
A Hybrid Differential Particle Swarm Optimization
Approach to Solve a Multi-objective Parallel

Machine Scheduling Problem
Payam Chiniforooshan, Shahrooz Shahparvari

Abstract - This paper addresses the unrelated parallel
machine scheduling problem with sequence-dependant setup
times for minimizing total tardiness and workload imbalance.
The mixed integer linear programming is proposed to model
the studied problem. This problem is shown to be NP-hard in
the strong sense. Thus, we propose a hybrid algorithm that
combines differential evolution with particle swarm
optimization, namely HDEPSO, in order to solve the given
problem. Our objective is to achieve faster convergence rate
and obtain better pareto optimal solutions. In order to
demonstrate the efficiency and reliability of the proposed
algorithm, a number of test problems are solved. The
HDEPSO results are compared with two well-known multi-
objective genetic algorithms in the literature, i.e. NSGA-II
and SPEA-II based on some comparison metrics.
Computational experiments indicate the superiority of the
HDEPSO compared to these two genetic algorithms.

Keywords: Parallel Machine Scheduling, Multi-objective
optimization, Differential evolution, Particle
swarm optimization.

1. Introduction

Scheduling is concerned primarily with allocating scarce
resources, e.g. machines, to particular tasks that have to be
done over given periods, with the objective of optimizing
some performance measures [1]. Scheduling problems are
used in many applications such as production and
procurement, transportation and distribution, and
communication. In real production, parallel machine
scheduling (PMS) is one of the most basic and important

Manuscript received June 17, 2012
 Chiniforooshan. P. is with the Department of Industrial Engineering, Science and

Research Branch, Islamic Azad University, Tehran, Iran, (e-mail:
.Chiniforooshan@usc.ac.ir).

Shahparvari. Sh is with Department of Industrial Engineering, Kish International
Campus, University of Tehran, Tehran, Iran (corresponding author to provide phone:
Tel: +989122392343,Fax:+982166517077; e-mail: Shahparvari@ut.ac.ir).

types of the scheduling problems. A lot of research has been
made on parallel machines, independent of the machine
environment, i.e. on identical machines, unrelated, etc.

In a general PMS problem, a set of n independent jobs are to
be scheduled on m parallel machines to meet certain job
completion time related objectives [2]. A well respected paper
which is presented by Cheng et al. (1990) relates to the whole
class of scheduling problem that consists of parallel machines
in different environment. In unrelated parallel machines, there
is no particular relationship among machines’ capabilities. In
other words, the processing time of each job differs in terms
of processing on each machine. Therefore, the unrelated
parallel machine scheduling (UPMS) becomes the most
complex problem and has attracted more researchers [3,4,5,6].

During many years, it was common practice to take only one
performance criterion into account in the objective function.
However, scheduling problems in real life applications
generally involve optimization of more than one criterion.
Although past literature in UPMS addresses a variety of
research papers, all of them have typically considered a single
criterion. UPMS often involve more than one aspect and
require multi-objective analysis. Therefore, it is more
amenable to solving multi-objective scheduling problem.

Minimizing total tardiness is one of the most important
criteria in many manufacturing systems, especially in the
current situation where competition is becoming more
intensive. Pfund et al. (2004) [7] surveyed the literature in
solving UPMS involving single and multiple objectives.
According to this research, while minimization of makespan
has been fairly widely studied, problems of minimizing the
number of tardy jobs, weighted number of tardy jobs, total
tardiness, and total weighted tardiness remain largely
unstudied.

Another interesting objective function is to balance the
workload across machines as evenly as possible. In PMS
environments, by distributing the available workload among
the available machines as equally as possible, bottlenecks can
be eliminated, throughput can be maximized, and work in

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

progress, finished goods inventory and operating costs can be
lowered. Rajakumar et al. (2004) addressed the UPMS
problem without setup times and with the objective of load
balancing [8]. Yu et al. (2002) studied UPMS problem in a
printed wiring board manufacturing line for a set of
performance measures included load balancing. They used
integer programming, lagrangian relaxation, and heuristics to
solve the problem [9]. Sun et al. proposed a genetic algorithm
for UPMS to minimize number of pickups and workload
imbalance [10]. Keskinturk et al. (2010) proposed a
mathematical model for the PMS problem to minimize
average relative percentage of imbalance, taking into account
sequence-dependant set up times [11].

