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ABSTRACT

A hybrid ensemble transform Kalman filter–three-dimensional variational data assimilation (ETKF–

3DVAR) system for the Weather Research and Forecasting (WRF) Model is introduced. The system is

based on the existing WRF 3DVAR. Unlike WRF 3DVAR, which utilizes a simple, static covariance model

to estimate the forecast-error statistics, the hybrid system combines ensemble covariances with the static

covariances to estimate the complex, flow-dependent forecast-error statistics. Ensemble covariances are

incorporated by using the extended control variable method during the variational minimization. The

ensemble perturbations are maintained by the computationally efficient ETKF. As an initial attempt to test

and understand the newly developed system, both an observing system simulation experiment under the

perfect model assumption (Part I) and the real observation experiment (Part II) were conducted. In these

pilot studies, the WRF was run over the North America domain at a coarse grid spacing (200 km) to empha-

size synoptic scales, owing to limited computational resources and the large number of experiments con-

ducted. In Part I, simulated radiosonde wind and temperature observations were assimilated. The results

demonstrated that the hybrid data assimilation method provided more accurate analyses than the 3DVAR. The

horizontal distributions of the errors demonstrated the hybrid analyses had larger improvements over data-

sparse regions than over data-dense regions. It was also found that the ETKF ensemble spread in general

agreed with the root-mean-square background forecast error for both the first- and second-order measures.

Given the coarse resolution, relatively sparse observation network, and perfect model assumption adopted

in this part of the study, caution is warranted when extrapolating the results to operational applications.

1. Introduction

The present three-dimensional variational data as-

similation (3DVAR) system for the Weather Research

and Forecasting (WRF) Model, like many other opera-

tional 3DVAR systems (e.g., Parrish and Derber 1992;

Courtier et al. 1998; Gauthier et al. 1998; Cohn et al.

1998; Lorenc et al. 2000), assumes that the background

forecast-error covariances are static and nearly homo-

geneous and isotropic. In reality, the background-error

covariances may vary substantially depending on the

flow of the day. A four-dimensional variational data

assimilation (4DVAR) system for WRF implicitly in-

cludes a time-evolving covariance model through the

evolution of initial errors under tangent linear dynam-

ics (Lorenc 2003). However, the evolved, flow-

dependent covariance model may still be limited by
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usage of a static covariance model at the beginning of

each 4DVAR cycle.

The ensemble Kalman filter (EnKF) provides an al-

ternative to variational data assimilation systems. In the

EnKF, the background-error covariances are estimated

from an ensemble of short-term forecasts. The pre-

sumed benefit of utilizing these ensemble-based tech-

niques is their ability to provide a flow-dependent es-

timate of the background-error covariances. Since the

EnKF was described and tested by Evensen (1994) in

an oceanographic application and by Houtekamer and

Mitchell (1998) in the atmospheric application, en-

semble Kalman filter techniques have been imple-

mented in numerous studies with promising results.

These studies include observing system simulation ex-

periment (OSSEs; e.g., Houtekamer and Mitchell 1998,

2001; Anderson 2001; Whitaker and Hamill 2002;

Szunyogh et al. 2005; Torn et al. 2006) and experi-

ments with real numerical weather prediction (NWP)

models and observations (e.g., Houtekamer et al. 2005;

Whitaker et al. 2008; Szunyogh et al. 2008). Studies

more recently have included limited-area models re-

solving meso- and convective scales (e.g., Snyder and

Zhang 2003; Dowell et al. 2004; Tong and Xue 2005;

Meng and Zhang 2008; Liu et al. 2008; Dirren et al.

2007; Torn and Hakim 2008). The EnKF has also been

applied to the land surface (e.g., Reichle et al. 2002)

and ocean models (e.g., Keppenne and Rienecker

2002). For reviews of the ensemble-based data assimi-

lation, please refer to Evensen (2003), Lorenc (2003),

and Hamill (2006).

