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Abstract

Continuity of accurate navigational data for intelligent transportation applications has been widely provided by

utilizing low-cost navigation systems through integrating GPS with micro-electro-mechanical-system (MEMS) inertial

sensors. To achieve the required accuracy, augmentation of Kalman filter (KF) with nonlinear error modeling

techniques such as fast orthogonal search (FOS) was introduced to enhance the navigational solution by estimating

and eliminating a great part of both linear and nonlinear errors of azimuth angle sensed by MEMS gyro. Although

this augmented approach enhanced the overall navigational accuracy to some extent, it still suffers from some

drawbacks that diverge the system accuracy during GPS long outage periods. These drawbacks stem from the

wide-variational behavior and high nonlinearities of the errors in MEMS gyros which make it difficult to depend on

the non-adaptive linear error model provided by KF to model the two types of MEMS azimuth errors.

In this paper we tried to minimize the effect of uncertainties associated with the KF azimuth prediction during the

absence of GPS by introducing a hybrid error model which employs support vector machine (SVM) to model the

KF output and FOS, based on autoregressive (AR) concept, to model the nonlinear azimuth errors. The performance

of the proposed hybrid SVM-FOS approach is evaluated for GPS/ RISS (Reduced inertial sensor system integrated

system) and the results were compared with the conventional KF and augmented KF-FOS approaches.

Keywords: MEMS inertial sensors, Reduced inertial sensor system (RISS), Integrated GPS/RISS,

Support vector machine (SVM), Fast orthogonal search (FOS)

Introduction

For several years, development of low-cost inertial naviga-

tion systems has been made possible by the great advances

in MEMS technology. Small size and light weight with

low cost characterize MEMS inertial measurement units

(IMUs) compared to high-end inertial sensors. These

merits of MEMS sensors made it attractive choice for

navigation in intelligent transportation applications

(Angrisano 2010). Nevertheless, the high noise level, in-

stability of characteristics and extreme stochastic variance

that characterize MEMS inertial sensors made it a chal-

lenge to use MEMS in autonomous mode for extended

periods. So, MEMS IMUs are used in conjunction with

aiding sensors to overcome their drawbacks where the

aiding sensor is selected based on the application (Poshtan

et al. 2014). For vehicle navigation, MEMS inertial sensors

combined with GPS have become the principal approach

where real time position and attitude estimation is being

required. GPS represents a prime position information

provider with reasonable accuracy. The acquired GPS

navigational information helps in inertial solution

stabilization where inertial sensor errors are bounded by

the GPS updates. In the meanwhile, the GPS unavailability

periods are bridged using the inertial sensors (Hol 2011).

Loosely coupled approach represents the most popular in-

tegration approach where trusted system measurements

are used for other system errors correction (Gianluca

et al. 2017). KF represents the widely used real-time fusion

algorithm where its output is used to correct the esti-

mated inertial data (Vinh 2017). The system model with

its initial conditions and noise characteristics must be de-

fined in advance for KF realization. In practical situations,

a precisely defined model is unrealistic because it violates

the statistical distributions assumptions due to noise de-

scription and system models uncertainties (Chen et al.

2013). Consequently, the estimation error is accumulated

with time. Practically, KF optimality is limited to linear

systems whereas for nonlinear systems, linearization is an* Correspondence: mag_ism@outlook.com
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acceptable solution in case of high-end IMU usage where

the nonlinear residuals are discarded. In the case of

MEMS IMUs, linearization becomes a source of errors as

these errors are nonlinear and highly correlated which vio-

late the KF stationary and whitening assumptions of er-

rors. These problems become significant in the case of

GPS signals unavailability where MEMS inertial solution

generates large errors. Different approaches were devel-

oped to overcome the MEMS based inertial sensor prob-

lems in case of its integration with GPS. Reduced inertial

sensor system (RISS) was developed for vehicles naviga-

tion to limit the number of the used inertial sensors (Atia

et al. 2014). This limitation reduces the uncompensated

errors inherent in the full IMU; mostly associated with

gyros; which are grown rapidly during 3D INS

mechanization integration process. This was explained in

(Noureldin et al. 2013), where gyro uncompensated errors

produce an angle error leads to positional error propor-

tional to t3. Meanwhile, calculation of pitch and roll from

accelerometers measurements leads to positional error

reduction as it becomes proportional to t2. Augmentation

of KF with nonlinear techniques to model RISS nonlinear

residual errors was introduced to estimate the

nonlinearities during GPS outage (Zhang et al. 2015;

