
Citation: Rajagopal, B.G.; Kumar, M.;

Samui, P.; Kaloop, M.R.;

Shahdah, U.E. A Hybrid DNN Model

for Travel Time Estimation from

Spatio-Temporal Features.

Sustainability 2022, 14, 14049.

https://doi.org/10.3390/su142114049

Academic Editors: Jacek Oskarbski,

Kyandoghere Kyamakya and

Miroslava Mikušová

Received: 8 October 2022

Accepted: 26 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Hybrid DNN Model for Travel Time Estimation from
Spatio-Temporal Features
Balaji Ganesh Rajagopal 1 , Manish Kumar 2 , Pijush Samui 3, Mosbeh R. Kaloop 4,5,*
and Usama Elrawy Shahdah 5

1 Department of Computer Science and Engineering, SRM Institute of Science and Technology (SRMIST),
Tiruchirappalli Campus, Tamil Nadu 621105, India

2 Department of Civil Engineering, SRM Institute of Science and Technology (SRMIST),
Tiruchirappalli Campus, Tamil Nadu 621105, India

3 Department of Civil Engineering, NIT Patna, Bihar 800005, India
4 Department of Civil and Environmental Engineering, Incheon National University, Incheon 22021, Korea
5 Public Works and Civil Engineering Department, Mansoura University, Mansoura 35116, Egypt
* Correspondence: mosbeh@mans.edu.eg or mosbeh@inu.ac.kr

Abstract: Due to recent advances in the Vehicular Internet of Things (VIoT), a large volume of traffic
trajectory data has been generated. The trajectory data is highly unstructured and pre-processing
it is a very cumbersome task, due to the complexity of the traffic data. However, the accuracy of
traffic flow learning models depends on the quantity and quality of preprocessed data. Hence, there
is a significant gap between the size and quality of benchmarked traffic datasets and the respective
learning models. Additionally, generating a custom traffic dataset with required feature points in
a constrained environment is very difficult. This research aims to harness the power of the deep
learning hybrid model with datasets that have fewer feature points. Therefore, a hybrid deep learning
model that extracts the optimal feature points from the existing dataset using a stacked autoencoder
is presented. Handcrafted feature points are fed into the hybrid deep neural network to predict the
travel path and travel time between two geographic points. The chengdu1 and chengdu2 standard
reference datasets are used to realize our hypothesis of the evolution of a hybrid deep neural network
with minimal feature points. The hybrid model includes the graph neural networks (GNN) and
the residual networks (ResNet) preceded by the stacked autoencoder (SAE). This hybrid model
simultaneously learns the temporal and spatial characteristics of the traffic data. Temporal feature
points are optimally reduced using Stacked Autoencoder to improve the accuracy of the deep neural
network. The proposed GNN + Resnet model performance was compared to models in the literature
using root mean square error (RMSE) loss, mean absolute error (MAE) and mean absolute percentile
error (MAPE). The proposed model was found to perform better by improving the travel time
prediction loss on chengdu1 and chengdu2 datasets. An in-depth comprehension of the proposed
GNN + Resnet model for predicting travel time during peak and off-peak periods is also presented.
The model’s RMSE loss was improved up to 22.59% for peak hours traffic data and up to 11.05% for
off-peak hours traffic data in the chengdu1 dataset.

Keywords: stacked autoencoder; spatio-temporal learning; graph neural network; residual blocks;
hand-crafted feature map

1. Introduction

Many developing countries, such as India, make an important contribution to the
development of public road infrastructure. In India, public transportation systems are
used to reduce traffic congestion, leading to access to various places within connected
cities. However, many show reluctance to use public transport and prefer to go with their
own vehicle. This is understandable as transportation systems can easily be affected by
weather conditions, traffic lights, traffic changes, rush hours and highway events. Road

Sustainability 2022, 14, 14049. https://doi.org/10.3390/su142114049 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142114049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3303-275X
https://orcid.org/0000-0001-7667-0359
https://orcid.org/0000-0001-9176-2956
https://doi.org/10.3390/su142114049
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142114049?type=check_update&version=1

Sustainability 2022, 14, 14049 2 of 20

traffic congestion often causes delays in established times as well as inconsistencies in the
estimation of travel times. In many cases, the time difference between the estimated and
actual arrival time can be half an hour or more. This is not just about traveler plans but
also about economic growth. As a result, there is an increased demand for technological
solutions to address problems.

There are a variety of factors that drive the estimation of travel time using different
learning models, and these models depend on the selection of optimal paths. Many factors,
such as passenger boarding time, trip cancellations, road blockages, road maintenance, etc.,
are immeasurable and cannot be considered in the estimation of travel time. Travel time is
defined as the sum of the free-flow travel time and the delay caused by traffic jams. The
delays in traffic jams that occur during the journey are important factors for estimating
the journey time. Travel delays are divided into unexpected delays and systematic delays.
Unexpected delays are rare and very difficult to measure and predict. Systematic delay is
the delay caused by traffic congestion along a road section. These systematic delays are
frequent, measurable and vary with the time of day and can be used to estimate travel
time between two geographic locations. This can be predicted by looking at the traffic flow
patterns between two nodes that occurred on the previous trip, while the previous trip was
made by the same vehicle or by another vehicle.

During peak and off-peak hours of the day, the actual travel time varies with high
variance, mainly due to time spent in rush hour traffic jams. Among the mainstream
technologies, Advanced Vehicle Location Systems (AVLS) are used to monitor the current
latitude and longitude positions of vehicles, aided by a GPS system located in each vehicle.
The trajectory information collected by the GPS can be used to signal major delays and
the information is then processed to provide better route options. Many transportation
companies are in the process of deploying smart systems to communicate information such
as vehicle arrival times and travel times to the public via web/mobile apps or smart devices.

Recently, researchers have begun collecting trajectory data to develop learning models
to understand traffic patterns, resulting in travel time estimates and optimal path prediction.
Probe vehicles were used in the traffic research to collect floating car (FCD) data, including
timestamped geolocations. These probe vehicles communicate with each other to collect
trajectory data as the vehicles travel in the city. With the advent of vehicles and devices with
GPS, vehicle and commuter trajectory data is readily available in large quantities. However,
it is very difficult to understand the patterns in the raw and sparse data source with a very
low penetration rate, i.e., the ratio of the probe vehicles to the total number of vehicles in the
road segment. Other problems when using the FCD are the mapping of vehicle geolocation
data to road maps. The trajectory of the probe vehicles does not reflect the actual start
and end of the paths and their links. The data patterns in the vehicle trajectory will then
overlap. Due to the problems mentioned above, there is a large gap between the raw and
sparse data source that generates the trajectory of vehicles and its use in estimating travel
time. An advanced preprocessing technique is required before the data is entered into the
learning models. Almost all learning models in existence to date have focused on features,
such as vehicle speed and vehicle direction information as well as geospatial location and
timestamps for many research vehicles. Even these methods have not given due importance
to the introduction of preprocessing models for extracting functions. Therefore, a learning
model is needed for cases where minimal trajectory data is available.

Many traditional methods, such as vector autoregressive (VAR), historical (HA), and
autoregressive integrated moving average (ARIMA) models, process temporal or spatial
data but not both. On the other hand, hand-crafted feature models failed to capture the
spatial relationships inherent in traffic data.

By interpreting the traffic as a diagram, the model can capture the spatial connections
between traffic points. Research interest is growing in time series based Deep Learning
(DL) models, such as the spatio-temporal-residual networks (ST-ResNet) model and the
convolutional neural networks (CNN) based model, graph neural networks (GNN) and
their applicability for traffic data analysis are widely used.

Sustainability 2022, 14, 14049 3 of 20

GNN was introduced as a tool for synchronous and global extraction and learning
of propagation patterns in graphs. By combining these two components, the researchers
simultaneously estimate traffic flows by combining the data collected at the node and graph
level. If a vehicle chooses a particular connection, the propagation model can be described
using GNN. GNN also helps to understand vehicle models during both peak and off-peak
hours. The propagation module in GNN is based on static relations between vertices on a
longer time axis and requires a large amount of trajectory data to predict travel time.

This research aims to overcome the need for large amounts of temporal trajectory
data from multiple vehicle nodes, thereby reducing the limitations of trajectory data
collection. By using Stacked Autoencoder to reduce the dimensionality of temporal data,
the complexity of the data acquisition process is reduced.

The contributions in this research work are as follows:

1. Stacked autoencoder is used to reduce the dimensionality of a temporary feature map;
2. Graph neural network uses spatial characteristics (connection graph) to understand

the strength of connections (spatial characteristics at the node level);
3. Graph convolved feature map is inserted into ResNet and consists of 26 fully con-

nected layers with skip connection;
4. The hybridization of GNN + ResNet is obtained to simultaneously learn the spatial

and temporal characteristics.

The proposed hybrid model based on GNN + ResNet is implemented on the Chengdu
dataset to learn the spatial and temporal characteristics of vehicle nodes. The learned
model estimates the time and path for the given source and destination points in Google
Maps. We used the ResNet model on the GNN layers and pre-training intuition dictates
that the initial layers do not need to be recycled every epoch. Only added or changed layers
need to be formed. Therefore, the layers are frozen while the models are pre-formed.

The remainder of the manuscript is organized as follows: Section 2 provides the
detailed analysis of existing work and datasets. Section 3 describes methodologies for
constructing a hybrid deep neural model for traffic flow prediction. Section 4 demonstrates
the design of the deep neural model using the chengdu1 and chengdu2 datasets and
compares the work to existing work. Section 5 concludes the proposed model with open
research questions.

2. Related Works

The framework for intelligent transport system (ITS) services in urban cities is gradu-
ally expanding, but the amount of traffic infrastructure is very limited. As a result, travel
time estimation (TTE) has become a critical and important issue for enabling ITS in all cities.
Nowadays, people expect a good accuracy of the TTE module when using city features
or street maps. Accurate travel time estimation can benefit ITS services with optimal
route design, vehicle allocation and reduction of traffic congestion. However, the TTE
estimate is difficult to solve due to the complex road structure and the dynamic space-time
relationships that exist between the different road structures at different times of the day.

In urban traffic situations, big trajectory data is very often available in a minimally
processed form. Predicting travel time from raw trajectory data of high attribute elements is
very tedious. However, in most cases, the model becomes outdated due to the complexity
of minutiae in traffic data. The work of [1,2] attempted to derive a framework for travel
time estimation, but did not consider the availability of preprocessed spatio-temporal
feature points. The work of [3] proposed a spatio-temporal autoregressive mobility model
to predict urban traffic flow.