The encouraging results in these studies suggest that

if ensemble information is used in the variational data

assimilation framework to augment the static back-

ground-error covariance, analyses can be improved.

Hereinafter, we call this method a hybrid ensemble

variational method, or more simply a “hybrid” scheme.

In comparison with the conventional ensemble-based

data assimilation, a hybrid scheme may be attractive for

the following reasons. First, unlike conventional en-

semble-based schemes, which adopt a framework that

differs significantly from standard variational schemes,

the hybrid schemes build upon with existing variational

systems, and thus ensemble information can be incorpo-

rated relatively easily. Second, hybrids have been shown

with simple model experiments to be more robust than

conventional ensemble data assimilation schemes

when the ensemble size is small or the model error is

large (Wang et al. 2007a, 2008, hereinafter Part II).

Several studies have been conducted on the hybrid

schemes. Studies by Hamill and Snyder (2000), Ether-

ton and Bishop (2004), and Wang et al. (2007a) used

simple models and simulated observations to suggest

the effectiveness of incorporating ensembles in the

3DVAR to improve the analyses. Lorenc (2003) dis-

cussed how an ensemble-based covariance model could

be adapted conveniently to the variational framework

by extending the control variables. Two studies have

adopted this framework for global data assimilation ap-

plications. Barker (1999) tested this framework with a

single member from an error-breeding system using the

Met Office’s global 3DVAR and suggested substantial

forecast improvement would be possible if more en-

semble members were used. Buehner (2005) tested the

hybrid for the global 3DVAR at the Canadian Meteo-

rological Centre, using ensembles generated either by

the EnKF or by performing an ensemble of 3DVAR

analyses, each using a different background and obser-

vations perturbed according to observation error statis-

tics. His results showed modest forecast improvements

and suggested revisiting the problem with increasing

ensemble size. The method of using an extended con-

trol variable to incorporate the ensemble in the varia-

tional framework (Lorenc 2003) and the method of di-

rectly combining the ensemble covariance with the

static covariance (Hamill and Snyder 2000) were re-

cently proved to be theoretically equivalent to each

other by Wang et al. (2007b).

In this study, we developed a hybrid data assimilation

system for the WRF model, based on the existing WRF

3DVAR system. The ensemble mean is updated by the

hybrid scheme using the extended control variable

method proposed by Lorenc (2003) to incorporate en-

semble covariance information. The ensemble pertur-

bations are generated by the ensemble transform Kal-

man filter (ETKF; Wang and Bishop 2003; Wang et al.

2004, 2007a). Therefore, like conventional ensemble-

based data assimilation, such a system can automati-

cally generate initial ensembles for the subsequent en-

semble forecasts. We chose to use the ETKF to gener-

ate the ensembles for the following reasons. An early

study by Wang and Bishop (2003) showed the ETKF

can provide ensemble perturbations that produce skill-

ful ensemble forecasts while maintaining relatively in-

expensive cost. Recent studies by Wang et al. (2007a)

using a simple model demonstrated that a hybrid data

assimilation system using the ETKF ensembles pro-

vided analyses almost as accurate as the full EnKF with

moderate ensemble sizes, and the hybrid provided

analyses better than the EnKF with small ensemble

sizes. Also, the ETKF generates the ensemble pertur-

bations in a less computationally expensive fashion

since the update of the ensemble perturbations are per-

formed in the low-dimensional ensemble subspace.

Since we use the ETKF to generate ensembles, we call
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such a system the hybrid ETKF–3DVAR system for

WRF.

In Part I of this two-part study, we test the new WRF

hybrid ETKF–3DVAR system using an OSSE. In Part

II, we will test the system by assimilating real observa-

tions. These studies are the first we are aware of that

test the hybrid ETKF–3DVAR method for a limited-

area NWP model. As an initial attempt to test and un-

derstand the newly developed system and given the lim-

ited computational resources, the experiments were

conducted at a reduced resolution (200 km) to empha-

size synoptic scales, and a subset of observational net-

work was assimilated. Our results are thus not a direct

analog to the operational regional-scale applications

where much finer resolution and denser observations

are assimilated. We hope that in future work we will be

able to extend this research to higher-resolution simu-

lations and more complete observation networks.