Ismail et al. 2016). Among these techniques, FOS is one of

the recently adopted algorithms that could be used as

nonlinear system identification technique. Different

approaches were introduced to use FOS models in order

to bridge GPS unavailability and achieve more accurate

navigation system (Zhi et al. 2011; Zhi 2012; Tamazin

et al. 2013). Such techniques focus on using KF as an

estimator for the sensor linear errors which represent

the candidates for adopted FOS to model sensor

nonlinear errors. Looking closely on such approach, we

figured out that FOS model discards the uncertainties

of KF output due to the lack of KF update resulting

from the shortage of GPS information. Moreover, the

KF is considered a non-adaptive filter because it uses

a constant state model and its accuracy degrades

quickly when it loses GPS updates. In addition, some-

times FOS fails to select candidates that can define

the model.

Some researchers tried to solve the above problems by

modeling GPS data during its availability. The achieved

model estimates GPS signals during its outage to virtually

aid integration filter to develop more accurate navigation

results and overcome updating shortage. Employing

mechanized inertial velocities as model candidates, sup-

port vector machine (SVM) was proposed to model GPS

velocities to provide its estimates for unscented KF up-

dates during GPS denied conditions (Jiang et al. 2013; Xu

et al. 2012). SVM has been used widely as a regression al-

gorithm for both linear and nonlinear modeling but this

approach neglects that the filter is derived by errors which

may lead to a growth of the overall system errors. SVM is

able to define a model based on small training data (Xu

et al. 2012) with little training time and hence it is suitable

for real time implementation. It shows robustness against

overfitting problems (Jiang et al. 2013) and does not need

priori knowledge of the noise model.

In this paper, we consider a hybrid model which em-

ploys SVM to model the KF output that represents the

linear error and FOS used as AR modeling algorithm to

model the nonlinear errors. Several candidate sets were

checked with SVM to get the best-trained model that

could replace KF during GPS denied conditions. In

addition, based on the AR concept, the calculated non-

linear azimuth error is delivered to FOS. Once the GPS

signally denies, the algorithm starts to run both models

in the prediction phase. SVM begins to estimate the lin-

ear azimuth error instead of KF while FOS auto regres-

sively estimates its nonlinear error.

Experimental results show that SVM can replace KF to

predict azimuth linear error in case of GPS outage and

FOS succeeded to model azimuth nonlinear errors. We

compared the proposed hybrid modeling approach with

respect to the KF and augmented KF/FOS approaches.

Positional root-mean-square error (RMSE) is used as the

measuring parameter in our comparison.

The rest of the paper is organized as follows: GPS/RISS

integrated system is briefly reviewed in Section II while

section III provides a background on the modeling algo-

rithms used in our proposed hybrid algorithm. The pro-

posed system architecture is depicted in Section IV while

the experimental work and the results are discussed in

Section V followed by a conclusion in Section VI.

Notation

Throughout this paper, the following notations are

adopted: small letters with over line represent vectors

and with hat represent the predicted values.

GPS/RISS integrated system

The RISS essential goal is to provide a good functioning

navigation solution with reduced cost. Cost reduction

achieved through MEMS usage while limiting the num-

ber of used sensors is one of the RISS short ways for

error minimization (Iqbal et al. 2008). A vehicular navi-

gation solution was introduced in (Georgy et al. 2010)

using 3D GPS/RISS loosely coupled integration scheme.

Sole gyro vertically aligned with the vehicle body frame

and two accelerometers pointed in the vehicle’s forward

and transverse directions together with the built-in

odometer or mounted wheel speed sensor form the 3D

RISS as shown in Fig. 1. Besides lower cost as a result

for usage of fewer inertial sensors for 3D RISS, it has

two main advantages over a full IMU. These advantages

are represented in the usage of accelerometers for roll
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and pitch calculations instead of gyros, and the calcula-

tion of velocity based on wheel speed sensor instead of

accelerometers. Superiority of these calculations in atti-

tude and position error reduction is detailed in

(Noureldin et al. 2013). This left the vertically aligned

gyro as the only main remaining source of error in RISS,

and can be limited through appropriate modeling of its

stochastic drift (augmented KF-FOS and our hybrid

SVM-FOS). Assuming the vehicle mostly remains in the

horizontal plane, the speed sensor measurement is used

to obtain the vehicle’s speed (VV) and its heading is de-

duced from the gyroscope reading. Based on these

values, the velocities along the east direction (Ve) and

the north direction (Vn) are derived to enable tracking

of longitude and latitude.