Some time series models [4–10] have become popular for implementing the TTE module.
These time series models exploit the highly unstructured and limited available data and reveal
the variety of trajectory data and its verifiable source. Although these traditional time series
models are simple, natural and computationally light, they cannot accommodate complex
and dynamic spatial and temporal characteristics, limiting improvements in accuracy.

Sustainability 2022, 14, 14049 4 of 20

In time series models, autoregression-based moving average models and their variants
are often used for traffic forecasting [4,6,11–15]. Similarly, many machine learning models
are often designed for fully curated small to medium sized traffic trajectory datasets. More-
over, when the temporal data is frequently used by the learning models, the geographical
dependence of the traffic information is ignored or little considered. The machine learning
models in [6,16,17] do not support large-scale spatio-temporal datasets that are highly
dynamic and have a larger number of feature variables. Here too, the process of cleaning
the raw data leads to high computational costs.

Feature-based techniques [18–28] incorporate the TTE module using a regression-
based prediction model with feature variables handcrafted from the data of traffic. Unlike
ML models, Gaussian process models initiate traffic data features using subspace sampling
techniques but do not contain spatio-temporal connections. However, although Gaussian-
based techniques are powerful and feasible to predict traffic flow estimation at peak hours,
they require high computational load.

In recent years, researchers have turned to deep learning models and then to hybrid
deep learning models. Deep neural networks can achieve significant performance gains
by leveraging higher computing power with large-scale feature maps generated from raw
traffic path data. Even when feature maps are dynamic with complex bindings, deep
learning models outperform traditional learning methods as developed in [11–13]. The
encoder-based work in [29–37] has done a detailed study on the autoencoder model to
better predict traffic flow. Autoencoder is used by many researchers to denoise feature
points in large datasets. DL models in [38–43] used a comprehensive learning model for
the prediction of traffic flows for special events, demonstrating that RNN has a good effect
in estimating travel time. The convolutional neural networks (CNN) models in [44–46]
proposed a DNN-based traffic flow model to predict the historical value of the traffic flow
and used CNN to extract the characteristics of the local traffic flow.

The methods based on dynamic feedback in [20,47,48] proposed an in-depth study
of a recurrent convolutional neural network (eRCNN) structure with error feedback for
prediction of continuous traffic flow. For an even better traffic prediction by examining the
speed of continuous traffic, the work in [48] also proposed a recurrent convolutional neural
network (eRCNN) with error feedback, exploiting the possibility of rational integration of
both RNN and CNN to study the logical time series models that can conform according to
traffic conditions.

A number of research works have used convolutional neural networks (CNNs) to
extract spatial connections from two-layered geospatial traffic data [49–51]. Since it is very
difficult to represent the traffic network using 2D grids, few studies in [30,52,53] have
attempted to convert the structure of the traffic network into images, which are then used
to map spatial similarities between different locations. However, space–time relationships
are not reflected in transforming geographic images into different matrices and in learning
landmarks using CNN. Because traffic information is space–time, constantly changing
with time and space, and presents complicated dynamic space-time situations, CNNs with
different learning and optimization techniques are unable to understand the patterns in
urban traffic data. Traffic Information on spatial planning over time is also influenced by
external variables, such as climatic conditions, occasions or characteristics of the road.

Many researchers are studying hybrid deep learning models that would combine
several basic linear models to capture the geographic locations and temporal interactions
of traffic data. Many of the related works [51,54–57] consider relationships within spatial
and temporal data independently of each other and do not consider their combined rela-
tionships. As a result, spatial and temporal relationships are not fully exploited to improve
accuracy in learning the dynamics of urban traffic data. To address these limitations in
hybrid learning models, the researchers sought to integrate geographic and temporal data
into a proximity, or tensor, graphical model. For example, ref. [49] obtained a constrained
space–time network by interconnecting and coupling all available nodes on temporal in-
stances n − 1, n and n + 1. The relationships between each node and its spatio-temporal

Sustainability 2022, 14, 14049 5 of 20

neighbors are directly recorded by the topological architecture of the constrained spatio-
temporal network. Among the many CNN-based models, only a few have attempted to
demonstrate the power of CNN-based learning models. The work of [28] developed a
deep learning-based automatic encoder model for traffic flow prediction that captures both
local trends and long-term dependencies on traffic patterns. In [58], a CNN-based multi-
tasking deep learning model has been proposed that considers both spatial and temporal
characteristics to learn the traffic flows of different nodes.

To combine spatio-temporal properties with semantic data, a multi-view deep learning
model to predict taxi requests has been proposed in [59], using long short-term memory (LSTM)
to learn temporal properties and CNN to learn spatial properties locally in independent transport
nodes. This joint spatio-temporal model failed to learn the dependencies present in the taxi
multi-node trajectory data. These models ignore the topological structure of the transport
network, which makes it impossible to train a fine-grained spatio-temporal representation.
Models capture high-level spatial and temporal dynamics by stacking multiple layers but ignore
the impact of low-level information at different scales on high-level information.

The work proposed in [60] presented an improvised CNN to extract individual image-
level features for COVID-19 classification. The relation aware representations are extracted
using GCN. The image level features extracted from CNN and GCN are fused using Deep
Feature Fusion.

The work in [61] infers that the single view classification is not sufficient for object
recognition tasks in complex environments. A multi-view representation of the image leads
to efficient classification models. Fusing of convolutional feature maps at different depths
is proposed in the literature, which reiterates the necessity of hybrid fusion models for
classification tasks.

A comprehensive evaluation of multi-modal feature maps is presented in [62], whereas
a learning model was developed for a binary classification problem based on gesture
movement. The work inferred that multi-view representation gives better results when
compared to single-view representation of data.

A comparative study of a car crash dataset is simulated in [63], whereas it is clearly
inferred that the frequent pattern in the traffic data leads to new knowledge discovery.

The nonlinear crash worthiness of the small electric vehicle travelling at different
velocities is depicted in [64], which explains a cardinal relationship between the trajectory
of the vehicle and deacceleration of the vehicle. The research impresses that the traffic
trajectory data is highly correlated with the crash analysis of electric vehicles.

In general, deep learning models accumulate essential learning blocks or levels to
frame an in-depth project, and the entire network is trained end-to-end. With the advance-
ment of graph convolutional networks (GCN), deep learning techniques in the light of
space–time graphs are becoming more effective for predicting traffic flows. GCN is the
advancement of normal convolution maps, which can deal with learning spatial representa-
tion in non-Euclidean designs. The convolution of the original graph was presented in [54],
which was characterized in the spectral region. In view of this work, ref. [57] extended the
configuration approach for the convolution component in graph networks to reduce the
complexity of using graph convolutions. The graph convolutional network (GCN) [51]
extends the convolution operation to extend graph-structured information that is better
suited for addressing the structure of the traffic network. Many spatial GCNNs have been
proposed in the literature [4,47] to address this challenge. Most GCN models encountered
a problem that was too smooth, making it difficult to deepen graph networks [55]. In
addition to GCN, Recurrent Neural Network (RNN) [22,24] and its variants, LSTM [25] or
Gated Recurrent Unit (GRU) GRU [26], are also used to model time dependence. Table 1
presents a summary of the main strategies used to model the spatio-temporal characteristics
of traffic data, with an overview of the performance measures used by the models.

Sustainability 2022, 14, 14049 6 of 20

Table 1. Summary of the different models in literatures with their performance metrics and loss functions.

Ref. No. Model Dataset
Performance Measures

RMSE MAE MAPE Loss Function

[4] GCNN METR-LA 7.24 3.47 9.57 N.A.

[49] STGNN-TTE

Chengdu1 88.03 60.71 0.2606

Average LossChengdu2 121.14 63.38 0.2568

Porto 52.35 39.25 0.1474

[50] Graph Phased LSTM
Xi’an 6.814 4.921 0.295

Optimal loss
Beijing 12.558 9.956 0.665

[51] Caltrans PeMS GE_GAN 18.40 13.11 4.11 Discriminator

[52] Beijing TTPNet NA 118.59 11.42 first-order proximity

[53] AE-LSTM PeMS 28.23 20.16 0.072

[54] GERNN SCATS 8.827 6.327 NA True traffic

[55] Convolutional Residual
Neural Network Madrid City Council NA 39.65 19.08 MSE

[56] UrbanPy
TaxiBj 8.030 1.790 0.531

KL-divergence
Happy Valley 8.332 1.732 0.508

[57] Moroccan Extreme Learning
Machine (ELM) 2.8779 1.9666 14.3785 Symmetric

[58] Combined Deep Learning
Prediction (cdlp)

Jiangxi Road 11.42 7.84 21.84
CDLP

South Fuzhou 6.52 3.26 5.12

[59] Hybrid Q-Traffic NA NA 9.22 N.A.

[60]
Spatial-Temporal

Transformer Network

PeMS-Bay 4.50 1.95 4.58
Mean Absolute lossPeMSD7

(M) 6.17 3.12 7.89

[61] ARIMA Model Chengdu 12.44 5.32 154.64 N.A.

There is room for improvement in performance metrics that measure the accuracy of
the traffic flow forecast prediction. In this article, we propose to introduce a hybrid deep
neural model optimized to improve the accuracy of the travel time estimation module
using Stacked AutoEncoder (SAE) and Graph Neural Network (GNN).

3. Methodology

Smart cities can effectively improve the quality of urban life. However, as the popula-
tion increases, there is a greater demand for transportation vehicles. In the development of
smart cities, estimating travel time is a challenging and important task due to the increase
in the number of vehicles in smart cities and the traffic monitoring system.

The methodology proposed in this work, as shown in Figure 1, aims to design a hybrid
deep learning framework that simultaneously learns both spatio-temporal characteristics
of traffic data using stacked autoencoder, residual networks and graph neural networks.
The temporal attributes of the traffic data are extracted using a stacked autoencoder. The
four GNN layers extract the map of the spatial characteristics from the trajectory data of the
vehicle node in the traffic data. Then, the GNN layers are linked to the remaining 26 blocks
to generate the links corresponding to the travel time and path of the vehicle nodes in the
data set. Skipping connections in the rest block allows the model to inherit activations
from multiple levels. This reduces the number of training periods and training samples
compared to traditional fully connected levels.

Sustainability 2022, 14, 14049 7 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 22

autoencoder. The four GNN layers extract the map of the spatial characteristics from the

trajectory data of the vehicle node in the traffic data. Then, the GNN layers are linked to

the remaining 26 blocks to generate the links corresponding to the travel time and path of

the vehicle nodes in the data set. Skipping connections in the rest block allows the model

to inherit activations from multiple levels. This reduces the number of training periods

and training samples compared to traditional fully connected levels.