In section 2, we introduce the hybrid ETKF–3DVAR

system. Section 3 describes how experiments are de-

signed. Results comparing the WRF 3DVAR with the

WRF hybrid scheme are presented in section 4. Section

5 provide the conclusions and a discussion.

2. The Hybrid ETKF–3DVAR scheme in WRF

Figure 1 from Wang et al. (2007a) illustrates how the

hybrid ETKF–3DVAR data assimilation cycle works.

Suppose we start with an ensemble of K background

forecasts at time t0. The following four steps are then

repeated for each data assimilation cycle: 1) Update the

ensemble mean by the hybrid ensemble-3DVAR

method. 2) Update the forecast perturbations using the

ETKF. 3) Add the updated ensemble perturbations to

the updated ensemble mean to generate K initial en-

semble members. 4) Make K forecasts starting from the

K initial ensemble members forward to the next analy-

sis time. In sections 2a, b, we will describe steps 1 and 2.

a. Incorporating an ensemble in WRF 3DVAR

using extended control variables

We briefly consider the update of the ensemble mean

with observations using the hybrid method (the descrip-

tion of the method can also be found from D. M.

Barker et al., unpublished manuscript). In the WRF

hybrid ensemble–3DVAR system, flow-dependent en-

semble covariances are incorporated in the variational

minimization by extending control variables, following

section 5 of Lorenc (2003). We first introduce the terms

generally used in the hybrid ensemble–3DVAR frame-

work and then explain how it is applied within WRF

3DVAR.

The analysis increment of the hybrid, denoted as x�,

is a sum of two terms, defined as

x� � x�1 � �
k�1

K

�ak � xk
e �. �1�

The first term, x �1, in Eq. (1) is the increment associated

with the WRF 3DVAR static background covariance.

The second term is the increment associated with the

flow-dependent ensemble covariance. In the second

term of Eq. (1), x e
k is the kth ensemble perturbation

normalized by �K � 1 where K is the ensemble size:

xk
e � �xk � x���K � 1. �2�

In Eq. (2), xk is the kth ensemble forecast and x is the

mean of the K-member ensemble forecasts. The vectors

ak, k � 1, . . . , K, denote the extended control variables

for each ensemble member. The symbol � denotes the

Schur product (element by element product) of the vec-

tors ak and x e
k . In other words, the second term of Eq.

(1) represents a local linear combination of ensemble

perturbations. The coefficient ak for each member var-

ies in space as discussed later, which determines the

ensemble covariance localization scale [for the meaning

of covariance localization see Gaspari and Cohn (1999)

and Hamill et al. (2001)].

The analysis increment x� is obtained by minimizing

the following hybrid cost function:

J�x�1, a� � �1 J1 � �2 Je � Jo

� �1

1

2
�x�1�T

B
�1

�x�1� � �2

1

2
�a�T

A
�1

�a�

�
1

2
�yo� � Hx��T

R
�1

�yo� � Hx��. �3�

As compared with a normal 3DVAR cost function, a

weighted sum of J1 and Je terms in Eq. (3) replaces the

usual background term. Next we describe each of the

three terms in Eq. (3).

In Eq. (3), J1 is the traditional WRF 3DVAR back-

ground term associated with the static covariance B.

In the term Je, a is a vector formed by concatenating

K vectors ak, k � 1, . . . , K. In other words, aT � (aT
1 ,

aT
2 , . . . , aT

K). As in Eq. (17) of Lorenc (2003), the ex-

tended control variables are constrained by a block-

diagonal matrix A

A � �
S

S

·
·
·

S
�. �4�

Each of the K blocks contains the same prescribed cor-

relation matrix S, which constrains the spatial variation

5118 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



of ak. In other words, A defines the spatial covariance,

here spatial correlation (since variance is equal to 1) of

a, same as B defines the spatial covariance of x �1.