The vehicle’s pitch angle (β) represents the angle it

makes with respect to the ground level and its roll angle

(γ) represents its rotation about the longitudinal axis.

Based on the vehicle’s actual acceleration (aV), transver-

sal accelerometer measurement (fx), forward accelerom-

eter measurement (fy) and vertical gyro measurement

(ωz) the off-plane motion can be estimated and conse-

quently compensate tilt errors to obtain accurate azi-

muth calculation. Pitch and roll angles can be obtained

as follows (Karamat et al. 2014):

β ¼ sin−1ð
f y−aV

g
Þ ð1Þ

γ ¼ − sin−1
fx þ VVωz

gcosβ

� �

ð2Þ

where g represents the gravity acceleration.

To obtain the azimuth (Az), a compensation for verti-

cal inclination and the effect of the Earth’s angular rate

(ωe) should be performed to compute the vehicle azi-

muth relative to the north direction. The derivation of

this compensation was discussed deeply in (Noureldin

et al. 2013). In our algorithm, we use the following rela-

tion to compute the azimuth:

_Az ¼ − ωz−ωe sinφ−
V e tanφ

RN þ h

� �

ð3Þ

where φ is the latitude, h is the elevation, and RN repre-

sents the normal radius of the Earth’s ellipsoid curvature.

The negative sign in the above equation is due to using of

ENU frame. The second term represents the compensation

for Earth’s rotation. Meanwhile, the third term represents

the compensation of the local level vertical misalignment.

Then, the velocity components along the east, and north

axes beside vertical velocity (Vu) can be obtained as:

V e

V n

V u

2

4

3

5 ¼
VV sinAz cosβ
VV cosAz cosβ

VV sinβ

2

4

3

5 ð4Þ

The position components including latitude, longitude

(λ), and elevation can be computed according to (5) tak-

ing into consideration that RM represents meridian ra-

dius of the Earth’s ellipsoid curvature.

_φ
_λ
_h

2

4

3

5 ¼
0 RM þ hð Þ−1 0

RN þ hð Þ cosφð Þ−1 0 0
0 0 1

2

4

3

5

V e

V n

V u

2

4

3

5 ð5Þ

Equations for 3D RISS, well derived in (Georgy et al.

2010), show that IMU with this reduced sensors number

together with vehicle speed sensor is capable of producing

vehicle’s complete navigation solution. A simplified block

diagram for 3D RISS mechanization is shown in Fig. 2.

The 3D RISS uses two accelerometers instead of gyros

to obtain pitch and roll angles. In fact, accelerometers

generate less error than gyros as shown in (6) where the

relation between the accumulated position error over time

and some inertial error parameters is presented. These in-

ertial parameters include mechanization without any pro-

vided corrections over Δt time period.

δp tð Þ ¼ δp t0ð Þ þ δV t0ð Þ∆t þ δba t0ð Þ
∆t2

2

þ δbg t0ð Þg
∆t3

6
þ δθr;p t0ð Þg

∆t2

2
þ…

þ δθA t0ð ÞV∆tþδSFa t0ð Þ
∆t2

2
þ δSFg t0ð Þg

∆t3

6
ð6Þ

where δp(t) is the positional error drift after time (t) with

initial value δp(t0), δV(t0) is the initial velocity error,

Fig. 1 Configuration of 3D RISS
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ba(t0) and δSFa(t0) are the initial accelerometer offset bias

and scale factor error respectively, δbg(t0) and δSFg(t0)

are the initial gyro offset bias and scale factor error re-

spectively. δθr, p(t0) and δθA(t0) are the initial non-

orthogonality error due to the roll/ pitch and azimuth

errors respectively. V is the average velocity during time

period Δt. As the residual gyro errors are multiplied by

the cube of the time interval, it produces the largest pos-

itional drift over time. KF integration with GPS provides

the corrections needed to reduce the inertial errors but

during its denied conditions the errors problem remains

the same. Estimation of nonlinear errors can be used to

limit its rapid accumulation during GPS outage periods.

Velocity calculations also provide a further improve-

ment in RISS since it uses speed sensor reading as a re-

placement for accelerometers. Velocity calculation based

on accelerometers introduces velocity error proportional

to t and position error proportional to t2 (Karamat et al.