The studies with bi-criteria goals attempt to consider the
coordination of the producer and customers [12]. These
criteria are often conflicting in nature and are quit complex.
In this research, we address the bi-objective unrelated parallel
machine scheduling with sequenced-dependant setup times
subject to minimization of the total weighted tardiness and
machines workload imbalances. Minimizing both objectives
can help assuring a high utilization of the production system
as well as a high level of service towards the costumers.
Scheduling problems with sequence-dependant setup times
has received the attention of many researchers.

Lee et al. (1997) [13] considered PMS with sequence-
dependent setup time that minimizes total weighted tardiness.
Another paper on UPMS with setup times is studied by Kim
et al. (2002). The paper deals with real problem encountered
in a semiconductor production facility where a part of the
manufacturing process suffers from bottleneck. As criterion,
minimization of total tardiness is used [14]. An interesting
paper, which considers setup times, is recently presented by
Allahveredi et al. (2008) [15], where all classes of problems
are mentioned and the techniques used to solve them.

Lenstra et al. [16] showed that a single machine scheduling
with total weighted tardiness minimization problem is NP-
hard in strong sense. Clearly, the single machine is a special
case of the sequence-dependent unrelated parallel machine
scheduling problem considered in this paper. Therefore, the
problem investigated in this paper is also strongly NP-hard.
We refer to Logendran et al. [3] for further knowledge and
recent findings regarding the UPMS problem. Thus, meta-
heuristic algorithms, such as genetic algorithm (GA) [17],
tabu search (TS) [18], ant colony (ACO) [19], simulated
annealing (SA) [20], and variable neighborhood search (VNS)
[21], are extensively used to find a good solution for such a
hard problem.

Differential evolution (DE) is a novel evolutionary algorithm
recently introduced by Storn and Price [22] for optimization

problems over continuous spaces. Due to its ease of use, fast
convergence and robustness, DE has successfully been
applied to diverse domain of science and engineering [23].
Besides other applications, all of the DE implementations in
scheduling literature focused on the single-machine
scheduling problem [24], flow shop scheduling problem [25]
and job shop scheduling problem [26]. Particle swarm
optimization (PSO), first introduced by Kennedy and Eberhart
[27], is an another most recent evolutionary algorithms that
has been applied to wide range of applications such as power
and voltage control [28], task assignment [29], project
scheduling [30], cell formation problem [31], flow shop
sequencing problem [32].

In this paper, we devise a hybrid approach by combining the
searching ability of DE and PSO, namely HDEPSO, to solve
multi-objective unrelated parallel machine scheduling with
sequence-dependant setup time. This hybridization enhances
the exploration ability of the DE by the vibrancy and
explorative nature of PSO. The optimization criteria are
minimizing total weighted tardiness and workload imbalance.
To investigate the effectiveness of our proposed approach,
computational experiments are conducted and comparison
results with two well-known multi-objective genetic
algorithms, namely NSGAII [33] and SPEA-II [34], are
provided. The results clearly show that our HDEPSO
significantly outperforms the abovementioned algorithms.

The remaining contents of this paper are partitioned into five
sections. In section 2, we propose the formulation of multi-
objective unrelated PMS problem. This is followed by a brief
overview of DE and PSO in the section 3. In section 4, we
describe the proposed HDEPSO algorithm. In section 5, we
show the experimental results obtained by the proposed
solution algorithm and then compare these results with two
multi-objective genetic algorithms, called NSGAII and
SPEA-II. Finally, conclusion is presented in section 6.

2. Problem definition and mathematical modeling

As described earlier, our problem involves scheduling n jobs
on m unrelated parallel machines to minimize total tardiness
and workload imbalance as objective functions. A classical
UPMS problem can be stated as follows: a set of n
independent jobs to be processed on m available unrelated
parallel machines. Each machine can process only one job at a
specific time, and each job can be processed on only one
machine. Two operations are not allowed to overlap each
other. Each job is ready at the beginning of the scheduling
horizon and has a distinct processing time and due date. Once
started, an operation cannot be interrupted until it is
completed. Each machine is continuously available. No idle
time in the machines between operations is allowed. Also, we

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

assume that there are sequence-dependent setup times. The
notation for parameters and variables used in the model are as
follows:

Parameters:

M number of machines available

N number of jobs to be scheduled

Ti length of time job i is tardy

di due date for job i

B a large number

Pim processing time for job i using machine m

Sji setup time for job i when it immediately
follows job j

S0i setup time for job i when it is the first in the
queue

Decision variables:

Ci completion time of job i

Yijm 1, if job i is immediately followed by job j
in sequence on machine m; 0, otherwise

Zim 1, if job i is assigned to machine m; 0,
otherwise

Wmin minimum workload of all machines

Wmax maximum workload of all machines

The following MILP model is proposed for our problem and
is intended to minimize the ET objective function and the WB
objective function with respect to some constraints.

