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Abstract - This paper addresses the unrelated parallel 
machine scheduling problem with sequence-dependant setup 
times for minimizing total tardiness and workload imbalance. 
The mixed integer linear programming is proposed to model 
the studied problem. This problem is shown to be NP-hard in 
the strong sense. Thus, we propose a hybrid algorithm that 
combines differential evolution with particle swarm 
optimization, namely HDEPSO, in order to solve the given 
problem. Our objective is to achieve faster convergence rate 
and obtain better pareto optimal solutions. In order to 
demonstrate the efficiency and reliability of the proposed 
algorithm, a number of test problems are solved. The 
HDEPSO results are compared with two well-known multi-
objective genetic algorithms in the literature, i.e. NSGA-II 
and SPEA-II based on some comparison metrics. 
Computational experiments indicate the superiority of the 
HDEPSO compared to these two genetic algorithms. 

 

Keywords: Parallel Machine Scheduling, Multi-objective 
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swarm optimization. 

 

1. Introduction 

Scheduling is concerned primarily with allocating scarce 
resources, e.g. machines, to particular tasks that have to be 
done over given periods, with the objective of optimizing 
some performance measures [1]. Scheduling problems are 
used in many applications such as production and 
procurement, transportation and distribution, and 
communication. In real production, parallel machine 
scheduling (PMS)   is one  of  the most  basic  and  important  
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types of the scheduling problems. A lot of research has been 
made on parallel machines, independent of the machine 
environment, i.e. on identical machines, unrelated, etc.  

In a general PMS problem, a set of n independent jobs are to 
be scheduled on m parallel machines to meet certain job 
completion time related objectives [2]. A well respected paper 
which is presented by Cheng et al. (1990) relates to the whole 
class of scheduling problem that consists of parallel machines 
in different environment. In unrelated parallel machines, there 
is no particular relationship among machines’ capabilities. In 
other words, the processing time of each job differs in terms 
of processing on each machine. Therefore, the unrelated 
parallel machine scheduling (UPMS) becomes the most 
complex problem and has attracted more researchers [3,4,5,6].  

During many years, it was common practice to take only one 
performance criterion into account in the objective function. 
However, scheduling problems in real life applications 
generally involve optimization of more than one criterion. 
Although past literature in UPMS addresses a variety of 
research papers, all of them have typically considered a single 
criterion. UPMS often involve more than one aspect and 
require multi-objective analysis. Therefore, it is more 
amenable to solving multi-objective scheduling problem.  

Minimizing total tardiness is one of the most important 
criteria in many manufacturing systems, especially in the 
current situation where competition is becoming more 
intensive. Pfund et al. (2004) [7] surveyed the literature in 
solving UPMS involving single and multiple objectives. 
According to this research, while minimization of makespan 
has been fairly widely studied, problems of minimizing the 
number of tardy jobs, weighted number of tardy jobs, total 
tardiness, and total weighted tardiness remain largely 
unstudied.  

Another interesting objective function is to balance the 
workload across machines as evenly as possible. In PMS 
environments, by distributing the available workload among 
the available machines as equally as possible, bottlenecks can 
be eliminated, throughput can be maximized, and work in 
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progress, finished goods inventory and operating costs can be 
lowered. Rajakumar et al. (2004) addressed the UPMS 
problem without setup times and with the objective of load 
balancing [8]. Yu et al. (2002) studied UPMS problem in a 
printed wiring board manufacturing line for a set of 
performance measures included load balancing. They used 
integer programming, lagrangian relaxation, and heuristics to 
solve the problem [9]. Sun et al. proposed a genetic algorithm 
for UPMS to minimize number of pickups and workload 
imbalance [10]. Keskinturk et al. (2010) proposed a 
mathematical model for the PMS problem to minimize 
average relative percentage of imbalance, taking into account 
sequence-dependant set up times [11]. 