Figure 1. Proposed Hybrid Deep Learning Pipeline that learns spatio-temporal features for travel

time prediction.

The temporal feature maps generated by the stacked autoencoder are concatenated

with the GNN to prepare feature maps of the spatio-temporal traffic data. The fused fea-

ture maps contain node distance and travel time between the nodes. These feature maps

in the form of graph adjacency matrices are used to predict traffic flow by estimating the

travel time.

In the proposed work, we use the Chengdu city dataset, which contains the trajecto-

ries of 14,000 taxi trips in the period from 3 August 2014 to 23 August 2014. Although the

travel data collection period is minimal, the number of nodes/vehicle drivers used for the

dataset is large compared to other reference datasets. This helps to understand traffic be-

havior in crowded traffic environments. Trajectory data consists of spatial and temporal

features used to simultaneously generate feature maps using autoencoder and GNN.

Time attributes are the time taken by 50 individual taxis to travel on a particular link.

They are represented by ‘Data1’, ‘Data2’, ………., ‘Data49’, ‘Data50’. The time character-

istics are the time taken by the taxis to travel from one location to another. Spatial data

consists of information about road networks and their physical connectivity with attribute

names such as ‘Link’, ‘Node_Start’, ‘Longitude_Start’, ‘Latitude_Start’, ‘Node_End’, ‘Lon-

gitude_End’, ‘Latitude_End’, ‘Length’. Each record represents an edge, whose start and

end nodes are given, respectively, by the ‘Node_Start’ and ‘Node_End’ columns. The

summary of the dataset is shown in Table 2.

Link Graph

Spatial Features

Stacked Auto-encoder

Temporal Features

Graph Neural Networks

Residual Network

Google Maps API

Travel time of route
Trained

Feature Extraction

GNN

Mapping Module

Travel time of links

Figure 1. Proposed Hybrid Deep Learning Pipeline that learns spatio-temporal features for travel
time prediction.

The temporal feature maps generated by the stacked autoencoder are concatenated with
the GNN to prepare feature maps of the spatio-temporal traffic data. The fused feature maps
contain node distance and travel time between the nodes. These feature maps in the form of
graph adjacency matrices are used to predict traffic flow by estimating the travel time.

In the proposed work, we use the Chengdu city dataset, which contains the trajectories
of 14,000 taxi trips in the period from 3 August 2014 to 23 August 2014. Although the travel
data collection period is minimal, the number of nodes/vehicle drivers used for the dataset
is large compared to other reference datasets. This helps to understand traffic behavior
in crowded traffic environments. Trajectory data consists of spatial and temporal features
used to simultaneously generate feature maps using autoencoder and GNN.

Time attributes are the time taken by 50 individual taxis to travel on a particular
link. They are represented by ‘Data1’, ‘Data2’, , ‘Data49’, ‘Data50’. The time
characteristics are the time taken by the taxis to travel from one location to another. Spatial
data consists of information about road networks and their physical connectivity with at-
tribute names such as ‘Link’, ‘Node_Start’, ‘Longitude_Start’, ‘Latitude_Start’, ‘Node_End’,
‘Longitude_End’, ‘Latitude_End’, ‘Length’. Each record represents an edge, whose start
and end nodes are given, respectively, by the ‘Node_Start’ and ‘Node_End’ columns. The
summary of the dataset is shown in Table 2.

Vehicle node travel time is collected in 20 days in different time periods in Chengdu city.
Time data is divided into four categories, such as peak hours on weekdays and weekends,
off-peak hours on weekdays and weekends. Each secondary data set is 1 GB, which equates
to a total of 4 GB of space-time data. Typically, any deep learning model requires a large
amount of traffic data to learn and evolve. However, the large volume of enroute traffic data
is redundant in nature. While training a deep neural network with 50 temporal capabilities
from a 4 GB dataset is an advantage, as the availability of non-redundant trajectory data is
a major challenge. Therefore, we propose a stacked autoencoder to analyze the 50 temporal
characteristics and the unique characteristic map to reduce the size of the temporal fea-
tures. Temporary redundant data is identified and deleted using the automatic stacked
encryption network.

Sustainability 2022, 14, 14049 8 of 20

Table 2. Summary of Chengdu dataset.

Distribution Weekday Peak Weekday Off-Peak Weekend Peak Weekend Off-Peak

No. of points (roads) 5943

Spatial distribution (start) (Lat, Long) (103.9299735,
30.56811912)

(103.9299735,
30.56811912)

(103.9299735,
30.56811912)

(103.9299735,
30.56811912)

Spatial distribution (end)(Lat, Long) (103.9299735,
30.56811912)

(103.9299735,
30.56811912)

(103.9299735,
30.56811912)

(103.9299735,
30.56811912)

Avg moving time (s) 63.7096 46.4763 61.3718 46.5097

Max moving time(s) 337.9256 250.6087 293.6739 253.8487

Min moving time (s) 4.9793 3.3162 12.8908 2.8709

Median (s) 53.4519 37.6102 51.4952 37.675

3.1. Dimensionality Reduction Using Stacked Autoencoder

Overfitting occurs when a model learns too well on a set of training data but does
not perform well with unseen real data. An autoencoder is an unsupervised learning
network that uses backpropagation to generate an output feature map that is very similar
to an input feature map by removing redundant features in the original dataset. In order
to quantitatively reduce the amount of redundant traffic data, a stacked autoencoder
feature selection approach is used in this work. The purpose of the autoencoder is to learn
temporal characteristics by training the encoding layers of the network to capture the most
important aspects of the input sequence in a low-dimensional representation. A stacked
autoencoder, as shown in Figure 2, is a neural network composed of multiple layers of
sparse autoencoders, with the output of each hidden layer connected to the input of the
next hidden layer. The bottleneck layer represents features after lossless compression has
been performed on the input feature map. For some datasets, such as vehicle trajectory data,
there is a complex relationship between features. A single sparse autoencoder is not enough
to reduce the dimensionality of feature maps and complex temporal features. Despite the
compelling reasons to represent the map of the complex temporal characteristics of the
trajectory, we used a stacked autoencoder with two layers in the encoding, a bottleneck
layer and two layers in the decoding process. Trainable encoder and decoder sets constitute
the autocoder training process, which can be modeled using Equations (1) and (2). In
this proposed work, the stacked auto coding network is designed with six dense layers
and one bottleneck layer stacked sequentially with the ReLU activation function and
hyperparameters, such as learning rate adjusted to 0.01 for a batch size 1 with the Adam
optimizer, as shown in Figure 3.

Given an original input sequence data X = {x1, x2, . . . , xk}, where xi ∈ Rd. The
characteristic sequence T = {t1, t2, . . . , tk}, where ti ∈ Rl of the original data is obtained
using Equation (1). The output of the encoder is used as the input of the decoder. The
decoder reconstructs the original data to Y = {y1, y2, . . . , yk}, where yi ∈ Rd by using the
characteristic sequence T. The purpose of decoding is to verify whether the extracted features
are valid and represent the original input sequence before and after the encoding process.
Once the stacked layers in the autoencoder complete the training, the encoder is used to
extract the characteristics of the original data to represent the dimensionally reduced feature
map of the temporal data. The bottleneck layer has a reduced number of nodes

ti = f(wt·xi + bt) (1)

yi = g(wy·ti + by) (2)

where f(·) is the sigmoid activation function for encoding layers and g(·) is the sigmoid
activation function for the decoding layers. Wt is the encoder’s weight matrix, and bt is
the bias vector, Wy the decoder’s weight matrix, and by the bias vector. The reconstruction
error in the decoding layers is calculated using Equation (3), where the difference between
the reconstructed data sequence Y and the original data sequence X is infinitesimally small

Sustainability 2022, 14, 14049 9 of 20

(of 10−5 order), which signifies that the characteristic sequence T is valid. For the Chengdu
dataset, the stacked autoencoder (SAE) with 16 hidden layers is sufficient to reconstruct
the characteristic sequence, which implies that the 50 temporal features in the original
temporal feature space can be represented using 16 temporal features, thereby reducing the
dimensionality of the temporal feature space.

L (X, Y) =
1
2 ∑n

i=1

∣∣∣xi − yi

∣∣∣2 (3)

After dimensional reduction using the stacked autoencoder, we fuse the non-redundant
16 temporal features along with 9 spatial features. The fused feature map is fed into the
graph neural network, which consists of graph convolutions and residual blocks to predict
the travel time between two given nodes.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 22

Figure 2. Trainable dense layers of the stacked autoencoder.

Given an original input sequence data X = {x1, x2, …, xk}, where xi ∈ Rd. The charac-

teristic sequence T = {t1, t2, …, tk}, where ti ∈ Rl of the original data is obtained using Equa-

tion (1). The output of the encoder is used as the input of the decoder. The decoder recon-

structs the original data to Y = {y1, y2, …, yk}, where yi ∈ Rd by using the characteristic

sequence T. The purpose of decoding is to verify whether the extracted features are valid

and represent the original input sequence before and after the encoding process. Once the

stacked layers in the autoencoder complete the training, the encoder is used to extract the

characteristics of the original data to represent the dimensionally reduced feature map of

the temporal data. The bottleneck layer has a reduced number of nodes

ti = f(wt·xi + bt) (1)

yi = g(wy·ti + by) (2)

where f(·) is the sigmoid activation function for encoding layers and g(·) is the sigmoid

activation function for the decoding layers. Wt is the encoder’s weight matrix, and bt is the

bias vector, Wy the decoder’s weight matrix, and by the bias vector. The reconstruction

error in the decoding layers is calculated using Equation (3), where the difference between

the reconstructed data sequence Y and the original data sequence X is infinitesimally small

(of 10−5 order), which signifies that the characteristic sequence T is valid. For the Chengdu

dataset, the stacked autoencoder (SAE) with 16 hidden layers is sufficient to reconstruct

the characteristic sequence, which implies that the 50 temporal features in the original

temporal feature space can be represented using 16 temporal features, thereby reducing

the dimensionality of the temporal feature space.

L (X, Y) =
1

2
 ∑ |𝑥𝑖 − 𝑦𝑖|

𝑛
𝑖=1

2 (3)

After dimensional reduction using the stacked autoencoder, we fuse the non-redun-

dant 16 temporal features along with 9 spatial features. The fused feature map is fed into

the graph neural network, which consists of graph convolutions and residual blocks to

predict the travel time between two given nodes.

Figure 2. Trainable dense layers of the stacked autoencoder.