2014). On the other hand, velocity calculations based on

speed sensor need only single usage of integration,

which finally improves the position error. The same

relations are applicable during GPS outage periods,

where the error will be related to the square of the

outage period in case of accelerometers based

calculations. So, the azimuth errors are the main source

of errors in 3D RISS due to its vertically aligned gyro.

Errors nonlinear estimation is one of the methods that

can be used to limit its rapid accumulation during GPS

outage periods. In the meanwhile, providing solutions

for KF aiding during outage periods enhance its

estimation capabilities.

KF implementation needs identification for system

error model. RISS error state vector composed of

position errors (δφ, δλ, δh), velocity errors (δVe, δVn,

δVu), azimuth error (δAz), and sensors error (δaV, δωz).

These errors can be represented as differential equations

through application of Taylor series approximation of

RISS mechanization equations. The error model can be

described as follows (Noureldin et al. 2013):

δ _φ

δ _λ

δ _h

2

4

3

5 ¼
0 RM þ hð Þ−1 0

RN þ hð Þ cosφð Þ−1 0 0
0 0 1

2

4

3

5

δV e

δV n

δV u

2

4

3

5þ
ΔV e

ΔV n

ΔV u

2

4

3

5

ð7Þ

δ _V e

δ _V n

δ _V u

2

4

3

5 ¼
sinAz cosβ aV cosAz cosβ 0
cosAz cosβ −aV sinAz cosβ 0

sinβ 0 aV cosβ

2

4

3

5

δaV
δAz

δβ

2

4

3

5þ
ΔaV
ΔAz

Δβ

2

4

3

5

ð8Þ

δ _Az ¼ δωz þ ΔAz ð9Þ

where Δ(.) represents the corresponding higher order

errors.

Since proposed system has a GPS, so its measurement

can be used for initialization process. Unless starting

point is priori known, GPS position is used for

initialization. The velocity vector is initialized by zero if

the vehicle is stationary during initialization process.

Otherwise, in dynamic conditions, the GPS velocity

measurement is used to initialize the velocity vector.

In the meanwhile, the attitude alignment is performed

in two steps. The platform is leveled by pitch and roll

angle initialization, then gyro-compassing is used to

initialize heading or azimuth. When the vehicle is

Fig. 2 3D RISS mechanization algorithm
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stationary, the accelerometers measure gravity compo-

nents owing to the horizontal plane tilt by pitch and roll.

The accelerometers measurements in the body frame for

the full IMU can be described as:

f x
f y
f z

2

4

3

5 ¼ Rb
l

0
0
g

2

4

3

5 ¼ Rl
b

� �T
0
0
g

2

4

3

5 ¼
−g cosβ sinγ

g sinβ
g cosβ cosγ

2

4

3

5

ð10Þ

Where Rl
b represents the rotation matrix used in trans-

formation from body frame to local-level frame. Since

only two accelerometers are used in RISS (x and y), then

the pitch and roll can be defined as:

β ¼ sin−1
f y

g
ð11Þ

γ ¼ sin−1
− f x

g cosβ
ð12Þ

Gyro-compassing depends on the gyro measurement

due to Earth’s rotation rate to initialize azimuth. Since

MEMS noise threshold exceeds the signal of the Earth’s

rotation, so this approach is not feasible (Noureldin et al.

2013). The solution to this problem is achieved through

the usage of the east and north velocities supplied by GPS

after the platform has started to move. This solution is

feasible since the pitch and roll are calculated as separate

quantities. The azimuth can be defined in this case as:

AGPS
z ¼ tan−1

VGPS
e

VGPS
n

ð13Þ

Modeling algorithms

Support vector machine (SVM)

On the basis of the theory of the statistical learning,

SVM is proposed as a general machine learning method

to map the input data space using a kernel function to a

high- dimensional space (Wei et al. 2011). Structural risk

minimization principles are used in its implementation

that results in superior performance in regression prob-

lems as well as classification technique. SVM training is

achieved through solving of quadratic programming

problem; leading to a unique global optimum solution

using inner products and kernel functions.