	

(1)

	 (2)
Subject to.

 i=1, …, N (3)
 i=1, …, N (4)

1 i=1, …, N (5)

i j , i=0,1,…, N ,
m=1,…, M

(6)

i j , j=1,…, N ,
m=1,…, M

(7)

i j , i=1,…, N ,
j=0,1,…, N ,
m=1,…, M

(8)

 m=1,…, M (9)

 m=1,…, M (10)

, ∈ 0,1 (11)
, , , , 0 (12)

The objective functions are (1) minimizing total tardiness and
(2) minimizing total workload imbalance. A fictitious job 0 is
introduced to simplify the understanding and the writing of
the constraints, which obviously results in Z0m = 1 and C0 = 0.
The defining constraints (3 and 4) measure the degree to
which each job is tardy or early. Constraint (5) ensures that
each job is processed on one and only one machine.
Constraints (6) and (7) ensure that each job must come
immediately before, and immediately after, only one other
job. Constraint (8) ensures that the completion time of job i is
far enough after that of job j to include the processing time
and setup time for job i. Two defining constraints (9) and (10)
measure the minimum and maximum workload of machines,
respectively. Lastly, constraints (11) and (12) indicate the
types of model’s variables.

3. Overview of DE and PSO

Differential Evolution (DE) algorithm, introduced by Storn
and Price (1995) is a powerful population-based evolutionary
algorithm for optimization algorithm over continuous spaces.
DE starts with an initial population vector, which is randomly
generated when no preliminary knowledge about the solution
space is available [35]. The basic scheme of DE, which is
denoted as DE/rand/1/bin, can be summarized as follows:

At every generation G, DE maintains a population P(G) of NP
(population size) vectors of solutions which evolve through
the optimization process to find global solution:

, … , (13)

The population size, NP, is constant during the optimization
process. The dimension of each vector of candidate solutions
correspond to the number of the decision parameters, D, to be
optimized. Therefore,

, , … , , , 1,2,… , (14)

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

After that the initial population is created, it evolves through
the operation of mutation, crossover and selection. At every
generation G, each vector in the population has to serve once

a target vector. For each target vector, a mutant vector is
defined by:

 (15)
 (15)

with random indexes , , 	 ∈ 1,2, … , , integer, mutually
different, and different to the target vector. F is a user defined
constant (also known mutation scaling factor), which is
typically chosen from the range (0,2] ([35]). Larger values for
F result in higher diversity in the generated population and
lower values cause faster convergence.
DE utilizes the crossover operation to generate new solutions
by shuffling competing vectors and also to increase the
diversity of the population. To this end, the trial vector, i.e.,

, , … , , is formed, where

(16)

In (16), randj is the jth evaluation of a uniform random number
generator with outcome between 0 and 1. CR is the crossover
rate constant and is a user-defined parameter within the range
[0,1]. Large CR usually increases the convergence rate. K is a
random parameter index chosen from the set {1, …, D},
which is used to make sure that at least one parameter is

always selected from a . The crossover procedure is

illustrated in Figure 1.

Figure 1 Crossover process with an example with 7 jobs (7-
dimension)

In order to decide which vector (,) should become a

member of generation G+1, the trial vector is compared to the
target vector using a greedy criterion. For a minimization
problem, the vector with the lower value of objective function
is chosen. As a result, all individuals of the next generation
are as good as or better than the individuals of the current
generation. Comprehensive history and development of DE is
presented in the[36]].

As other evolutionary algorithms, Particle swarm
optimization (PSO) is a population-based optimization
algorithm inspired by the behavior of a bird flock. The
individuals in a PSO are denoted as particles. The PSO
algorithm represents each potential solution by the position of
a particle in multi-dimensional hyperspace. Throughout the
optimization process velocity and displacement updates are
applied to each particle to move it to a different position and
thus a different solution in the search space. PSO refines its
search by attracting the particles to positions with good
solutions. PSO remembers the best position found by any
particle (gbest). Also, each particle remembers its own
previously best found position (pbest). Suppose that the
position of the particle i at the Gth iteration is represented by

. Then, the velocity vector of particle i at iteration G+1

 () is updated by the Eq. (17).