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 22

Figure 3. Stacked autoencoder with six dense layers for training temporal trajectory data.

3.2. Graph Neural Network (GNN)

Almost everyone is using social media in his/her day-to-day life. In other words, eve-

ryone is using graph data structures in Facebook graph API’s recommendation systems,

web analytics, etc. Graphs are also an excellent tool for understanding social relationships.

The reason is that all are dynamic in nature and graphs [62] have gave the best perfor-

mance in handling such data. A graph is a data structure made up of nodes (vertices) and

edges that are joined to represent information that has no clear beginning or conclusion.

When plotted in 2D (or even nD) space, all the nodes occupy a position in space, com-

monly grouped according to related properties. Every node has a set of spatial and tem-

poral features defining the traffic data. More complex problems can be solved using

graphs by reducing them into simpler forms by transforming them into representations

from various perspectives. Each edge connects two nodes together and shows the interac-

tion or relationship between them. The messages and their effects on edge and node states

are learnt using graph neural networks, which are used in a message forwarding method.

So, GNN has been taken into consideration as an appealing modeling technique for travel

time prediction.

These GNNs can represent information from their location at negligent depths and

can capture graph dependencies with the message passing between graph nodes. Road

networks can now be naturally created as a graph structure, considering the traffic net-

work as a temporary space graph where the nodes are in the streets, the edges are meas-

ured between the pairs of nodes, and each node has a medium speed of traffic within the

window as dynamic input features. Predicting traffic speed, volume or traffic congestion

on road networks is critical to a smart transport system. In the case of travel time estima-

tion, this could be time of the day, the position (latitude and longitude) corresponding to

that node. However, graphically generated data is ubiquitous in that it can be distributed

by node classification, graph classification, graph visibility, link prediction, and graph

compilation with the help of GNNs.

In the GNN, the nearby nodes will be transmitting messages among themselves.

Since the structure will not be changing, setting a bias of the area where it will be easier

for the nodes to only rely on close by nodes, which only needs a single step of message

transmission. The method will then allow the GNN to use a road network connection ad-

equately. Due to the training of the model, the intersections can be easily predicted for

delays that are predictable due to the peak hours which will not change randomly, or

specifically on some dates, which can also be noted by the model. This very feature gives

our model potential. Therefore, a super component which contains a varying amount of

length and complexity, i.e., simple two-point routes to a large set of lines which consists

of numerous amounts of nodes, can be processed by our GNN with ease.

A GNN takes a graph G (V,E) as input.

• The feature matrix of the graph is represented by X with dimension N × F⁰

where N is the number of nodes and F⁰ is the number of input features for each node.

The hidden layers in the GNN are represented in the form 𝑍𝑖 = 𝑓(𝑧𝑖−1, 𝐴) where,

𝑍0 = 𝑥, and f is the propagation factor. Each hidden layer 𝑧𝑖 has a feature matrix 𝑁 × 𝑓𝑖.

Each row 𝑁 in the feature matrix corresponds to the nodes’ feature at level i. The propa-

gation rule at Equation (4) decides whether the features at each hidden layer are to be

accumulated for the feature map generation for the successive layers.

Figure 3. Stacked autoencoder with six dense layers for training temporal trajectory data.

3.2. Graph Neural Network (GNN)

Almost everyone is using social media in his/her day-to-day life. In other words,
everyone is using graph data structures in Facebook graph API’s recommendation systems,
web analytics, etc. Graphs are also an excellent tool for understanding social relationships.
The reason is that all are dynamic in nature and graphs [62] have gave the best performance
in handling such data. A graph is a data structure made up of nodes (vertices) and edges
that are joined to represent information that has no clear beginning or conclusion. When
plotted in 2D (or even nD) space, all the nodes occupy a position in space, commonly
grouped according to related properties. Every node has a set of spatial and temporal

Sustainability 2022, 14, 14049 10 of 20

features defining the traffic data. More complex problems can be solved using graphs
by reducing them into simpler forms by transforming them into representations from
various perspectives. Each edge connects two nodes together and shows the interaction
or relationship between them. The messages and their effects on edge and node states are
learnt using graph neural networks, which are used in a message forwarding method. So,
GNN has been taken into consideration as an appealing modeling technique for travel
time prediction.

These GNNs can represent information from their location at negligent depths and
can capture graph dependencies with the message passing between graph nodes. Road
networks can now be naturally created as a graph structure, considering the traffic network
as a temporary space graph where the nodes are in the streets, the edges are measured
between the pairs of nodes, and each node has a medium speed of traffic within the window
as dynamic input features. Predicting traffic speed, volume or traffic congestion on road
networks is critical to a smart transport system. In the case of travel time estimation, this
could be time of the day, the position (latitude and longitude) corresponding to that node.
However, graphically generated data is ubiquitous in that it can be distributed by node
classification, graph classification, graph visibility, link prediction, and graph compilation
with the help of GNNs.

In the GNN, the nearby nodes will be transmitting messages among themselves.
Since the structure will not be changing, setting a bias of the area where it will be easier
for the nodes to only rely on close by nodes, which only needs a single step of message
transmission. The method will then allow the GNN to use a road network connection
adequately. Due to the training of the model, the intersections can be easily predicted
for delays that are predictable due to the peak hours which will not change randomly, or
specifically on some dates, which can also be noted by the model. This very feature gives
our model potential. Therefore, a super component which contains a varying amount of
length and complexity, i.e., simple two-point routes to a large set of lines which consists of
numerous amounts of nodes, can be processed by our GNN with ease.

A GNN takes a graph G (V,E) as input.

• The feature matrix of the graph is represented by X with dimension N × F0

where N is the number of nodes and F0 is the number of input features for each node.
The hidden layers in the GNN are represented in the form Zi = f

(
zi−1, A

)
where,

Z0 = x, and f is the propagation factor. Each hidden layer zi has a feature matrix N× f i. Each
row N in the feature matrix corresponds to the nodes’ feature at level i. The propagation
rule at Equation (4) decides whether the features at each hidden layer are to be accumulated
for the feature map generation for the successive layers.

f (Zi, A) = σ(AZiWi) (4)

where Wi is the weight matrix that corresponds to layer i and σ is a non-linear activation
function ReLU. The weight matrix has dimensions Fi × Fi+1, which means that the size of the
weight matrix’s first dimension influences the number of features at the following i + 1 layers.

In the dataset, we have source and destination points; these points act as nodes and
the connection between them is the edge. So, using these points, we can generate a graph
with corresponding nodes and edges. For this purpose, we use the deep graph library
(DGL) to generate a graph structure from our dataset. DGL represents a directed graph
as a DGL graph object. We can construct a graph by specifying the number of nodes in
the graph as well as the list of source and destination nodes. Nodes in the graph have
consecutive IDs starting from 0, which are given as Node_Start in our dataset; similarly,
we have Node_End for the destination node. The connection between the different nodes
and the complexity of the linkages are shown in Figure 4. The spatial dispersion of the
datapoints shows the complexity of the road network; the connecting edges show the
availability of paths between the nodes.

Sustainability 2022, 14, 14049 11 of 20

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 22

f (Zⁱ, A) = σ(AZⁱWⁱ) (4)

where Wi is the weight matrix that corresponds to layer i and σ is a non-linear activation

function ReLU. The weight matrix has dimensions Fi × Fi+1, which means that the size of

the weight matrix’s first dimension influences the number of features at the following i +

1 layers.

In the dataset, we have source and destination points; these points act as nodes and

the connection between them is the edge. So, using these points, we can generate a graph

with corresponding nodes and edges. For this purpose, we use the deep graph library

(DGL) to generate a graph structure from our dataset. DGL represents a directed graph as

a DGL graph object. We can construct a graph by specifying the number of nodes in the

graph as well as the list of source and destination nodes. Nodes in the graph have consec-

utive IDs starting from 0, which are given as Node_Start in our dataset; similarly, we have

Node_End for the destination node. The connection between the different nodes and the

complexity of the linkages are shown in Figure 4. The spatial dispersion of the datapoints

shows the complexity of the road network; the connecting edges show the availability of

paths between the nodes.

Figure 4. A graph shows the spatial disparity of the nodes and their connectivity.

An overall architecture is shown in Figure 5. We have used 4 GCN layers, 26 fully

connected layers. The GCN layer performs graph convolution on the graph generated

earlier and then gives the edge feature. This output will be given to the residual network

architecture for predicting the time between two nodes.

Figure 4. A graph shows the spatial disparity of the nodes and their connectivity.

An overall architecture is shown in Figure 5. We have used 4 GCN layers, 26 fully
connected layers. The GCN layer performs graph convolution on the graph generated
earlier and then gives the edge feature. This output will be given to the residual network
architecture for predicting the time between two nodes.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 22

Figure 5. Proposed GNN model for extracting edge level and node level feature maps.

3.3. Residual Network

After data processed through GNN, the output (i.e., produced node classification,

graph classification, graph visibility, link prediction) is passed through the residual net-

work architecture to predict the travel time for every edge in the network, as shown in

Figure 6.

Instead of allowing layers to learn the underlying mapping, we let the network fit

the residual mapping. So, rather than starting with Q(x), let the network fit.

F(x): = Q(x) − x which gives Q(x): = F(x) + x. (5)

The benefit of including this type of skip connection is that if any layer degrades

architecture performance, it will be skipped by regularization. As a result, very deep neu-

ral networks can be trained without the issues caused by vanishing/exploding gradients.

By enabling different shortcut channels for the gradient to flow through, the skip

connections strategy in ResNet overcomes the problem of disappearing gradient in deep

CNNs. In addition, if any layer is detrimental to the architecture’s performance, regulari-

zation will skip it. The model is a hybrid of graph convolution (GCN) layers and residual

blocks layer forming ResNet architecture. The GCN layers are 4 in number, and they ex-

tract information from the graph structure using spatial and temporal features. These

GCN layers are then connected to residual blocks, which are 26 in number. The skip con-

nections in the residual block helps the model to learn on previous and present activa-

tions, thus it requires a smaller number of training epochs compared to the conventional

fully connected layers.

The input to the model is the graph network and the model learns the graph features

and trains on the edge features. After the final epoch, we get the duration for traveling

edges. Hence, we receive a trained graph with output on the edge. The activation function

used for the model is ReLU activation and for the training optimizer function is Adam

optimizer. The loss function used during training is root mean square error (RMSE).

The output layer generates the predicted values of travel time for each node instead

of a classification. To predict the travel time of each edge, we used fully connected layers

at the end of residual network architecture instead of the soft-max layer. These predicted

travel times for each edge are provided to the succeeding layers to generate the maps and

routes.

