CobiDE, MPEDE, AGDE, CIPDE, EFADE and

EDEV. Moreover, the proposed CIJADE algorithm is applied

to the UCAV path planning problem. The simulation results

indicate that the CIJADE can efficiently find the opti-

mal or near optimal flight path for UCAV and find more

stability result than the compared algorithms including

PSO, DE, ABC, JADE, and CIPDE. In the future work,

we will apply the proposed CIJADE algorithm to solve

more real-world optimization problems, such as wireless sen-

sor networks [48]–[50], Vehicle Localization and Velocity

Estimation [51].
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