Assuming that the training data set D ¼ fða1; b1Þ; ða2;
b2Þ;…:; ðal; blÞg⊂R

n � R, where ai; bi represent the input

vector, and target value (output) respectively, with (l)

training set length. The SVM regression task is to iden-

tify a real valued function f(a) used to estimate the out-

put (b) for any input vector (a). To achieve this scenario,

the solution algorithm performs the regression in a high

dimensional space F based on a nonlinear mapping Φ to

map the input vector (a ) into that space. The function

can be described as:

f að Þ ¼ WTΦ að Þ þ c;Φ : Rn
→F ;W∈F ð14Þ

where W and c are unknowns. To satisfy structure risk

minimization concept, SVM selects non-negative upper

and lower training errors ξi and ξ�i respectively. With re-

gression accuracy coefficient (ε), and penalty factor (s)

which determines the tradeoff between the flatness and

training error, the convex constrained optimization

problem can be described as:

min
W ;c;ξ;ξ�

1

2
WTW þ s

X

l

i¼1

ξ i þ ξ�i
� �

S:T :

bi− WTΦ aið Þ þ c
� �

≤εþ ξ i
WTΦ aið Þ þ c
� �

−bi≤εþ ξ�i

�

ð15Þ

where i = 1,2,…,l. Constructing Lagrange function (L) as

the dual formulation with nonnegative Lagrange multi-

pliers vi, ηi for the primal problem in (15) can be de-

scribed as (Kaytez et al. 2015):

L ¼
1

2
WTW þ s

X

l

i¼1

ξ i þ ξ�i
� �

−

X

l

i¼1

ηiξ i þ η�i ξ
�
i

� �

−

X

l

i¼1

νi εþ ξ i þ bi− WTΦ aið Þ þ c
� �	 


ð16Þ

−

X

l

i¼1

ν�i εþ ξ�i þ bi− WTΦ aið Þ þ c
� �	 


Based on both Karush-Kuhn-Tucker (KKT) conditions

to identify parameters ν and c in (16), and the Mercer’s

theorem to use kernel function Kðai; a jÞ in simplifica-

tion, the final approximated solution can be given by:

f að Þ ¼
X

l

i¼1

νi−ν
�
i

� �

K ai; a j

� �

þ c ð17Þ

There are many types of kernel functions that may be

used and appropriate kernel selection enhances the

model estimation accuracy.

In this paper, SVM is employed to model the linear

azimuth error estimated by KF using mechanized data as

model input. Gaussian radial basis function (RBF) is se-

lected as kernel function because it gives an acceptable

accuracy with less difficulty for its implementation

(Kaytez et al. 2015). To achieve that, f ðaÞ in (13) will

represent linear azimuth error and ai represent the

model input data set at time instant i. The training
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results using different data sets as model input are dis-

cussed in the experimental results section.

Fast orthogonal search (FOS)

FOS (Korenberg 1989) is employed in this work to

model the significant nonlinear azimuth error of RISS

gyro. Improving RISS azimuth calculation inside

mechanization algorithm during GPS denied conditions

was the motive behind the nonlinear azimuth error

model development based on FOS with its high-

resolution estimation capabilities. Based on a weighted

sum of M linear or nonlinear arbitrary basis functions

pm(n), FOS is an identification technique that approxi-

mates system’s output (Tamazin et al. 2016). Weighting

coefficients km are identified targeting for minimization

of the mean square error (e2(n)) between the real system

output y(n) and its estimate ŷðnÞ . The constructed

model takes the form:

y nð Þ ¼
X

M

m¼1

kmpm nð Þ þ e nð Þ ð18Þ

FOS selects M most significant functions which greatly

reduce the mean square error (MSE) through iteratively

searching N available candidate basis functions. FOS al-

gorithm employs Gram-Schmidt (GS) orthogonalization

principals to identify orthogonal candidates qm(n) gener-

ated from pm(n) function, and coefficients gm(n) to

quantify the error reduction. GS usage produces a new

orthogonal set, and the model takes the form:

y nð Þ ¼
X

M

m¼1

gmqm nð Þ þ e nð Þ ¼ ŷ nð Þ þ e nð Þ ð19Þ

FOS reduces the time consumed for orthogonal func-

tions definition and the required memory through its

implicit determination using GS coefficients, which are

calculated using time averaging instead of point-by-

point computation (Korenberg 1989). The original

weights km can be identified from the orthogonal ex-

pansion weights and GS coefficients. The FOS iterative

process for orthogonal functions identification is

stopped when the error of the model is less than an ac-

ceptable value. Because the FOS orthogonal candidates

are not computed directly, models development is ex-

tremely fast. Further details of FOS algorithm calcula-

tions can be found in (Korenberg 1989).