The studies with bi-criteria goals attempt to consider the 
coordination of the producer and customers [12]. These 
criteria are often conflicting in nature and are quit complex.  
In this research, we address the bi-objective unrelated parallel 
machine scheduling with sequenced-dependant setup times 
subject to minimization of the total weighted tardiness and 
machines workload imbalances. Minimizing both objectives 
can help assuring a high utilization of the production system 
as well as a high level of service towards the costumers. 
Scheduling problems with sequence-dependant setup times 
has received the attention of many researchers. 

Lee et al. (1997) [13] considered PMS with sequence-
dependent setup time that minimizes total weighted tardiness. 
Another paper on UPMS with setup times is studied by Kim 
et al. (2002). The paper deals with real problem encountered 
in a semiconductor production facility where a part of the 
manufacturing process suffers from bottleneck. As criterion, 
minimization of total tardiness is used [14]. An interesting 
paper, which considers setup times, is recently presented by 
Allahveredi et al. (2008) [15], where all classes of problems 
are mentioned and the techniques used to solve them. 

Lenstra et al. [16] showed that a single machine scheduling 
with total weighted tardiness minimization problem is NP-
hard in strong sense. Clearly, the single machine is a special 
case of the sequence-dependent unrelated parallel machine 
scheduling problem considered in this paper. Therefore, the 
problem investigated in this paper is also strongly NP-hard. 
We refer to Logendran et al. [3] for further knowledge and 
recent findings regarding the UPMS problem. Thus, meta-
heuristic algorithms, such as genetic algorithm (GA) [17], 
tabu search (TS) [18], ant colony (ACO) [19], simulated 
annealing (SA) [20], and variable neighborhood search (VNS) 
[21], are extensively used to find a good solution for such a 
hard problem.  

Differential evolution (DE) is a novel evolutionary algorithm 
recently introduced by Storn and Price [22] for optimization 

problems over continuous spaces. Due to its ease of use, fast 
convergence and robustness, DE has successfully been 
applied to diverse domain of science and engineering [23]. 
Besides other applications, all of the DE implementations in 
scheduling literature focused on the single-machine 
scheduling problem [24], flow shop scheduling problem [25] 
and job shop scheduling problem [26]. Particle swarm 
optimization (PSO), first introduced by Kennedy and Eberhart 
[27], is an another most recent evolutionary algorithms  that 
has been applied to wide range of applications such as power 
and voltage control [28], task assignment [29], project 
scheduling [30], cell formation problem [31], flow shop 
sequencing problem [32]. 

In this paper, we devise a hybrid approach by combining the 
searching ability of DE and PSO, namely HDEPSO, to solve 
multi-objective unrelated parallel machine scheduling with 
sequence-dependant setup time. This hybridization enhances 
the exploration ability of the DE by the vibrancy and 
explorative nature of PSO. The optimization criteria are 
minimizing total weighted tardiness and workload imbalance. 
To investigate the effectiveness of our proposed approach, 
computational experiments are conducted and comparison 
results with two well-known multi-objective genetic 
algorithms, namely NSGAII [33] and SPEA-II [34], are 
provided. The results clearly show that our HDEPSO 
significantly outperforms the abovementioned algorithms. 

The remaining contents of this paper are partitioned into five 
sections. In section 2, we propose the formulation of multi-
objective unrelated PMS problem. This is followed by a brief 
overview of DE and PSO in the section 3. In section 4, we 
describe the proposed HDEPSO algorithm. In section 5, we 
show the experimental results obtained by the proposed 
solution algorithm and then compare these results with two 
multi-objective genetic algorithms, called NSGAII and 
SPEA-II. Finally, conclusion is presented in section 6. 