The predicted travel times of each edge in the graph are given to Google API as input

to produce the least time and the shortest route between the two nodes. A road network

is constructed by considering the two nodes with edges corresponding to the route. After

constructing the road network, the time for the routes that are in the network are calcu-

lated.

(24 Layers)

Figure 5. Proposed GNN model for extracting edge level and node level feature maps.

3.3. Residual Network

After data processed through GNN, the output (i.e., produced node classification,
graph classification, graph visibility, link prediction) is passed through the residual network
architecture to predict the travel time for every edge in the network, as shown in Figure 6.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 22

Figure 6. ResNet Model: 26-FC layers with skip connections.

4. Experimental Analysis

The dataset consisting of latitude and longitude as temporal features, we have pro-

posed a stacked autoencoder and sparse autoencoder to extract the feature vectors.

Stacked autoencoder is trained for 150 epochs and we obtained the subset of 16 temporal

features. We found that there are 16 features that contain all the information as available

in the original 50 temporal features. The autoencoder represents the input at the output;

it means input and output are same. So, when this input and output are the same we cut

down the autoencoder from the bottleneck layer.

Using the spatial features, the graph is obtained from the dataset by using

‘Node_Start’ and ‘Node_End’ Features, then the obtained graph is the skeleton of the

graph; node features such as ‘Latitude’ and ‘Longitude’ are fed into the nodes, and the

edge features such aas ‘Length’, ‘Data1’, ‘Data2’ ‘Data16’ are fed into the edges. This

makes a graph with all the features in its nodes and edges.

The GNN will check the neighboring nodes around a center node, along with a spec-

ified filter and parameterized size, which is being fed back to it as we run multiple epochs

on it which provides us with required weights. The model first determines the nodes by

the graph labeling method provided as the center-based methods and then selects the se-

quence of the fixed node length. Second, to address the issue of random nodes, a fixed

size is created for each node. Finally, a local graph is usually made according to graph

labeling procedures so that nodes in the same structural field are assigned the same posi-

tions, followed by learning to represent with existing feature maps. However, the layout

of the nodes is determined by the labeling method provided and is usually based solely

on the structure of the graph.

In graphs that correspond to the edge character information, the filter weight param-

eters are usually set to certain boundary features in the node area. For the use of end-to-

end attributes, the edge-conditioned convolution (ECC) function is designed by lending a

view of a flexible filter network. For the model, we create a graph. We specifically use the

spatial convolutional network, a sub part of GNN. Since we require spatial features to be

studied in order for the model to understand the abstract concepts of the links that have

been made and as a result help us with predicting the time travel estimate, we access all

the parameters that have been generated and then we get our input layer.

For our case, we have a total of 41 parameters that we need to provide to produce the

hidden layers. For the hidden layers, we firstly start with a few convolutional layers, start-

ing with input features and one by one connecting the input list with the layer. Then, we

add few more hidden layers of fully connected layers in a linear pattern. Next, we apply

a ReLU function on the model to overcome the vanishing gradient problem, allowing the

model to have a relatively quicker learning. As mentioned above, where we applied our

idea overall, we applied multiple layers for more proper prediction. In this regard, we

define a loss function for our model. After feeding the model with any loss function and

running Adam optimizer, weight parameters are trained.

Initially, we are provided with interconnected nodes that will be representing the

Chengdu dataset. These nodes will be presented for the model. The temporal features are

Figure 6. ResNet Model: 26-FC layers with skip connections.

Sustainability 2022, 14, 14049 12 of 20

Instead of allowing layers to learn the underlying mapping, we let the network fit the
residual mapping. So, rather than starting with Q(x), let the network fit.

F(x): = Q(x) − x which gives Q(x): = F(x) + x. (5)

The benefit of including this type of skip connection is that if any layer degrades
architecture performance, it will be skipped by regularization. As a result, very deep neural
networks can be trained without the issues caused by vanishing/exploding gradients.

By enabling different shortcut channels for the gradient to flow through, the skip con-
nections strategy in ResNet overcomes the problem of disappearing gradient in deep CNNs.
In addition, if any layer is detrimental to the architecture’s performance, regularization will
skip it. The model is a hybrid of graph convolution (GCN) layers and residual blocks layer
forming ResNet architecture. The GCN layers are 4 in number, and they extract information
from the graph structure using spatial and temporal features. These GCN layers are then
connected to residual blocks, which are 26 in number. The skip connections in the residual
block helps the model to learn on previous and present activations, thus it requires a smaller
number of training epochs compared to the conventional fully connected layers.

The input to the model is the graph network and the model learns the graph features
and trains on the edge features. After the final epoch, we get the duration for traveling
edges. Hence, we receive a trained graph with output on the edge. The activation function
used for the model is ReLU activation and for the training optimizer function is Adam
optimizer. The loss function used during training is root mean square error (RMSE).

The output layer generates the predicted values of travel time for each node instead of
a classification. To predict the travel time of each edge, we used fully connected layers at the
end of residual network architecture instead of the soft-max layer. These predicted travel
times for each edge are provided to the succeeding layers to generate the maps and routes.

The predicted travel times of each edge in the graph are given to Google API as input
to produce the least time and the shortest route between the two nodes. A road network is
constructed by considering the two nodes with edges corresponding to the route. After
constructing the road network, the time for the routes that are in the network are calculated.

4. Experimental Analysis

The dataset consisting of latitude and longitude as temporal features, we have pro-
posed a stacked autoencoder and sparse autoencoder to extract the feature vectors. Stacked
autoencoder is trained for 150 epochs and we obtained the subset of 16 temporal features.
We found that there are 16 features that contain all the information as available in the
original 50 temporal features. The autoencoder represents the input at the output; it means
input and output are same. So, when this input and output are the same we cut down the
autoencoder from the bottleneck layer.

Using the spatial features, the graph is obtained from the dataset by using ‘Node_Start’
and ‘Node_End’ Features, then the obtained graph is the skeleton of the graph; node
features such as ‘Latitude’ and ‘Longitude’ are fed into the nodes, and the edge features
such as ‘Length’, ‘Data1’, ‘Data2’ ‘Data16’ are fed into the edges. This makes a graph
with all the features in its nodes and edges.

The GNN will check the neighboring nodes around a center node, along with a
specified filter and parameterized size, which is being fed back to it as we run multiple
epochs on it which provides us with required weights. The model first determines the
nodes by the graph labeling method provided as the center-based methods and then selects
the sequence of the fixed node length. Second, to address the issue of random nodes, a
fixed size is created for each node. Finally, a local graph is usually made according to
graph labeling procedures so that nodes in the same structural field are assigned the same
positions, followed by learning to represent with existing feature maps. However, the
layout of the nodes is determined by the labeling method provided and is usually based
solely on the structure of the graph.

Sustainability 2022, 14, 14049 13 of 20

In graphs that correspond to the edge character information, the filter weight parame-
ters are usually set to certain boundary features in the node area. For the use of end-to-end
attributes, the edge-conditioned convolution (ECC) function is designed by lending a view
of a flexible filter network. For the model, we create a graph. We specifically use the spatial
convolutional network, a sub part of GNN. Since we require spatial features to be studied
in order for the model to understand the abstract concepts of the links that have been made
and as a result help us with predicting the time travel estimate, we access all the parameters
that have been generated and then we get our input layer.

For our case, we have a total of 41 parameters that we need to provide to produce
the hidden layers. For the hidden layers, we firstly start with a few convolutional layers,
starting with input features and one by one connecting the input list with the layer. Then,
we add few more hidden layers of fully connected layers in a linear pattern. Next, we apply
a ReLU function on the model to overcome the vanishing gradient problem, allowing the
model to have a relatively quicker learning. As mentioned above, where we applied our
idea overall, we applied multiple layers for more proper prediction. In this regard, we
define a loss function for our model. After feeding the model with any loss function and
running Adam optimizer, weight parameters are trained.

Initially, we are provided with interconnected nodes that will be representing the
Chengdu dataset. These nodes will be presented for the model. The temporal features
are needed to predict the travel time from one node to another node. In order to tackle
this problem, we will be using the stacked autoencoder to reduce the number of features
from 50 to 16, to optimize the training time and reduce the computational costs. Hence, the
complex road network structures can be learnt since the feature size has been reduced, as
shown in Figure 7. The specific features are properly chosen via autoencoders, so no drastic
changes even after reducing the number of features which decides in predicting the output.
The model is made with the help of graph convolutional network GCN. The required
number of layers were accordingly added. The spatial convolutional network (SCN), which
is a sub part of GCN, is mainly used because we need a method similar to CNN where we
can apply convolution, Relu function and pooling on fixed as well as on arbitrary center
node, thus helping with graph classification and link prediction; thus, predicting the time
travel estimation between specified links. It has been a powerful tool for analyzing graph
data. The graph model or ‘g’ is the result after we put it through the graph generation
function provided by the Python deep graph library (‘dgl’). We have been provided
with 1902 nodes, and we obtain 5943 edges or links in the result. The graph contains the
16 features we provided after applying the autoencoders, and it stores it in a scheme. Finally,
in the result, we will have a predicted time for every possible connected link as per the inputs
provided to us. There are some redundant losses that are minimized during the course of
epochs. Figure 7 provides the training loss up to 500 epochs. We implemented our proposed
framework using PyTorch 1.8 and ran all the models on NVIDIA Tesla V 100 GPU.

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 22

needed to predict the travel time from one node to another node. In order to tackle this

problem, we will be using the stacked autoencoder to reduce the number of features from

50 to 16, to optimize the training time and reduce the computational costs. Hence, the

complex road network structures can be learnt since the feature size has been reduced, as

shown in Figure 7. The specific features are properly chosen via autoencoders, so no dras-

tic changes even after reducing the number of features which decides in predicting the

output. The model is made with the help of graph convolutional network GCN. The re-

quired number of layers were accordingly added. The spatial convolutional network

(SCN), which is a sub part of GCN, is mainly used because we need a method similar to

CNN where we can apply convolution, Relu function and pooling on fixed as well as on

arbitrary center node, thus helping with graph classification and link prediction; thus,

predicting the time travel estimation between specified links. It has been a powerful tool

for analyzing graph data. The graph model or ‘g’ is the result after we put it through the

graph generation function provided by the Python deep graph library (‘dgl’). We have

been provided with 1902 nodes, and we obtain 5943 edges or links in the result. The graph

contains the 16 features we provided after applying the autoencoders, and it stores it in a

scheme. Finally, in the result, we will have a predicted time for every possible connected

link as per the inputs provided to us. There are some redundant losses that are minimized

during the course of epochs. Figure 7 provides the training loss up to 500 epochs. We

implemented our proposed framework using PyTorch 1.8 and ran all the models on

NVIDIA Tesla V 100 GPU.