In this paper, modeling the nonlinear azimuth error

is the task assigned to the FOS algorithm. As shown in

Fig. 3, the autocorrelation function (ACF) for the non-

linear azimuth errors demonstrates high correlation

throughout the whole test track. So, unlike approaches

(Zhi et al. 2011; Zhi 2012; (Tamazin et al. 2013) for

modeling of nonlinear azimuth errors, AR concept is

employed to use candidates represent the previously

calculated nonlinear azimuth errors. This approach re-

duces the uncertainty of using KF output as candidates

since during GPS outage it will not be so accurate due

to the lack of GPS updates. The modeled nonlinear azi-

muth error at training instant i will be represented by

y(n) in (18) while pm will represent the model candi-

dates constructed from the previous nonlinear azimuth

error (m = 1,…, i-1).

Methods

Proposed hybrid error modeling

Augmented KF-FOS approaches discussed in (Zhi et al.

2011; Zhi 2012; Tamazin et al. 2013) are based on FOS to

model the nonlinear azimuth errors. These approaches

used the linear errors estimated by KF as candidates for

the model. During model training, the output of KF is de-

livered to FOS to build the nonlinear model. During GPS

outage, the linear errors required for the model to esti-

mate the nonlinear errors are delivered from KF in pre-

diction mode with a lack of its GPS updates. These

approaches result in models with associated uncertain-

ties which affect the positioning accuracy.

To reduce the position error of the GPS/RISS inte-

grated system, an SVM-FOS hybrid modeling algo-

rithm is proposed to model individually KF output and

azimuth residual nonlinear errors. The idea behind this

proposal is to isolate the influence of the unaided KF

output on the final navigation results during GPS out-

age. This achieved through the usage of SVM to model

the KF output during its GPS aiding and replacing KF

during GPS unavailability. In the meanwhile, FOS is

used to model the nonlinear azimuth error based on

the AR concept to be estimated in case of GPS outage.

Keeping in mind that the KF output represents the lin-

ear error, this approach enables the model to estimate

both linear and nonlinear errors without using KF pre-

diction in case of GPS outage. The block diagram of

the proposed approach is shown in Fig. 4.

Through GPS availability, the integrated system pro-

vides trusted navigation information. A sliding window

is used to continuously provide training data for both

modeling algorithms. Once GPS terminates aiding KF

for any reason, models training are stopped and esti-

mation configuration starts its mission. SVM models

the KF output (δAKF
z ) which represents linear azimuth

error, while the FOS models the true nonlinear azi-

muth error (∆Az). ∆Az can be identified through calcu-

lations based on mechanized azimuth (Amec
z ), GPS aiding

azimuth (AGPS
z ) and the KF predicted azimuth which repre-

sents the linear azimuth error as follow:
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∆Az ¼ Amec
z −AGPS

z −δAKF
z ð20Þ

GPS aiding azimuth (AGPS
z ) is obtained by incorporating

GPS east and north velocity components ( VGPS
e ;VGPS

n )

(El-Sheimy et al. 2010). It is measured from north direc-

tion, and can be calculated as in (13).

The lever arm between the GPS antenna and the IMU

must be compensated before GPS azimuth determination

to improve the obtained azimuth accuracy. To achieve

stable GPS velocity derived azimuth with reasonable accur-

acy, a constrained azimuth algorithm must be used to

overcome the numerical problems encountered during low

dynamics as denominator approaches zero (Huang et al.

2007). The obtained azimuth supposed to be in the inter-

val (−π, π). Also, the algorithm takes care if zero forward

velocity is sensed (e.g., during ZUPT).The accuracy of the

calculated azimuth depends on the GPS receiver accuracy

in velocity determination. In our experiment, Ublox GPS

receiver chipset was used, which already provide heading

information. According to its data sheet, the heading ac-

curacy is 0.5 degrees and velocity accuracy is 0.1 m/s.

Three candidates sets were checked and compared

to obtain more accurate SVM model for δAKF
z : SVM1

contains only Amec
z , SVM2 adds mechanized velocities

(Ve, Vn) with Amec
z while SVM3 contains angular rate

ωz and mechanized velocities (Ve, Vn). Mechanized

velocities are proposed as candidates because azimuth

is in direct relation with their values as seen in (3).

The third option SVM3 is selected because it got the

best training results as shown in the next section.

FOS training depends on delivering the calculated

∆Az as proposed candidates to construct the model.