2. Problem definition and mathematical modeling 

As described earlier, our problem involves scheduling n jobs 
on m unrelated parallel machines to minimize total tardiness 
and workload imbalance as objective functions. A classical 
UPMS problem can be stated as follows: a set of n 
independent jobs to be processed on m available unrelated 
parallel machines. Each machine can process only one job at a 
specific time, and each job can be processed on only one 
machine. Two operations are not allowed to overlap each 
other. Each job is ready at the beginning of the scheduling 
horizon and has a distinct processing time and due date. Once 
started, an operation cannot be interrupted until it is 
completed. Each machine is continuously available. No idle 
time in the machines between operations is allowed. Also, we 
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assume that there are sequence-dependent setup times. The 
notation for parameters and variables used in the model are as 
follows: 

Parameters: 

M  number of machines available 

N  number of jobs to be scheduled 

Ti  length of time job i is tardy 

di  due date for job i 

B  a large number 

Pim  processing time for job i using machine m 

Sji  setup time for job i when it immediately 
follows job j 

S0i  setup time for job i when it is the first in the 
queue 

Decision variables: 

Ci  completion time of job i 

Yijm 1, if job i is immediately followed by job j 
in sequence on machine m; 0, otherwise 

Zim  1, if job i is assigned to machine m; 0, 
otherwise 

Wmin  minimum workload of all machines 

Wmax  maximum workload of all machines 

The following MILP model is proposed for our problem and 
is intended to minimize the ET objective function and the WB 
objective function with respect to some constraints.  

	  
 

(1) 

	   (2) 
Subject to. 

 i=1, …, N (3) 
 i=1, …, N (4) 

1 i=1, …, N (5) 

 
i  j , i=0,1,…, N , 
m=1,…, M 

(6) 

 
i  j , j=1,…, N , 
m=1,…, M 

(7) 

 
i  j , i=1,…, N , 
j=0,1,…, N ,  
m=1,…, M 

(8) 

 m=1,…, M (9) 

 m=1,…, M (10) 

, ∈ 0,1   (11) 
, , , , 0  (12) 

 

The objective functions are (1) minimizing total tardiness and 
(2) minimizing total workload imbalance. A fictitious job 0 is 
introduced to simplify the understanding and the writing of 
the constraints, which obviously results in Z0m = 1 and C0 = 0. 
The defining constraints (3 and 4) measure the degree to 
which each job is tardy or early. Constraint (5) ensures that 
each job is processed on one and only one machine. 
Constraints (6) and (7) ensure that each job must come 
immediately before, and immediately after, only one other 
job. Constraint (8) ensures that the completion time of job i is 
far enough after that of job j to include the processing time 
and setup time for job i. Two defining constraints (9) and (10) 
measure the minimum and maximum workload of machines, 
respectively. Lastly, constraints (11) and (12) indicate the 
types of model’s variables. 

3. Overview of DE and PSO 

Differential Evolution (DE) algorithm, introduced by Storn 
and Price (1995) is a powerful population-based evolutionary 
algorithm for optimization algorithm over continuous spaces. 
DE starts with an initial population vector, which is randomly 
generated when no preliminary knowledge about the solution 
space is available [35]. The basic scheme of DE, which is 
denoted as DE/rand/1/bin, can be summarized as follows: 

At every generation G, DE maintains a population P(G) of NP 
(population size) vectors of solutions which evolve through 
the optimization process to find global solution: 

, … ,   (13) 

The population size, NP, is constant during the optimization 
process. The dimension of each vector of candidate solutions 
correspond to the number of the decision parameters, D, to be 
optimized. Therefore, 

, , … , , , 1,2,… ,    (14) 
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After that the initial population is created, it evolves through 
the operation of mutation, crossover and selection. At every 
generation G, each vector in the population has to serve once 

a target vector. For each target vector, a mutant vector  is 
defined by: 
 

   (15) 
 (15) 

with random indexes , , 	 ∈ 1,2, … , , integer, mutually 
different, and different to the target vector. F is a user defined 
constant (also known mutation scaling factor), which is 
typically chosen from the range (0,2] ([35]). Larger values for 
F result in higher diversity in the generated population and 
lower values cause faster convergence. 
DE utilizes the crossover operation to generate new solutions 
by shuffling competing vectors and also to increase the 
diversity of the population. To this end, the trial vector, i.e., 

, , … , ,  is formed, where 

 

(16) 

In (16), randj is the jth evaluation of a uniform random number 
generator with outcome between 0 and 1. CR is the crossover 
rate constant and is a user-defined parameter within the range 
[0,1]. Large CR usually increases the convergence rate. K is a 
random parameter index chosen from the set {1, …, D}, 
which is used to make sure that at least one parameter is 

always selected from a . The crossover procedure is 

illustrated in Figure 1. 