In Eq. (3), Jo is the observation term. As the tradi-

tional 3DVAR, y
o� � y

o � H(x
b) is the innovation

vector. Here y
o denotes the observation, x

b is the back-

ground forecast, and H is the nonlinear observation

operator. In this study, the background forecast x
b is

the ETKF ensemble mean forecast. Here H is the lin-

earized observation operator, and R is the observation-

error covariance.

In Eq. (3), there are two factors 	1 and 	2 that define

the weights placed on the static background-error co-

variance and the ensemble covariance. To conserve the

total background-error variance, 	1 and 	2 are con-

strained by

1

�1

�
1

�2

� 1. �5�

A similar constraint was applied in Hamill and Snyder

(2000), Etherton and Bishop (2004), and Wang et al.

(2007a).

To further comprehend the hybrid system defined by

Eqs. (1)–(5), Wang et al. (2007b) explicitly proved that

the solution from Eqs. (1) to (5) is equivalent to the

solution by minimizing a cost function where the back-

ground-error covariance was explicitly defined as a sum

of the static covariance and the ensemble covariance

with localization applied through the Schur product:

J�x�� �
1

2
x�T� 1

�1

B �
1

�2

P
e
�S�

�1

x�

�
1

2
�y

o� � Hx��T
R

�1�y
o� � Hx��, �6�

where P
e is the ensemble covariance defined as

P
e � �

k�1

K

xk
e�xk

e �T. �7�

Wang et al. (2007b) also proved that given the covari-

ance, 
ak(ak)T� � S, k � 1, . . . , K, the covariance of the

second term in Eq. (1) satisfies

��
k�1

K

�ak � xk
e ���

k�1

K

�ak � xk
e ��T� � P

e
� S. �8�

Based on Eqs. (6)–(8), effectively the correlation ma-

trix in the second term of Eq. (3) performs covariance

localization on the ensemble covariance.

Practically, to effectively reduce the condition num-

ber during variational minimization (e.g., Lorenc et al.

2000), the J1 term in Eq. (3) is preconditioned by a

control variable transform relating the control variables

(v1) and model space increments (x1), that is, x �1 � U1v1,

where the transform U1 approximates the square root

of the static covariance B. In the hybrid system, the

transform U1 is the same as in the WRF 3DVAR. For

details, please refer to Barker et al. (2004). Similarly,

the Je term is preconditioned by a transform a � U2v2,

where the transform by U2 approximates the square

root of the correlation matrix A. This transform U2 is

modeled using the simple recursive filter (Hayden and

Purser 1995) in the WRF hybrid data assimilation sys-

tem, different from Buehner (2005) where the correla-

tion was modeled with a truncated spectral expansion.

To reduce the extra cost of minimization due to the

increased number of control variables, we chose to let

each ak, k � 1, . . . , K, vary only in the horizontal. In

other words, the same two-dimensional field of coeffi-

cients ak was applied for all levels and all variables.

Thus, we only applied horizontal recursive filters to

model the correlation matrix A. As mentioned earlier,

the correlation matrix A determines the covariance lo-

calization to be applied to the ensemble. So in the cur-

rent hybrid system, there is no vertical covariance lo-

calization. Nevertheless, as discussed in Buehner (2005)

and Wang et al. (2007a), the use of the static covariance

in Eq. (3) in addition to the ensemble covariance helps

to reduce the detrimental effects of the sampling error

of the ensemble covariance on the analysis. So, al-

though there is no vertical localization through A, the

static covariance B can ameliorate the effects of sam-

pling error in the vertical covariances estimated from

the ensemble.