Once GPS outage occurred, the proposed system en-

ters the prediction phase and the algorithm freeze the

obtained models. Figure 3 illustrates the architecture of

the system in this phase. The input data still delivered to

Fig. 3 ACF for nonlinear azimuth error of real track

Fig. 4 Hybrid SVM-FOS proposed approach during GPS availability
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the SVM model to estimate the KF output as the linear

azimuth error (δÂ
KF

z ). FOS model starts to predict the

nonlinear azimuth error (∆Âz ), delivered it to the algo-

rithm and feed it back to the model. This estimated

error used to update the data in the model input buffer

to use it in the next epoch. The corrected azimuth esti-

mation (A�
z ) is calculated as:

A�
z ¼ Amec

z −δÂz
KF
−∆Â z ð21Þ

This estimated azimuth is delivered with speed sensor

measurement to another mechanization algorithm (INS

mechanization II in Fig. 5) to calculate the corrected

navigation data.

Because our proposal does not depend on the KF out-

put during GPS blockage, the KF remains working in the

background in the prediction configuration without any

GPS updates. During GPS updates, KF linearized model

dependence on a linear stochastic model for the sensor

error such as Gauss Markov model does not affect the

system accuracy. The KF prediction works in the back-

ground enables the system to accelerate the KF conver-

gence after reacquisition of GPS aiding signal.

Results and discussions

A road test is used to evaluate the performance of the

proposed navigation solution. This data set was supplied

by navigation and instrumentation lab; royal military col-

lege of Canada RMC; where the experiment was per-

formed between Kingston and Toronto. Vehicle’s speed

obtained from its odometer reading and logged in

through on-board diagnostic version II (OBD II) inter-

face to CarChip device with 1 Hz sampling rate. Vehi-

cle’s azimuth measurement obtained from the vertical

angular rate measurements delivered from gyroscope of

Crossbow MEMS grade IMU300CC-100. To evaluate

the system performance, G2 Pro-Pack SPAN unit pro-

vided by NovAtel is employed to deliver a reference

navigation solution. Validation of the overall perform-

ance of the proposed system is achieved through com-

paring it with the reference solution. The proposed

system is evaluated during an offline running of the col-

lected data of testing track shown in Fig. 6 which illus-

trates the reference track in GPS visualizer tool. Ten

GPS data blockage periods with 60 s long were virtually

implemented during post processing to enable position

accuracy evaluation of the proposed system. The block-

age periods cover all the possible navigation conditions

such as turns, slopes, different speeds, stops and straight

portions.

The estimated navigation solution using our proposed

SVM-FOS hybrid approach is compared to FOS solution

proposed in (Zhi et al. 2011) in addition to conventional

KF integration approach based on the positional RMSE

of each approach compared to the reference solution. As

mentioned above, augmented KF-FOS approach en-

hances the azimuth accuracy and obtains better per-

formance than using KF only.

Aiming to get a more accurate model for KF during

SVM training in our proposed system implementation,

different sets of candidates were investigated to select

the best performance. Since SVM is based on statistical

learning theory, then adding more candidates develops

more robust models especially when these candidates

describe more information about the fitting parameter.

All the training periods for the implemented outages

were examined to conclude the required results. The

preferable training results among them obtained from

the third model SVM3, as shown in Figs. 7 and 8

which compare the different models output with the

KF output as modeled data. It is clear that SVM3

model followed the variation of the modeled data and

got the least error between the obtained model and the

Fig. 5 Hybrid SVM-FOS proposed approach during GPS outage
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real data. So, the best results delivered by SVM3 may

be referred to the more informative candidates that are

used to describe the linear azimuth error (Atia et al.

2014). All of the selected candidates in SVM3 (ve, vn,

wz) are chosen because they are in direct/indirect rela-

tions with the linear azimuth error. After credence of

SVM3 option, it is selected to be used by the proposed

solution.

Two FOS models for nonlinear azimuth error are

compared to the real data. Our SVM-FOS proposal

with its usage of AR concept to construct the nonlin-

ear error model is compared to KF-FOS augmented

approach which uses KF estimated linear error as

model candidates (Zhi et al. 2011). As shown in Fig. 9

SVM-FOS achieved better training performance than

KF-FOS and in Fig. 10 KF-FOS failed to select candi-

dates to identify the model, while SVM-FOS approach

succeeded to define the model. The comparison de-

clares that proposed approach did not fail to identify

model candidates in any outage. This achievement in-

deed helps to suppress the azimuth error and result in

better position accuracy.