 

 

Figure 1 Crossover process with an example with 7 jobs (7-
dimension) 

In order to decide which vector ( , ) should become a 

member of generation G+1, the trial vector is compared to the 
target vector using a greedy criterion. For a minimization 
problem, the vector with the lower value of objective function 
is chosen. As a result, all individuals of the next generation 
are as good as or better than the individuals of the current 
generation. Comprehensive history and development of DE is 
presented in the[36]]. 

As other evolutionary algorithms, Particle swarm 
optimization (PSO) is a population-based optimization 
algorithm inspired by the behavior of a bird flock. The 
individuals in a PSO are denoted as particles. The PSO 
algorithm represents each potential solution by the position of 
a particle in multi-dimensional hyperspace. Throughout the 
optimization process velocity and displacement updates are 
applied to each particle to move it to a different position and 
thus a different solution in the search space. PSO refines its 
search by attracting the particles to positions with good 
solutions. PSO remembers the best position found by any 
particle (gbest). Also, each particle remembers its own 
previously best found position (pbest). Suppose that the 
position of the particle i at the Gth iteration is represented by 

. Then, the velocity vector of particle i at iteration G+1 

 ( ) is updated by the Eq. (17). 

(17) 

Where  is the inertial weight which is introduced to balance 

between the global and local search abilities, is the best 
found position of the ith particle at the tth iteration and  is 
the best position known for all particles.  and  are the 
cognitive and social acceleration constants, and  is a 
random number generator with a uniform distribution over 
[0,1]. The position of each particle is updated in each iteration 
by adding the velocity vector to the position vector according 
to Eq. (18). 

	          (18) 

 

This simultaneous movement of particles towards their own 
previous best solutions and the best solution found by the 
entire swarm results in the particles converging to one or 
more good solutions in the solution space. 
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4. Problem Solving Algorithm 

As an aforementioned, the UPMS problem with sequence-
dependant setup time is strongly NP-hard. Beside, finding a 
desirable solution for multi-objective combinatorial problems 
make them even more complex. A multi-objective problem 
causes the single optimal solution to convert into a set of 
optimal solutions named pareto optimal solutions. Thus, 
meta-heuristic algorithms are used to find a good solution for 
such a complex problems. These algorithms provide good 
solutions in a reasonable amount of time, making them more 
practicable and thus useful to the industries.  

Meta-heuristic algorithms such as DE and PSO are proper 
methods to solve complex problems. However, these methods 
are not without limitations. To overcome these limitations, in 
this paper, we combine DE with PSO in a hybrid algorithm to 
solve multi-objective UPMS with sequence-dependant setup 
time. Since Both DE and PSO algorithms are population 
based, hybridization the searching abilities of both methods 
seem to be a good approach. Our objective is to achieve faster 
convergence rate and obtain better pareto optimal solutions. 

Since DE and PSO algorithms are originally designed to solve 
problems with continuous variables, they cannot be used 
directly to solve discrete problems. Therefore, the proposed 
HDEPSO approach uses random key representation, 
introduced by bean [37], to encode solutions. Based on this 
representation scheme, the sequence of jobs on machine can 
be converted to continuous position values. Each position is a 
vector of uniform random number between 0 and 1. Thus, 
each solution is encoded as a vector of random keys. The 
proposed HDEPSO algorithm to solve the multi-objective 
UPMS problem consists of following steps: 

Step 1: In order to establish a starting point for the 
optimization process, each decision parameter in 
every vector of the initial population is assigned a 
randomly chosen value from within its 
corresponding feasible bounds: 

, ,	 
1,2,… , , 1,2, … ,  

(19) 

 

where  and  is considered between [0,1], and 

 represent a uniformly distributed random 

value that ranges from 0 to 1. This initial population 

set , , , , … , ,  consists of 2N 

solutions, which are randomly generated. 