The number of extended control variables in the cur-

rent hybrid system is equal to the horizontal grid di-

mension (i.e., the number of grid points in the horizon-

tal, I � J) of the model times the ensemble size K. The

number of control variables in the traditional WRF

3DVAR cost function is equal to �N
n�1 I � J � Ln,

where N is the number of types of variables and Ln is

the number of vertical levels for the nth type of vari-

able. In the current WRF 3DVAR, there are five un-

correlated control variables (Barker et al. 2004), and

therefore, N � 5. So, the additional number of control

variables in the hybrid divided by the number of control

variables of the traditional WRF 3DVAR is equal to

K/�5
n�1 Ln, or about 0.46 in the experiments considered

in this study.

b. The ETKF ensemble generation scheme

We now consider the method for generating en-

semble perturbations around the updated mean state.

The ETKF is used to update the forecast ensemble per-

turbations to produce the analysis perturbations. De-

note X
e as the matrix whose K column vectors contain
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the K vectors of ensemble member perturbations from

the mean. Denote X
a as the matrix of analysis pertur-

bations (i.e., columns of X
a contain K analysis pertur-

bations). The ETKF updates X
e into X

a through a trans-

formation matrix. The transformation matrix is derived

within the ensemble perturbation subspace. Assuming

the covariance of the raw forecast ensemble perturba-

tions were equal to the true forecast-error covariance,

the goal of the ETKF is to choose the transformation

matrix so that the outer product of the transformed

perturbations were equal to true analysis error covari-

ance. The ETKF formulation used here (Wang et al.

2007a) is

X
a � X

eC��� � I��1�2
C

T, �9�

where C contains the eigenvectors and � the eigenval-

ues of the K � K matrix (Xe)T
H

T
R

�1
HX

e/(K � 1), and

I is the identity matrix. For more details on the deriva-

tion of Eq. (9), please refer to Wang et al. (2007a) and

references therein.

In Eq. (9), the scalar factor  is an inflation factor,

and the scalar factor � accounts for the fraction of the

forecast-error variance projected onto the ensemble

subspace. Both factors are intended to ameliorate the

systematic underestimate of the analysis-error variance

by the ETKF because of the limited ensemble size.

Wang et al. (2007a) provided details on how to estimate

these two factors adaptively for each data assimilation

cycle using the innovation statistics. Ultimately, we

want to ensure that on average the background-error

variance estimated from the spread of ensembles about

the ensemble mean is consistent with the background-

error variance estimated from the differences between

the ensemble mean and the observations. Mathemati-

cally,

�R�1�2�yo � H�x���T�R�1�2�yo � H�x���

� tr��
k�1

K

�R�1�2 �H�xk� � H�x���

� �R�1�2 �H�xk� � H�x���T
��K � 1� � I�, �10�

where tr denotes trace of a matrix. For a derivation of

Eq. (10), please see Wang et al. (2007a).

As discussed in Wang et al. (2007a), the estimation of

the above two scalar factors is also subject to sampling

errors due to the limited number of observations in the

innovation vector and the limited ensemble size. Since

this study only considers the radiosonde observations

over North America and uses a 50-member ensemble,

we reduce sampling errors in the estimation of these

two factors by taking the running mean of the previous

5 days’ values of the factors.

3. Experiment design

a. Model, observations, ensemble configurations,

and verification techniques

As an initial attempt to test and understand the

newly developed hybrid data assimilation system for

WRF, we designed experiments that were relatively

simple and manageable with our limited computational

resources. In this paper (Part I), we describe and report

the OSSE. Results for the real-observation experiments

are reported in Part II.

Experiments were performed running the WRF

model (Skamarock et al. 2005), on a domain covering

North America and the surrounding oceans (Fig. 1), the

same as the ongoing WRF EnKF experiments (Caya et

al. 2004). We ran WRF with a 200-km grid spacing on a

45 � 45 horizontal grid with 27 vertical levels and a

model top at 50 hPa. The coarse grid spacing was cho-

sen so that a large number of experiments could be

conducted to find optimal tunable parameters (see sec-

tions 3b and 3c and experiment design in Part II) using

the limited computational resources available.