The performance of the model is measured using the RMSE loss, mean average error

(MAE) and mean average percentile error (MAPE) by using the equations below.

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

𝑛
𝑖=1 (6)

MAPE =
1

𝑛
∑

|𝑦𝑖− 𝑦�̂�|

𝑦𝑖

𝑛
𝑖=1 (7)

RMSE = √
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|

2𝑛
𝑖=1 (8)

where 𝑦 and 𝑦 ̂ are observation and prediction values, respectively.

Figure 7. RMSE loss, MAE and MAPE curves for the proposed GNN + Resnet Model.

As shown in Table 3, our proposed model outperforms existing models for both the

chengdu1 and chengdu2 datasets for all the evaluation metrics.

Figure 7. RMSE loss, MAE and MAPE curves for the proposed GNN + Resnet Model.

Sustainability 2022, 14, 14049 14 of 20

The performance of the model is measured using the RMSE loss, mean average error
(MAE) and mean average percentile error (MAPE) by using the equations below.

MAE =
1
n ∑n

i=1|yi − ŷi| (6)

MAPE =
1
n ∑n

i=1
|yi − ŷi|

yi
(7)

RMSE =

√
1
n ∑n

i=1|yi − ŷi|2 (8)

where y and ŷ are observation and prediction values, respectively.
As shown in Table 3, our proposed model outperforms existing models for both the

chengdu1 and chengdu2 datasets for all the evaluation metrics.

Table 3. Performance comparisons of the proposed GNN + ResNet model.

Model Chengdu1 Chengdu2

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 147.32 91.69 0.5621 192.48 102.44 0.5485

TEMP 116.38 77.5 0.3903 155.34 81.19 0.4057

LightGBM 107.89 71.97 0.3518 142.56 74.1 0.3316

MlpTTE 96.17 66.58 0.2963 128.52 68.31 0.2839

RnnTTE 95.29 65.74 0.2915 128.79 68.43 0.2841

DeepTTE 93.68 64.03 0.2864 127.24 67.39 0.2807

STGCN 94.37 65.02 0.2787 127.89 67.58 0.272

DRCNN 96.78 66.34 0.2817 130.11 69.57 0.2786

Graph Wavenet 92.65 63.57 0.2725 126.58 67.1 0.2701

STGCN TTE 88.03 60.71 0.2606 121.14 63.38 0.2568

GNN ResNet (ours) 88.79 57.48 0.2616 121.24 61.65 0.2628

The existing model’s performance is poor, especially compared to those which are
using handcrafted machine learning methods, due to less discrimination of the ability to
grasp complex and dynamic changes in spatio-temporal characteristics for travel-time esti-
mation. Clearly, GNN-ResNet50 has shown better performance than all existing methods
over metrics (RMSE, MAE and MAPE). Table 4 shows that our proposed GNN-ResNet50
model outperformed, for predicting the travel time, all other hand-crafted machine learn-
ing and benchmark deep learning models on chengdu1 and chengdu2 datasets. These
improvements are bagged because we are using the stacked autoencoder to extract the
feature as vectors and graphs generated from spatial and temporal features to predict the
travel time for every node by using combined GNN and ResNet models. Optimal routes
are estimated by using the Google map API.

We evaluated our proposed GNN + ResNet model with other Ggraph based deep
learning models on predicting the travel time for each node. It is found that our proposed
GNN + Resnet model outperformed travel time prediction on chengdu1 and chengdu2
datasets as given in Table 4.

We tested our GNN + ResNet model in various temporal circumstances, compared
with other baseline models, and presented the comparisons in Table 5 for chengdu1 dataset
and in Table 6 for chengdu2 dataset. The proposed GNN + Resnet model exhibits more
reliable performance in different temporal scenarios, such as rush and non-rush hours. To
verify the performance of the model in various temporal circumstances, the chengdu1 and
chengdu2 datasets are partitioned into rush hours and non-rush hours by considering the
time periods and traffic condition. The results show that traffic flows are more unpredictable
in rush hours due to traffic congestion. The model improved in percentage in RMSE, MAE

Sustainability 2022, 14, 14049 15 of 20

and MAPE with 13.13%, 22.59%, 1.72% on the chengdu1 dataset and at least a 1.32%, 2.90%,
and 2.91% percentage improvement on the chengdu2 dataset. For the non-rush hours, our
model exhibits improvements in RMSE, MAE and MAPE with 11.05%, 4.63% and 17% on
the chengdu1 dataset and at least 2.36%, 1.54% and 6.42% on the chengdu2 dataset.

Table 4. Performance of our proposed model GNN ResNet with other graph-based models for
estimating the travel times of each link on two datasets.

Model Chengdu1 Chengdu2

Spatio-Temporal GCN RMSE MAE MAPE RMSE MAE MAPE

STGCN 33.87 18.79 0.5301 52.33 21.13 0.5345

DRCNN 35.75 19.42 0.5457 54.21 21.88 0.5519

Graph Wavenet 33.12 18.23 0.5264 51.08 20.76 0.533

Spatio-Temporal GNN TTE 31.28 17.57 0.5152 49.77 20.01 0.5217

GNN + ResNet (ours) 31.06 17.23 0.5028 49.63 18.43 0.5314

Table 5. Performance comparison of proposed GNN + residual network under different temporal
scenarios on chengdu1 dataset.

Model Chengdu1

Rush Hours Non-Rush Hours

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 132.58 93.46 0.5731 120.41 88.93 0.551

Empirical 110.41 79.41 0.4022 102.33 75.44 0.3896

Light Gradient Boosting Machine 101.34 74.67 0.3582 93.48 70.1 0.3476

Multiple Layer Perceptron 90.84 67.01 0.2991 86.95 61.36 0.2931

Recurrent Neural Network TTE 89.49 66.16 0.2967 84.09 60.14 0.2884

Deep Convolution TTE 87.24 64.93 0.2889 83.05 59.51 0.2851

Spatio Temporal Graph Convolutional TTE 88.27 65.35 0.2810 83.56 59.43 0.2726

Deep Regions with Convolution Neural Network 90.57 66.72 0.2883 86.83 61.05 0.2785

Deep Spatial-Temporal Graph 86.49 64.10 0.2789 82.19 59.36 0.2692

Spatio Temporal Graph Neural Network 82.65 61.45 0.2662 77.34 56.55 0.2581

GNN + ResNet (ours) 71.79 46.99 0.2616 68.79 53.93 0.2142

To evaluate and verify the effective learning of model parameters on spatio-temporal
data, we conducted the experiment on a variant of GNN, i.e., on FCN and the results are
given in Table 7. FCN consist of 4 GCN layers, 26 fully connected layers and 6 dense layers
used to predict the travel time for each node. The proposed GNN + ResNet model consists
of 4 GCN layers, 26 fully connected layers with skip connections. While training deep neural
nets, the performance of the model drops with the increase in depth of the architecture. This
is known as the degradation problem. To avoid the degradation problem, skip connections
are used in which the activations from the previous layers are given as input such that the
past activations are not degraded during training.

We observed that our proposed GNN-ResNet model exhibits better performance than
our FCN model, as given in Table 7, i.e., the combination of feature representation and
distinct feature representation can improve the learning of spatio-temporal representation.

The output of the proposed framework takes the spatial and temporal data, and all
produced 1902 nodes are plotted on the Google map, and the user can select source and
destination nodes. For the output, the user can see the different source and destination
locations and their optimal path. The output in Google Maps shows the optimal path

Sustainability 2022, 14, 14049 16 of 20

between the two selected nodes and the estimated time to reach the destination (Blue
marker) from the source (Green marker), as shown in Figures 8–10, respectively.

Table 6. Performance of GNN + ResNet model with other graph based models under different
temporal scenarios on chengdu2 dataset.

Model Chengdu2

Rush Hours Non-Rush Hours

RMSE MAE MAPE RMSE MAE MAPE

ARIMA 175.84 105.74 0.5733 158.32 100.65 0.5387

Empirical 144.66 83.52 0.4341 136.55 80.02 0.3982

Light Gradient Boosting Machine 131.94 76.63 0.3589 125.84 72.38 0.3224

Multiple Layer Perceptron 122.67 69.16 0.2908 117.15 68.02 0.2806

Recurrent Neural Network TTE 122.12 69.21 0.2911 117.47 68.18 0.281

Deep Convolution TTE 121.56 68.63 0.2885 117.1 67.07 0.2793

Spatio Temporal Graph Convolutional TTE 121.35 68.41 0.2798 116.27 67.19 0.2703

Deep Regions with Convolution Neural Network 125.22 70.14 0.2823 120.17 69.08 0.2759

Deep Spatial-Temporal Graph 120.62 68.16 0.2759 115.86 65.91 0.2684

Spatio Temporal Graph Neural Network 114.25 64.45 0.2611 110.83 62.77 0.2551

GNN + ResNet (ours) 112.74 66.32 0.2535 108.21 63.74 0.2387

Table 7. Performance comparison of GNN + Resnet with FCN for travel time estimation.

Model Chengdu1 Chengdu2

RMSE MAE MAPE RMSE MAE MAPE

FCN 92.31 72.3 0.3221 112.21 63.74 0.2387

GNN ResNet (ours) 88.79 57.48 0.2616 26.26 16.98 0.48

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 22

of 4 GCN layers, 26 fully connected layers with skip connections. While training deep

neural nets, the performance of the model drops with the increase in depth of the archi-

tecture. This is known as the degradation problem. To avoid the degradation problem,

skip connections are used in which the activations from the previous layers are given as

input such that the past activations are not degraded during training.

Table 7. Performance comparison of GNN + Resnet with FCN for travel time estimation.

Model Chengdu 1 Chengdu 2
 RMSE MAE MAPE RMSE MAE MAPE

FCN 92.31 72.3 0.3221 112.21 63.74 0.2387

GNN ResNet (ours) 88.79 57.48 0.2616 26.26 16.98 0.48

We observed that our proposed GNN-ResNet model exhibits better performance

than our FCN model, as given in Table 7, i.e., the combination of feature representation

and distinct feature representation can improve the learning of spatio-temporal represen-

tation.