Step 2: The values of objective functions for each vector are 
evaluated: total tardiness ( ), total workload 

imbalance ( ) according to equations (1) and (2). 
Eliminate dominated solutions from the feasible set 

. 

Step 3: Compute average total tardiness ( ) and average 

workload imbalance ( ) in the updated . Then 
for each solution vector, compute the normalized 
distance (D) in a two-dimensional objective space 
from the origin according to equation (20). 

⁄ ⁄     (20) 
 

Step 4: Order solution vectors in  in descendant order. 
Split the ordered population set into two solution 
subsets: lower-half and upper-half. 

Step 5: Apply the mutation and crossover operators according 
to equations (15) and (16) to the current lower-half 
subset solutions.  

Step 6: Apply the movement operator of PSO according to 
equations (17) and (18) to the current upper-half 
subset solutions. These solutions belong to the next 

iteration population set  . 

Step 7: Update the pbest and gbest values in the next iteration 
when the following corresponding conditions are 
met: 

 

Step 8: the algorithm is repeated from Step (2) to Step (7) 
until the termination condition is met. 

5. Computational Experiments 

This section gives experimentation results on the performance 
of proposed HDEPSO to solve the considered problem. Also, 
the performance of the HDEPSO is compared with two well-
known multi-objective genetic algorithms in the literature, 
namely NSGA-II and SPEA-II. All algorithms are coded in 
C++ programming language and executed on an Intel® Core 
2 DuoE4500 at 2.20 GHz with 2.0GB of RAM.  

Because of the novelty of our problem, a number of test 
problems are randomly generated in small, and large sizes. 
The processing times and setup times for jobs are randomly 
selected from uniform distribution between (1,20) and (1,7), 
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respectively. In the case of setup times, after generating from 
the uniform distribution, the amount of setup times is 
corrected based on the triangular inequality Sijm + Sjkm ≥ Sikm. 
The due dates are randomly picked from a uniform 
distribution on the interval [(SUMP/2M).(1-TF-
RDD/2M),(SUMP/2M).(1-TF+RDD/2M)] where SUMP= 
∑ ∑ , TF is the tardiness factor (say 0.6), and RDD 
is the relative range of the due dates (say 0.8).  

In order to determine appropriate values for the parameters 
required by HDEPSO, we perform extensive preliminary 
experiments with different set of parameters for small and 
large instances. Based on these experiments, we consider the 
following values. The initial population size NP is set to 50 
and 100 for small and large-sized problems, respectively. In 
addition, the crossover parameter CR, the mutation parameter 
F, and the inertial weight are set to 0.3, 0.6, and 0.9. Also the 
social acceleration constants are considered the same and 
equal to 1.5. 

In order to make a fair comparison between algorithms, CPU 
time is chosen as a stopping criterion. The computational time 
limit for all meta-heuristics is calculated according to 
(N+M)×Ω, where Ω is a constant coefficient. While different 
limits could be obtained by different values of Ω, the 
preliminary tests showed its proper amount as 0.5. 

We have considered two sets of the test problems. The first 
set consists of 8 classes of problems called small problems, 
and each class contains 10 randomly generated problem 
instances. Therefore, 80 problem instances are considered for 
the small size problems. The algorithms are replicated five 
times on each one of the instances. In small size, the 
comparisons of algorithms are made in terms of the solution 
quality. The computational results of these tests are 
summarized in Table 1. In this table, the solution quality of 
each objective is measured by average gap of two objectives 
given in equations (1) and (2) between the optimal solution 
and the results obtained by algorithms. To be more specific 
average gap  is computed as follows: 
 

100 	 (23) 

 

Where MethodSol is the value of the objective function F1 and 
F2 found by any of algorithms (i.e., HDEPSO, NSGA-II, and 
SPEA-II), and OptSol is the corresponding optimal solution 
obtained by solving MILP model, and R is total number of 
replications. In order to solve proposed MILP model, we use 
CPLEX solver. The average gaps of the results of HDEPSO 
for F1 and F2 are less than the results obtained by NSGA-II 
and SPEA-II. 