Simulated observations of radiosonde temperature,

and u- and �-wind components were generated by add-

ing random noise to the WRF nature run (the “truth”).

The positions and vertical sampling rate of the radio-

FIG. 1. The WRF domain (full grid), the verification region

(inner box), and a snapshot of the radiosonde network at 1200

UTC 8 Jan 2003 (black dots).
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sondes were obtained from the operational observation

dataset at the National Centers for Environmental Pre-

diction (NCEP; see online at http://www.emc.ncep.

noaa.gov/mmb/data_processing/prepbufr.doc for the

operational observation dataset). Figure 1 shows a

snapshot of the horizontal distribution of the radio-

sondes. Simulated observations were generated up to

100 hPa. The observation-error covariance R was as-

sumed to be diagonal. The observation errors were ob-

tained from the operational observation dataset at

NCEP. The vertical profile of the observation errors is

shown in Fig. 2. The random noise that was used to

generate simulated observations was drawn from a

Gaussian distribution with zero mean and standard de-

viation equal to the observation errors.

The simulation started at 0000 UTC 1 January 2003

and lasted for 4 weeks. The observations were assimi-

lated every 12 h for 4 weeks, beginning 1200 UTC 1

January 2003.1 Initial and lateral boundary conditions

(LBCs) for the nature run and for the ensemble were

constrained following Caya et al. (2004). The initial

condition and the LBCs for the nature run were ob-

tained by adding perturbations to the NCEP “Final”

analysis (FNL; see online at http://dss.ucar.edu/

datasets/ds083.2). The perturbations were drawn from a

multivariate normal distribution whose covariance was

from WRF 3DVAR NCEP background-error covari-

ances, following Torn et al. (2006). The structure of the

WRF 3DVAR NCEP background-error covariances

is similar to that described in Wu et al. (2002). We

ran 50-member ETKF ensembles. The ensemble at

0000 UTC 1 January and the ensemble of LBCs dur-

ing the 4 weeks were generated by superposing 50

perturbations to the NCEP FNL analysis for the appro-

priate date. As for the nature run, these perturba-

tions were drawn from a multivariate normal distribu-

tion, having the same covariance as the one used to

generate the nature run. This procedure assumed

the uncertainty in the LBCs for the 4-week period and

the uncertainty in the IC at the very beginning of the

cycle were perfectly represented by the ensembles be-

cause the true state, by construction, was drawn from

the same distribution as the ensembles. Figure 3 shows

the spread (“uncertainty”) of the 50-member initial

ensembles as a function of model grids in latitudinal

direction at 0000 UTC 1 January. The lateral boundary

width in this study is five model grids. The magnitude of

the spread at the boundaries in Fig. 3 also shows

the uncertainty of the LBCs from 50 random perturba-

tions.

For the 3DVAR experiment, the background fore-

cast at 1200 UTC 1 January 2003 was taken from the

ensemble mean at that time to ensure that both assim-

ilation schemes start with the same first guess. The

LBCs for the 3DVAR experiment were from the

NCEP FNL analysis.

We chose the verification region to be the inner quar-

ter of the total domain (Fig. 1) to minimize artifacts

from the lateral boundaries. The analyses and forecasts

were verified against the truth (i.e., the WRF nature

run). The statistics were collected after the first 5 days

for all horizontal and vertical grids in the verification

domain.

b. Tuning the 3DVAR static background-error

covariance

Since the default WRF 3DVAR NCEP background-

error covariance may not represent the optimal static

background-error covariance for the 3DVAR OSSE

experiment with the perfect model assumption and sim-

plified observation network, we constructed a new

static background-error covariance using the 12-h

ETKF ensemble forecasts that corresponded to the

OSSE experiment setting. We ran the ETKF ensemble

forecasts every 12 h for 4 weeks. The ensemble-mean

forecast for the ETKF was updated by the WRF

3DVAR assimilating the simulated observations using

the default background-error covariance. We then dis-

carded the first 5 days and recalculated the static back-

1 For the OSSE, the dates were defined from the dates in the

NCEP FNL analysis, which were used to start the data assimila-

tion cycle and define the subsequent LBCs.