The output of the proposed framework takes the spatial and temporal data, and all

produced 1902 nodes are plotted on the Google map, and the user can select source and

destination nodes. For the output, the user can see the different source and destination

locations and their optimal path. The output in Google Maps shows the optimal path be-

tween the two selected nodes and the estimated time to reach the destination (Blue

marker) from the source (Green marker), as shown in Figures 8–10, respectively.

Figure 8. Results in Google Map using our GNN + Resnet model with estimated travel time (in

seconds) for distant points.
Figure 8. Results in Google Map using our GNN + Resnet model with estimated travel time (in
seconds) for distant points.

Sustainability 2022, 14, 14049 17 of 20Sustainability 2022, 14, x FOR PEER REVIEW 18 of 22

Figure 9. Results in Google Map using our GNN + Resnet model with estimated travel time (in

seconds) for a nearer points.

Figure 10. Results in Google Map using our GNN + Resnet model with estimated travel time (in

seconds) for very nearer points.

5. Conclusions

We have proposed a graph-based hybrid deep learning model named GNN-Res-

Net50 for predicting travel time. We used the Chengdu dataset. More redundant data

from the Chengdu dataset was eliminated by using the stacked autoencoder; these fea-

tures are classified with the rapid development of GNNs and residual network architec-

ture to predict traffic flow using spatial-temporal correlation. In this paper, we first

Figure 9. Results in Google Map using our GNN + Resnet model with estimated travel time (in
seconds) for a nearer points.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 22

Figure 9. Results in Google Map using our GNN + Resnet model with estimated travel time (in

seconds) for a nearer points.

Figure 10. Results in Google Map using our GNN + Resnet model with estimated travel time (in

seconds) for very nearer points.

5. Conclusions

We have proposed a graph-based hybrid deep learning model named GNN-Res-

Net50 for predicting travel time. We used the Chengdu dataset. More redundant data

from the Chengdu dataset was eliminated by using the stacked autoencoder; these fea-

tures are classified with the rapid development of GNNs and residual network architec-

ture to predict traffic flow using spatial-temporal correlation. In this paper, we first

Figure 10. Results in Google Map using our GNN + Resnet model with estimated travel time (in
seconds) for very nearer points.

Sustainability 2022, 14, 14049 18 of 20

5. Conclusions

We have proposed a graph-based hybrid deep learning model named GNN-ResNet50
for predicting travel time. We used the Chengdu dataset. More redundant data from the
Chengdu dataset was eliminated by using the stacked autoencoder; these features are clas-
sified with the rapid development of GNNs and residual network architecture to predict
traffic flow using spatial-temporal correlation. In this paper, we first summarized several
well-known existing methods, which serve as the basis for developing a general frame-
work for traffic forecasting using spatial-temporal dependencies; then, we implemented
two architectures, the first using only the fully connected layer to predict travel time; and
finally we introduced skip connections in the architecture to get a residual network architec-
ture, which resulted in less training time compared to the fully connected architecture. The
results of the proposed model are significantly better when compared with state-of-the-art
approaches, such as STGNN-TTE. This research work can be directed toward analyzing the
road traffic network in an unconstrained environment, where the flow of traffic is highly
non-linear, by considering factors such as driver behavior, travel speed, experience of the
driver, etc. The work can be further extended to include different weather conditions, such
as rain and fog and nighttime conditions, which will surely influence arriving at the results
presented here. The results presented hereunder are derived based on Chengdu dataset1
and Chengdu dataset2. Finally, open research issues were presented based on experimental
results on selected benchmark datasets for future development in this research field.

Author Contributions: Conceptualization, B.G.R. and M.R.K.; Data curation, U.E.S.; Formal analy-
sis, B.G.R. and M.K. (Manish Kumar); Funding acquisition, M.R.K.; Investigation, B.G.R. and P.S.;
Methodology, B.G.R., M.K. (Manish Kumar) and U.E.S.; Project administration, M.R.K.; Visualization,
P.S.; Writing—original draft, B.G.R. and M.R.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (GN: NRF-2022R1I1A1A01062918).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from
China National Environmental Monitoring Centre. Data are available from the authors upon reason-
able request and with permission of the China National Environmental Monitoring Centre. The data
is also available through the IEEE Data Port at: https://dx.doi.org/10.21227/65x6-2f13.

Conflicts of Interest: The authors state that there is no conflict of interest.

References
1. Liao, B.; Zhang, J.; Cai, M.; Tang, S.; Gao, Y.; Wu, C.; Yang, S.; Zhu, W.; Guo, Y.; Wu, F. Dest-ResNet. In Proceedings of

the 26th ACM International Conference on Multimedia, Seoul, Korea, 22–26 October 2018; ACM: New York, NY, USA, 2018;
pp. 1883–1891.

2. Zivot, E.; Wang, J. Modeling Financial Time Series with S-PLUS®; Springer: New York, NY, USA, 2006; ISBN 978-0-387-27965-7.
3. Williams, B.M.; Hoel, L.A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and

Empirical Results. J. Transp. Eng. 2003, 129, 664–672. [CrossRef]
4. Yin, X.; Wu, G.; Wei, J.; Shen, Y.; Qi, H.; Yin, B. Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions.

IEEE Trans. Intell. Transp. Syst. 2022, 23, 4927–4943. [CrossRef]
5. Zhang, C.; Yu, J.J.Q.; Liu, Y. Spatial-Temporal Graph Attention Networks: A Deep Learning Approach for Traffic Forecasting.

IEEE Access 2019, 7, 166246–166256. [CrossRef]
6. Wang, S.; Cao, J.; Yu, P.S. Deep Learning for Spatio-Temporal Data Mining: A Survey. IEEE Trans. Knowl. Data Eng. 2022, 34,

3681–3700. [CrossRef]
7. Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning Traffic as Images: A Deep Convolutional Neural Network for

Large-Scale Transportation Network Speed Prediction. Sensors 2017, 17, 818. [CrossRef] [PubMed]
8. Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow

Forecasting. In Proceedings of the AAAI conference on artificial intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 922–929. [CrossRef]

https://dx.doi.org/10.21227/65x6-2f13
http://doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)
http://doi.org/10.1109/TITS.2021.3054840
http://doi.org/10.1109/ACCESS.2019.2953888
http://doi.org/10.1109/TKDE.2020.3025580
http://doi.org/10.3390/s17040818
http://www.ncbi.nlm.nih.gov/pubmed/28394270
http://doi.org/10.1609/aaai.v33i01.3301922

Sustainability 2022, 14, 14049 19 of 20

9. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Trans. Intell.
Transp. Syst. 2014, 16, 865–873. [CrossRef]

10. Okutani, I.; Stephanedes, Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transp. Res. Part B Methodol.
1984, 18, 1–11. [CrossRef]

11. Dubey, P.P.; Borkar, P. Review on techniques for traffic jam detection and congestion avoidance. In Proceedings of the 2015
2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 26–27 February 2015;
pp. 434–440.

12. Song, F.; Zhou, Y.-T.; Wang, Y.; Zhao, T.-M.; You, I.; Zhang, H.-K. Smart collaborative distribution for privacy enhancement in
moving target defense. Inf. Sci. 2019, 479, 593–606. [CrossRef]

13. Stathopoulos, A.; Karlaftis, M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transp. Res.
Part C Emerg. Technol. 2003, 11, 121–135. [CrossRef]

14. Kamarianakis, Y.; Prastacos, P. Space–time modeling of traffic flow. Comput. Geosci. 2005, 31, 119–133. [CrossRef]
15. Min, W.; Wynter, L. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 2011,

19, 606–616. [CrossRef]
16. Williams, B.M.; Durvasula, P.K.; Brown, D.E. Urban Freeway Traffic Flow Prediction: Application of Seasonal Autoregressive

Integrated Moving Average and Exponential Smoothing Models. Transp. Res. Rec. J. Transp. Res. Board 1998, 1644, 132–141.
[CrossRef]

17. Xie, Y.; Zhang, Y.; Ye, Z. Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition.
Comput. Civ. Infrastruct. Eng. 2007, 22, 326–334. [CrossRef]

18. Zhang, Y.; Xie, Y. Forecasting of short-term freeway volume with v-support vector machines. Transp. Res. Rec. 2007, 92–99.
[CrossRef]

19. Lee, J.; Park, B.; Yun, I. Cumulative Travel-Time Responsive Real-Time Intersection Control Algorithm in the Connected Vehicle
Environment. J. Transp. Eng. 2013, 139, 1020–1029. [CrossRef]

20. Wu, Y.; Tan, H.; Qin, L.; Ran, B.; Jiang, Z. A hybrid deep learning based traffic flow prediction method and its understanding.
Transp. Res. Part C Emerg. Technol. 2018, 90, 166–180. [CrossRef]

21. Liang, Z.; Wakahara, Y. City traffic prediction based on real-time traffic information for Intelligent Transport Systems. In
Proceedings of the 2013 13th International Conference on ITS Telecommunications (ITST), Tampere, Finland, 5–7 November 2013;
pp. 378–383.

22. Khan, N.A. Real Time Predictive Monitoring System for Urban Transport Real Time Predictive Monitoring System for Urban
Transport. Ph.D. Thesis, Kingston University, Kingston upon Thames, UK, 2017.

23. Kari, D.; Wu, G.; Barth, M.J. Development of an agent-based online adaptive signal control strategy using connected ve-
hicle technology. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Qingdao, China, 8–11 October 2014; pp. 1802–1807.

24. Luo, Q.; Juan, Z.; Sun, B.; Jia, H. Method Research on Measuring the External Costs of Urban Traffic Congestion. J. Transp. Syst.
Eng. Inf. Technol. 2007, 7, 9–12. [CrossRef]

25. Padiath, A.; Vanajakshi, L.; Subramanian, S.C.; Manda, H. Prediction of traffic density for congestion analysis under Indian traffic
conditions. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO,
USA, 4–7 October 2009; pp. 1–6.