(17)

Where is the inertial weight which is introduced to balance

between the global and local search abilities, is the best
found position of the ith particle at the tth iteration and is
the best position known for all particles. and are the
cognitive and social acceleration constants, and is a
random number generator with a uniform distribution over
[0,1]. The position of each particle is updated in each iteration
by adding the velocity vector to the position vector according
to Eq. (18).

	 (18)

This simultaneous movement of particles towards their own
previous best solutions and the best solution found by the
entire swarm results in the particles converging to one or
more good solutions in the solution space.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

4. Problem Solving Algorithm

As an aforementioned, the UPMS problem with sequence-
dependant setup time is strongly NP-hard. Beside, finding a
desirable solution for multi-objective combinatorial problems
make them even more complex. A multi-objective problem
causes the single optimal solution to convert into a set of
optimal solutions named pareto optimal solutions. Thus,
meta-heuristic algorithms are used to find a good solution for
such a complex problems. These algorithms provide good
solutions in a reasonable amount of time, making them more
practicable and thus useful to the industries.

Meta-heuristic algorithms such as DE and PSO are proper
methods to solve complex problems. However, these methods
are not without limitations. To overcome these limitations, in
this paper, we combine DE with PSO in a hybrid algorithm to
solve multi-objective UPMS with sequence-dependant setup
time. Since Both DE and PSO algorithms are population
based, hybridization the searching abilities of both methods
seem to be a good approach. Our objective is to achieve faster
convergence rate and obtain better pareto optimal solutions.

Since DE and PSO algorithms are originally designed to solve
problems with continuous variables, they cannot be used
directly to solve discrete problems. Therefore, the proposed
HDEPSO approach uses random key representation,
introduced by bean [37], to encode solutions. Based on this
representation scheme, the sequence of jobs on machine can
be converted to continuous position values. Each position is a
vector of uniform random number between 0 and 1. Thus,
each solution is encoded as a vector of random keys. The
proposed HDEPSO algorithm to solve the multi-objective
UPMS problem consists of following steps:

Step 1: In order to establish a starting point for the
optimization process, each decision parameter in
every vector of the initial population is assigned a
randomly chosen value from within its
corresponding feasible bounds:

, ,	
1,2,… , , 1,2, … ,

(19)

where and is considered between [0,1], and

 represent a uniformly distributed random

value that ranges from 0 to 1. This initial population

set , , , , … , , consists of 2N

solutions, which are randomly generated.

Step 2: The values of objective functions for each vector are
evaluated: total tardiness (), total workload

imbalance () according to equations (1) and (2).
Eliminate dominated solutions from the feasible set

.

Step 3: Compute average total tardiness () and average

workload imbalance () in the updated . Then
for each solution vector, compute the normalized
distance (D) in a two-dimensional objective space
from the origin according to equation (20).

⁄ ⁄ (20)

Step 4: Order solution vectors in in descendant order.
Split the ordered population set into two solution
subsets: lower-half and upper-half.

Step 5: Apply the mutation and crossover operators according
to equations (15) and (16) to the current lower-half
subset solutions.

Step 6: Apply the movement operator of PSO according to
equations (17) and (18) to the current upper-half
subset solutions. These solutions belong to the next

iteration population set .

Step 7: Update the pbest and gbest values in the next iteration
when the following corresponding conditions are
met:

Step 8: the algorithm is repeated from Step (2) to Step (7)
until the termination condition is met.

5. Computational Experiments

This section gives experimentation results on the performance
of proposed HDEPSO to solve the considered problem. Also,
the performance of the HDEPSO is compared with two well-
known multi-objective genetic algorithms in the literature,
namely NSGA-II and SPEA-II. All algorithms are coded in
C++ programming language and executed on an Intel® Core
2 DuoE4500 at 2.20 GHz with 2.0GB of RAM.

Because of the novelty of our problem, a number of test
problems are randomly generated in small, and large sizes.
The processing times and setup times for jobs are randomly
selected from uniform distribution between (1,20) and (1,7),

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

respectively. In the case of setup times, after generating from
the uniform distribution, the amount of setup times is
corrected based on the triangular inequality Sijm + Sjkm ≥ Sikm.
The due dates are randomly picked from a uniform
distribution on the interval [(SUMP/2M).(1-TF-
RDD/2M),(SUMP/2M).(1-TF+RDD/2M)] where SUMP=
∑ ∑ , TF is the tardiness factor (say 0.6), and RDD
is the relative range of the due dates (say 0.8).