The overall performance of our proposal is compared

with the other approaches based on their positional

RMSE as shown in Fig. 11. The results show that SVM-

FOS proposed approach achieves better accuracy in po-

sitioning which means enhancement of the navigation

solution. The results shows that the proposed algorithm

RMSE may be comparable to augmented KF-FOS ap-

proach, but exploring the results closely confirm that

Fig. 6 Testing track indicating GPS blockage periods with zooming on outage #7 and 10

Fig. 7 Outage #5 SVM model training output compared to the real KF output
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proposed approach succeeded to suppress some peak er-

rors as in outage #2 and #3.

The system overall performance shows the significance

of the azimuth error and its effect on the position error,

and how the nonlinear residual errors have a great effect

in case of MEMS usage. Dealing with common KF inte-

gration approach with MEMS inertial sensors result in a

system suffering from drifts. The proposed hybrid SVM-

FOS error model succeeded in replacing KF during GPS

outage to estimate linear error based on SVM model. In

the same time, FOS with AR concept gives a stable model

for nonlinear azimuth error.

The average position RMSE during GPS outages achieved

by our proposed hybrid model is 6.2 m compared to 28.8 m

average RMSE obtained using approach. Comparing our

proposal with respect to augmented KF-FOS approach re-

sults in about 2.7 m achieved reduction of its average pos-

itional RMSE. In the meanwhile, the high RMSE associated

with KF solution explains the significant effect of the non-

linear errors when MEMS inertial sensors are used.

The system performance during seventh and tenth

outages presented in the zoomed portions of Fig. 5

proves the promising behavior of the proposed ap-

proach. Comparing the system performance to the KF

with respect to the reference track shows the enhanced

position accuracy. Also, it is consistent with the theoret-

ical expectations regarding the significant growth of the

azimuth errors at high speeds and speed variations since

the azimuth is related to velocities as showed in Eq. (4).

Fig. 12 shows the vehicle’s velocities during these out-

ages. In outage #7, the vehicle stopped for more than

30 s and then started to acquire acceleration with a hard

turn to reach high speed in short time. Our hybrid mod-

eling approach achieved more than 77% reduction in

RMSE than KF approach. Whereas during outage # 10,

the vehicle experienced slight turn with different

changes in its speed. The KF positional RMSE during

this outage is reduced more than 94% when the hybrid

model approach is used.

Moreover, augmented KF-FOS approach failed to select

candidates for the model in outages #2, #5, #7 and #8.

Our proposal identifies the nonlinear model candidates

during these outages and achieved about 11% reduction in

positional RMSE than augmented KF-FOS approach.

Fig. 8 Outage #7 SVM model training output compared to the real KF output

Fig. 9 Training output of different approaches for FOS implementation during outage #1
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Since our proposed algorithm uses a hybrid of two

modeling techniques (FOS –SVM) then its time and

memory complexity will be more than KF or aug-

mented KF-FOS algorithms. To evaluate the comput-

ing efficiency, a real-time implementation of proposed

algorithm must be deployed on a digital signal pro-

cessor, which is the subject of future researches.

However, we discussed the time complexity of our

proposal as a rational factor (percentage) with respect

to using augmented KF-FOS algorithm in offline pro-

cessing. This may give rough information about the

expected increase in the processing time for real time

system.

Our proposed algorithm takes 10.97% more time than

KF-FOS, which is acceptable in our situation. After

deploying real-time system, parallel processing may be

used which may offers more time reduction.

Conclusion

KF is an acceptable estimator for linear errors but due

to inherent nonlinear errors of MEMS and its highly

varied output, KF only is not suitable for error

compensation in MEMS gyro. Low cost GPS/RISS inte-

grated system offered an error minimization approach

with its usage of limited number of inertial gyros. KF

augmented with FOS solutions showed some enhance-

ments in the navigational accuracy but it neglects the

dependency of the KF output on its linear and non-

adaptive state error model. In this paper, we proposed a

hybrid error model which utilizes both SVM and FOS

approaches to estimate and eliminate the errors of

MEMS gyro with no need to use KF output during GPS

outages. It succeeded to minimize the positional RMSE

during GPS outages independently on KF uncertainties.

Moreover, employing AR approach with FOS showed

good results in candidates’ selection and model accuracy.

The test results agreed with theoretical expectations

and demonstrated the promising performance of the

proposed algorithm during periods of GPS blockage

where it achieved more than 75% positional RMSE re-

duction. Also, the proposed algorithm showed advan-

tage over the augmented KF-FOS fusion technique by

achieving better accuracy and offered 30% reduction

in the positional RMSE.

Fig. 10 Training output of different approaches for FOS implementation during outage #5

Fig. 11 Comparison of positional RMSE for different approaches
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