The second set called large size problems includes 10 classes 
of problems. Each class of this set contains 10 randomly 
generated problems, and a total of 100 problem instances are 
considered as large size problems. To validate the reliability 
and performance of the proposed HDEPSO, the following 
comparison metrics are used. 

1. Quality metrics: This metric is simply measured by 
putting together the non-dominated solutions found 
by algorithm and the ratios between non-dominated 
solutions are achieved. 

2. Spacing metric: we use spacing metric that provides 
a measure of uniformity of the spread of non-
dominated solutions. This metric is given by 
equation (24). 

1
1

̅  (24) 

where 

min
∈ ∧

 

and ̅ is the mean of all di, n is the size of obtained 

non-dominated solutions and  is the function value 
of the k-th objective function for solution i. The 
lower values of the SM are preferable. 

Table 2 reports the related computational results for large size 
instances. The results reveal that the proposed HDEPSO can 
achieve a greater number of pareto optimal solutions with 
higher qualities than NSGA-II and SPEA-II. Moreover, the 
finding resulted from algorithms’ implementations indicate 
that the proposed algorithm provides non-dominated solutions 
that have less average values of the spacing metric, also 
SPEA-II is superior to NSGA-II regarding to this metric. 

6. Conclusion 

In this paper, we have dealt with the unrelated parallel 
machine scheduling with sequence-dependant setup times. We 
have considered this problem as a bi-objective case that 
minimizes both tardiness and total workload imbalance 
simultaneously. Furthermore, we have proposed a hybrid 
approach by combining the searching ability of DE and PSO, 
namely HDEPSO, to solve this NP-hard problem. This 
hybridization enhances the exploration ability of the DE by 
the vibrancy and explorative nature of PSO. To investigate the 
effectiveness of our proposed approach, computational 
experiments were conducted and comparison results with two 
well-known multi-objective genetic algorithms, namely 
NSGAII and SPEA-II, were provided based on two 
comparison metrics. The results clearly show that our 
HDEPSO significantly outperforms the abovementioned 
algorithms. 
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Table 1- Comparison Results for small size instances 

Problems 
Average Gap for F1(%) Average Gap for F2(%) 

  HDEPSO 
NSGA-

II 
SPEA-

II 
  HDEPSO 

NSGA-
II 

SPEA-
II 

6×2 0.81 0.81 0.81 0.00 0.00 0.00 

6×3 1.17 1.66 1.17 3.86 2.55 3.86 

8×2 1.14 0.74 0.74 0.00 1.20 1.20 

8×3 2.23 4.37 2.56 4.01 4.01 3.50 

10×2 2.39 3.03 2.39 4.74 5.63 5.19 

10×3 3.21 4.13 4.94 4.36 5.30 5.87 

12×2 2.45 4.27 4.05 1.06 2.63 2.65 

12×3 3.95 5.14 5.60 4.17 4.22 4.90 
 

Table 2- Comparison Results for large size instances 

Problems  
Quality metric Spacing metric 

  HDEPSO NSGA-II SPEA-II   HDEPSO NSGA-II SPEA-II 

50×5 0.78 0.15 0.08 0.29 0.40 0.36 

50×10 0.66 0.21 0.13 0.31 0.43 0.39 

100×5 0.78 0.17 0.05 0.31 0.41 0.38 

100×10 0.80 0.17 0.03 0.33 0.45 0.42 

150×10 0.74 0.18 0.08 0.34 0.44 0.42 

150×15 0.81 0.13 0.06 0.38 0.48 0.42 

200×10 0.74 0.14 0.12 0.36 0.44 0.45 

200×15 0.76 0.14 0.11 0.41 0.49 0.44 

250×10 0.82 0.12 0.06 0.41 0.53 0.45 

250×15 0.83 0.10 0.08 0.40 0.51 0.44 
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