In order to determine appropriate values for the parameters
required by HDEPSO, we perform extensive preliminary
experiments with different set of parameters for small and
large instances. Based on these experiments, we consider the
following values. The initial population size NP is set to 50
and 100 for small and large-sized problems, respectively. In
addition, the crossover parameter CR, the mutation parameter
F, and the inertial weight are set to 0.3, 0.6, and 0.9. Also the
social acceleration constants are considered the same and
equal to 1.5.

In order to make a fair comparison between algorithms, CPU
time is chosen as a stopping criterion. The computational time
limit for all meta-heuristics is calculated according to
(N+M)×Ω, where Ω is a constant coefficient. While different
limits could be obtained by different values of Ω, the
preliminary tests showed its proper amount as 0.5.

We have considered two sets of the test problems. The first
set consists of 8 classes of problems called small problems,
and each class contains 10 randomly generated problem
instances. Therefore, 80 problem instances are considered for
the small size problems. The algorithms are replicated five
times on each one of the instances. In small size, the
comparisons of algorithms are made in terms of the solution
quality. The computational results of these tests are
summarized in Table 1. In this table, the solution quality of
each objective is measured by average gap of two objectives
given in equations (1) and (2) between the optimal solution
and the results obtained by algorithms. To be more specific
average gap is computed as follows:

100 	 (23)

Where MethodSol is the value of the objective function F1 and
F2 found by any of algorithms (i.e., HDEPSO, NSGA-II, and
SPEA-II), and OptSol is the corresponding optimal solution
obtained by solving MILP model, and R is total number of
replications. In order to solve proposed MILP model, we use
CPLEX solver. The average gaps of the results of HDEPSO
for F1 and F2 are less than the results obtained by NSGA-II
and SPEA-II.

The second set called large size problems includes 10 classes
of problems. Each class of this set contains 10 randomly
generated problems, and a total of 100 problem instances are
considered as large size problems. To validate the reliability
and performance of the proposed HDEPSO, the following
comparison metrics are used.

1. Quality metrics: This metric is simply measured by
putting together the non-dominated solutions found
by algorithm and the ratios between non-dominated
solutions are achieved.

2. Spacing metric: we use spacing metric that provides
a measure of uniformity of the spread of non-
dominated solutions. This metric is given by
equation (24).

1
1

̅ (24)

where

min
∈ ∧

and ̅ is the mean of all di, n is the size of obtained

non-dominated solutions and is the function value
of the k-th objective function for solution i. The
lower values of the SM are preferable.

Table 2 reports the related computational results for large size
instances. The results reveal that the proposed HDEPSO can
achieve a greater number of pareto optimal solutions with
higher qualities than NSGA-II and SPEA-II. Moreover, the
finding resulted from algorithms’ implementations indicate
that the proposed algorithm provides non-dominated solutions
that have less average values of the spacing metric, also
SPEA-II is superior to NSGA-II regarding to this metric.

6. Conclusion

In this paper, we have dealt with the unrelated parallel
machine scheduling with sequence-dependant setup times. We
have considered this problem as a bi-objective case that
minimizes both tardiness and total workload imbalance
simultaneously. Furthermore, we have proposed a hybrid
approach by combining the searching ability of DE and PSO,
namely HDEPSO, to solve this NP-hard problem. This
hybridization enhances the exploration ability of the DE by
the vibrancy and explorative nature of PSO. To investigate the
effectiveness of our proposed approach, computational
experiments were conducted and comparison results with two
well-known multi-objective genetic algorithms, namely
NSGAII and SPEA-II, were provided based on two
comparison metrics. The results clearly show that our
HDEPSO significantly outperforms the abovementioned
algorithms.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Table 1- Comparison Results for small size instances

Problems
Average Gap for F1(%) Average Gap for F2(%)