26. Mohan Rao, A.; Ramachandra Rao, K. Measuring Urban Traffic Congestion—A Review. Int. J. Traffic Transp. Eng. 2012, 2, 286–305.
[CrossRef]

27. Kumar, S.V.; Vanajakshi, L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur. Transp.
Res. Rev. 2015, 7, 21. [CrossRef]

28. Sun, S.; Zhang, C.; Yu, G. A Bayesian Network Approach to Traffic Flow Forecasting. IEEE Trans. Intell. Transp. Syst. 2006, 7,
124–132. [CrossRef]

29. Pan, T.L.; Sumalee, A.; Zhong, R.X.; Indra-payoong, N. Short-Term Traffic State Prediction Based on Temporal–Spatial Correlation.
IEEE Trans. Intell. Transp. Syst. 2013, 14, 1242–1254. [CrossRef]

30. Xu, Y.; Kong, Q.-J.; Klette, R.; Liu, Y. Accurate and Interpretable Bayesian MARS for Traffic Flow Prediction. IEEE Trans. Intell.
Transp. Syst. 2014, 15, 2457–2469. [CrossRef]

31. Zheng, X.; Chen, W.; Wang, P.; Shen, D.; Chen, S.; Wang, X.; Zhang, Q.; Yang, L. Big Data for Social Transportation. IEEE Trans.
Intell. Transp. Syst. 2016, 17, 620–630. [CrossRef]

32. Cheng, N.; Lyu, F.; Chen, J.; Xu, W.; Zhou, H.; Zhang, S.; Shen, X. Big Data Driven Vehicular Networks. IEEE Netw. 2018, 32,
160–167. [CrossRef]

33. Tan, M.C.; Wong, S.C.; Xu, J.M.; Guan, Z.R.; Zhang, P. An Aggregation Approach to Short-Term Traffic Flow Prediction. IEEE
Trans. Intell. Transp. Syst. 2009, 10, 60–69. [CrossRef]

34. Ahmed, M.S.; Cook, A.R. Analysis of Freeway Traffic Time-Series Data by Using Box-Jenkins Techniques. Transp. Res. Rec. 1979,
722, 1–9.

35. Liu, W.; Wang, Z. Dynamic Router Real-Time Travel Time Prediction Based on a Road Network. In Communications in Computer
and Information Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 86, ISBN 9783642198526.

http://doi.org/10.1109/TITS.2014.2345663
http://doi.org/10.1016/0191-2615(84)90002-X
http://doi.org/10.1016/j.ins.2018.06.002
http://doi.org/10.1016/S0968-090X(03)00004-4
http://doi.org/10.1016/j.cageo.2004.05.012
http://doi.org/10.1016/j.trc.2010.10.002
http://doi.org/10.3141/1644-14
http://doi.org/10.1111/j.1467-8667.2007.00489.x
http://doi.org/10.3141/2024-11
http://doi.org/10.1061/(ASCE)TE.1943-5436.0000587
http://doi.org/10.1016/j.trc.2018.03.001
http://doi.org/10.1016/S1570-6672(07)60035-X
http://doi.org/10.7708/ijtte.2012.2(4).01
http://doi.org/10.1007/s12544-015-0170-8
http://doi.org/10.1109/TITS.2006.869623
http://doi.org/10.1109/TITS.2013.2258916
http://doi.org/10.1109/TITS.2014.2315794
http://doi.org/10.1109/TITS.2015.2480157
http://doi.org/10.1109/MNET.2018.1700460
http://doi.org/10.1109/TITS.2008.2011693

Sustainability 2022, 14, 14049 20 of 20

36. Xu, T.; Li, X.; Claramunt, C. Trip-oriented travel time prediction (TOTTP) with historical vehicle trajectories. Front. Earth Sci. 2018,
12, 253–263. [CrossRef]

37. Zhang, Y.; Liu, Y. Comparison of parametric and nonparametric techniques for non-peak traffic forecasting. World Acad. Sci. Eng.
Technol. 2009, 39, 242–248. [CrossRef]

38. Wang, J.; Gu, Q.; Wu, J.; Liu, G.; Xiong, Z. Traffic Speed Prediction and Congestion Source Exploration: A Deep Learning Method.
In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016;
Volume 0, pp. 499–508.

39. Yang, L.; Ma, R.; Zhang, H.M.; Guan, W.; Jiang, S. Driving behavior recognition using EEG data from a simulated car-following
experiment. Accid. Anal. Prev. 2018, 116, 30–40. [CrossRef]

40. Kim, Y.; Wang, P.; Zhu, Y.; Mihaylova, L. A Capsule Network for Traffic Speed Prediction in Complex Road Networks. In
Proceedings of the 2018 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 9–11 October 2018; pp. 1–6.

41. Tan, H.; Xuan, X.; Wu, Y.; Zhong, Z.; Ran, B. A Comparison of Traffic Flow Prediction Methods Based on DBN. In Proceedings of
the CICTP 2016; American Society of Civil Engineers: Reston, VA, USA, 2016; pp. 273–283.

42. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016
31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hubei, China, 11–13 November 2016;
pp. 324–328.

43. Chen, Q.; Song, X.; Yamada, H.; Shibasaki, R. Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident
Inference. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

44. Lu, Z.; Lv, W.; Cao, Y.; Xie, Z.; Peng, H.; Du, B. LSTM variants meet graph neural networks for road speed prediction.
Neurocomputing 2020, 400, 34–45. [CrossRef]

45. Xu, D.; Wei, C.; Peng, P.; Xuan, Q.; Guo, H. GE-GAN: A novel deep learning framework for road traffic state estimation. Transp.
Res. Part C Emerg. Technol. 2020, 117, 102635. [CrossRef]

46. Shen, Y.; Jin, C.; Hua, J.; Huang, D. TTPNet: A Neural Network for Travel Time Prediction Based on Tensor Decomposition and
Graph Embedding. IEEE Trans. Knowl. Data Eng. 2022, 34, 4514–4526. [CrossRef]

47. Jin, G.; Wang, M.; Zhang, J.; Sha, H.; Huang, J. STGNN-TTE: Travel time estimation via spatial–temporal graph neural network.
Future Gener. Comput. Syst. 2022, 126, 70–81. [CrossRef]

48. Wei, W.; Wu, H.; Ma, H. An AutoEncoder and LSTM-Based Traffic Flow Prediction Method. Sensors 2019, 19, 2946. [CrossRef]
49. Ouyang, K.; Liang, Y.; Liu, Y.; Tong, Z.; Ruan, S.; Rosenblum, D.; Zheng, Y. Fine-Grained Urban Flow Inference. IEEE Trans.

Knowl. Data Eng. 2020, 34, 6. [CrossRef]
50. Vélez-Serrano, D.; Álvaro-Meca, A.; Sebastián-Huerta, F.; Vélez-Serrano, J. Spatio-Temporal Traffic Flow Prediction in Madrid:

An Application of Residual Convolutional Neural Networks. Mathematics 2021, 9, 1068. [CrossRef]
51. Jiber, M.; Mbarek, A.; Yahyaouy, A.; Sabri, M.A.; Boumhidi, J. Road Traffic Prediction Model Using Extreme Learning Machine:

The Case Study of Tangier, Morocco. Information 2020, 11, 542. [CrossRef]
52. Xu, D.; Dai, H.; Wang, Y.; Peng, P.; Xuan, Q.; Guo, H. Road traffic state prediction based on a graph embedding recurrent neural

network under the SCATS. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 103125. [CrossRef]
53. Ren, C.; Chai, C.; Yin, C.; Ji, H.; Cheng, X.; Gao, G.; Zhang, H. Short-Term Traffic Flow Prediction: A Method of Combined Deep

Learnings. J. Adv. Transp. 2021, 2021, 9928073. [CrossRef]
54. Liao, B.; Zhang, J.; Wu, C.; McIlwraith, D.; Chen, T.; Yang, S.; Guo, Y.; Wu, F. Deep Sequence Learning with Auxiliary Information

for Traffic Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, London, UK, 19–23 August 2018; ACM: New York, NY, USA, 2018; Volume 18, pp. 537–546.

55. Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [CrossRef]
56. Sun, S.; Chen, J.; Sun, J. Traffic congestion prediction based on GPS trajectory data. Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]
57. Xu, M.; Dai, W.; Liu, C.; Gao, X.; Lin, W.; Qi, G.-J.; Xiong, H. Spatial-Temporal Transformer Networks for Traffic Flow Forecasting.

arXiv 2020, arXiv:2001.02908. [CrossRef]
58. Qi, Y.; Ishak, S. A Hidden Markov Model for short term prediction of traffic conditions on freeways. Transp. Res. Part C Emerg.

Technol. 2014, 43, 95–111. [CrossRef]
59. Xie, Y.; Zhao, K.; Sun, Y.; Chen, D. Gaussian Processes for Short-Term Traffic Volume Forecasting. Transp. Res. Rec. J. Transp. Res.

Board 2010, 2165, 69–78. [CrossRef]
60. Wang, S.-H.; Govindaraj, V.V.; Górriz, J.M.; Zhang, X.; Zhang, Y.-D. Covid-19 classification by FGCNet with deep feature fusion

from graph convolutional network and convolutional neural network. Inf. Fusion 2021, 67, 208–229. [CrossRef]
61. Staff, T.P.O. Correction: Multi-view classification with convolutional neural networks. PLoS ONE 2021, 16, e0250190. [CrossRef]
62. Guarino, A.; Lettieri, N.; Malandrino, D.; Zaccagnino, R.; Capo, C. Adam or Eve? Automatic users’ gender classification via

gestures analysis on touch devices. Neural Comput. Appl. 2022, 34, 18473–18495. [CrossRef]
63. Xiang, L. Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm*. Phys. Procedia

2012, 25, 2066–2071. [CrossRef]
64. Jimenez-Martinez, M. Artificial Neural Networks for Passive Safety Assessment. Eng. Lett. 2022, 30, 1–9.

http://doi.org/10.1007/s11707-016-0634-8
http://doi.org/10.5281/ZENODO.1329472
http://doi.org/10.1016/j.aap.2017.11.010
http://doi.org/10.1016/j.neucom.2020.03.031
http://doi.org/10.1016/j.trc.2020.102635
http://doi.org/10.1109/TKDE.2020.3038259
http://doi.org/10.1016/j.future.2021.07.012
http://doi.org/10.3390/s19132946
http://doi.org/10.1109/TKDE.2020.3017104
http://doi.org/10.3390/math9091068
http://doi.org/10.3390/info11120542
http://doi.org/10.1063/1.5117180
http://doi.org/10.1155/2021/9928073
http://doi.org/10.1016/j.eswa.2022.117921
http://doi.org/10.1177/1550147719847440
http://doi.org/10.48550/arxiv.2001.02908
http://doi.org/10.1016/j.trc.2014.02.007
http://doi.org/10.3141/2165-08
http://doi.org/10.1016/j.inffus.2020.10.004
http://doi.org/10.1371/JOURNAL.PONE.0250190
http://doi.org/10.1007/s00521-022-07454-4
http://doi.org/10.1016/j.phpro.2012.03.351

	Introduction
	Related Works
	Methodology
	Dimensionality Reduction Using Stacked Autoencoder
	Graph Neural Network (GNN)
	Residual Network

	Experimental Analysis
	Conclusions
	References