 HDEPSO
NSGA-

II
SPEA-

II
 HDEPSO

NSGA-
II

SPEA-
II

6×2 0.81 0.81 0.81 0.00 0.00 0.00

6×3 1.17 1.66 1.17 3.86 2.55 3.86

8×2 1.14 0.74 0.74 0.00 1.20 1.20

8×3 2.23 4.37 2.56 4.01 4.01 3.50

10×2 2.39 3.03 2.39 4.74 5.63 5.19

10×3 3.21 4.13 4.94 4.36 5.30 5.87

12×2 2.45 4.27 4.05 1.06 2.63 2.65

12×3 3.95 5.14 5.60 4.17 4.22 4.90

Table 2- Comparison Results for large size instances

Problems
Quality metric Spacing metric

 HDEPSO NSGA-II SPEA-II HDEPSO NSGA-II SPEA-II

50×5 0.78 0.15 0.08 0.29 0.40 0.36

50×10 0.66 0.21 0.13 0.31 0.43 0.39

100×5 0.78 0.17 0.05 0.31 0.41 0.38

100×10 0.80 0.17 0.03 0.33 0.45 0.42

150×10 0.74 0.18 0.08 0.34 0.44 0.42

150×15 0.81 0.13 0.06 0.38 0.48 0.42

200×10 0.74 0.14 0.12 0.36 0.44 0.45

200×15 0.76 0.14 0.11 0.41 0.49 0.44

250×10 0.82 0.12 0.06 0.41 0.53 0.45

250×15 0.83 0.10 0.08 0.40 0.51 0.44

References

[1] M. Pinedo, Scheduling Theory, Algorithms and Systems, 3rd ed. New
York: Springer Science+Business Media, LLC, 2008.

[2] F. ,. U. G. Sivrikaya, "Parallel machine scheduling with earliness and
tardiness penalties," Computer and Operations Research, vol. 26, pp.
773-787, 1999.

[3] R. ,. M. B. ,. S. B. Logendran, "Scheduling unrelated parallel machines
with sequence-dependent setups," Computers and Operations Research,
vol. 34, pp. 3420-3438, 2007.

[4] M. ,. K. O. Azizoglu, "Scheduling jobs on unrelated parallel machines to
minimize regular total cost functions," IIE Transactions, vol. 31, pp.
153-159, 1999.

[5] R. ,. S. F. Logendran, "Unrelated parallel machine scheduling with job

splitting," IIE Transactions, vol. 36, pp. 359-372, 2004.

[6] V. ,. C. D. Suresh, "Minimizing maximum tardiness for unrelated
parallel machines," International Journal of Production Economics, vol.
32, pp. 223-229, 1994.

[7] M. ,. F. J. ,. G. J. ,. Pfund, "A survey of algorithms for single and multi-
objective unrelated parallel machine deterministic scheduling problems,"
Journal of the Chinese Institute of Industrial Engineers, vol. 21, pp.
230-241, 2004.

[8] S. Rajakumar, V. P. Arunachalam, and V. Selladurai, "Workflow
balancing strategies in parallel machine scheduling," International
Journal of Advanced Manufacturing Technology, vol. 23, p. 366–374,
2004.

[9] L. ,. S. M. H. ,. P. M. ,. C. M. W. ,. F. W. J. Yu, "Scheduling of
unrelated parallel machines: an application to PWB manufacturing," IIE

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Transactions, vol. 34, pp. 921-931, 2002.

[10] D. S. ,. L. T. E. ,. K. K. H. Sun, "Component allocation and feeder
arrangement for a dual-gantry multi-head surface mounting placement
tool," International Journal of production Economics, vol. 95, pp. 245-
264, 2005.

[11] T. ,. Y. M. B. ,. B. M. Keskinturk, "An ant colony optimization
algorithm for load balancing in parallel machines with sequence-
dependent setup times," Computers & Operations Research, vol. 39, pp.
1225-1235, 2012.

[12] M. ,. K. A. B. Koksalan, "Using genetic algorithms for single machine
bicriteria scheduling problems," European Journal of Operational
Research, vol. 145, pp. 543-556, 2003.

[13] Y. H. ,. P. M. Lee, "Scheduling jobs on parallel machines with sequence
dependant setup times," European Journal of Operational Research,
vol. 100, pp. 464-474, 1997.

[14] D. W. ,. K. K. H. ,. J. W. ,. C. F. F. Kim, "Unrelated parallel machine
scheduling with setup times using simulated annealing," Robotics and
Computer Integrated Manufacturing, vol. 18, pp. 223-231, 2002.

[15] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov, "A
survey of scheduling problems with setup times or costs," European
Journal of Operational Research, vol. 187, p. 985–1032, 2008.

[16] J. K. ,. R. K. A. H. G. ,. B. P. Lenstra, "Complexity of machine
scheduling problems," Annals of Discrete Mathematics, vol. 1, pp. 343-
362, 1977.

[17] S. Balin, "Non-identical Parallel Machine Scheduling Using Genetic
Algorithm.," Expert Systems with Applications, vol. 38, p. 6814–6821,
2011.

[18] M. ,. R. G. ,. A.-S. A. Helal, "A Tabu Search Algorithm to Minimize the
Makespan for the Unrelated Parallel Machines Scheduling Problem with
Setup Times," International Journal of Operations Research, vol. 3, pp.
182-192, 2006.

[19] J. P. ,. R. G. ,. M. R. Arnaout, "A two-stage Ant Colony Optimization
algorithm to minimize the makespan on unrelated parallel machines with
sequence-dependent setup times," Journal of Intelligent Manufacturing,
vol. 21, pp. 693-701, 2010.

[20] K. C. ,. L. Z. .-J. ,. L. S. W. Ying, "Makespan minimization for
scheduling unrelated parallel machines with setup times," Journal of
Intelligent Manufacturing, pp. DOI:101007/s10845-010-0483-3, 2010.

[21] A. ,. M. L. Bilyk, "A Variable Neighborhood Search Approach for
Planning and Scheduling of Jobs on Unrelated Parallel Machines,"
Journal of Intelligent Manufacturing, pp. doi:101007/s10845-010-0464-
6, 2010.

[22] R. Storn and K. Price, "Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces," Global
Optimization, vol. 11, pp. 341-359, 1997.

[23] R. Poli, "An analysis of publications on particle swarm optimisation
applications," 2007.

[24] M. F. Tasgetiren, Y. Liang, M. Sevkli, and G. Gencyilmaz, "Particle
swarm optimization and differential evolution for the single machine
total weighted tardiness problem," International Journal of Production
Research, vol. 44, no. 22, pp. 4737-4754, 2006.

[25] G. Onwubolu and D. Davendra, "Scheduling flow shops using
differential evolution algorithm," European Journal of Operational
Research, vol. 171, p. 674–692, 2006.

[26] A. C. Nearchou, "A differential evolution approach for the common due
date early/tardy job scheduling problem," Computers & Operations
Research, vol. 35, p. 1329–1343, 2008.

[27] J. ,. E. R. C. Kennedy, "Particle swarm optimization," in IEEE
international conference on neural networks, Piscataway, 1995, p.

1942–1948.

[28] H. K. K. ,. F. Y. ,. N. Y. Yoshida, "A particle swarm optimization for
reactive power and voltage control considering voltage security
assessment," IEEE Transactions on Power Systems, vol. 15, p. 1232–
1239, 2000.

[29] A. ,. A. I. ,. A.-M. S. Salman, "Particle swarm optimization for tast
assignment problem," Microprocessors and Microsystems, vol. 26, p.
363–371, 2003.

[30] H. ,. L. H. ,. T. C. M. Zhang, "Particle swarm optimization for resource-
constrained project scheduling," International Journal of Project
Management, vol. 24, p. 83–92, 2006.

[31] C. ,. L. S. Andres, "A particle swarm optimization algorithm for part–
machine grouping," Robotics and Computer-Integrated Manufacturing,
vol. 22, p. 468–474, 2006.

[32] M. F. ,. L. Y. C. ,. S. M. ,. G. G. Tasgetiren, "A particle swarm
optimization algorithm for makespan and total flowtime minimization in
the permutation flowshop sequencing problem," European Journal of
Operational Research, vol. 177, p. 1930–1947, 2007.

[33] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, "A fast and elitist
multi-objective genetic algorithm: NSGA-II," IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182-197, 2002.

[34] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: improving the strength
pareto evolutionary algorithm," in Evolutionary methods for design,
optimization and control with applications to industrial problems,
Athens, 2001, pp. 95-100.

[35] R. ,. P. K. Storn, "Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces," Journal of
Global Optimization, vol. 11, pp. 341-359, 1997.

[36] V. Feoktistov, Differential Evolution: In Search of Solutions. USA:
Springer, 2006.

[37] J. C. Bean, "Genetics and random keys for sequencing and
optimization," ORSA Journal on Computing, vol. 6, pp. 154-160, 1994.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