FIG. 2. Vertical profile of the errors of observations for wind

(dashed) and temperature (solid).
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ground-error covariance B using the remaining 12-h

ETKF ensemble forecasts. In constructing B, linear bal-

ance between mass and wind fields and horizontal ho-

mogenous error covariances was assumed. For details

on calculating the static covariance for WRF 3DVAR,

please refer to Skamarock et al. (2005, chapter 9). Then

we reran the OSSE 3DVAR experiment using the

newly generated B. As shown in Table 1, the analyses

generated by the 3DVAR with this tuned static covari-

ance were more accurate than using the default WRF

3DVAR NCEP background-error covariance.

We also performed several other experiments to de-

termine the sensitivity of 3DVAR analysis to the B

produced by other inputs. We reproduced B using a

2-week period of ETKF forecasts instead of a 4-week

period. The root-mean-square (rms) error of the

3DVAR analysis was not sensitive to this. Since for the

OSSE, the true state was available and thus the error

was known, we also calculated a new static covariance

using the known 12-h forecast-error samples for the

4-week period. The rms error of the 3DVAR analysis

using this new B was similar to that using the B gener-

ated by the ETKF ensemble. Consequently, in the fol-

lowing 3DVAR and hybrid data assimilation experi-

ments, we used the tuned static background covariance

generated by the 4-week ETKF ensemble.

c. Weighting factors and ensemble covariance

localization scales

There are two tunable parameters in the hybrid that

may affect the performance of the hybrid [Eq. (3)]. One

is the weighting factor that determines the relative in-

fluence of the static covariance and the ensemble co-

variance during the analysis. The other is the ensemble

covariance localization scale. In the following hybrid

experiments, we tried five different values for the

weighting factor 	1, 1/	1 � 1.0, 0.8, 0.5, 0.2, 0. A value

of 1/	1 � 1.0 indicated that all weight was placed on the

static covariance; a value of 1/	1 � 0.5 indicated that

the static covariance and ensemble covariance used

equal weights.

As discussed in section 2a, the correlation matrix A

(which determines the horizontal localization for the

ensemble covariance) is modeled by using a recursive

filter (Hayden and Purser 1995). The correlation length

scale of the recursive filter (S) determines the degree to

which the ensemble covariance was localized. We tried

four different values for S, S � 250, 500, 1000 and 1500

km. If iterated repeatedly, the recursive filter approxi-

mates a Gaussian-shaped response and the length scale

FIG. 3. Zonally averaged spread of 50 random perturbations

drawn from the WRF 3DVAR NCEP background-error covari-

ance for (a) wind (�U 2 � V 2) and (b) �.

TABLE 1. The rmse of the analysis of the 3DVAR experiments

with the default background-error covariance and the tuned static

background-error covariance that was generated by the ETKF

ensemble.

Wind ��U 2 � V 2, m s�1� � (K)

Default 3DVAR 1.936 0.846

Tuned 3DVAR 1.648 0.770
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S corresponds to an e-folding distance of Se � 2�2S �

707, 1414, 2828, 4242 km of the Gaussian response func-

tion (Barker et al. 2003). For each of the four weighting

factors 1/	1 � 0.8, 0.5, 0.2, 0, the four different values of

correlation length scales were tried.

4. Results

a. Examples of flow-dependent increments

Figure 4 provides two examples showing that the

ETKF ensemble can provide flow-dependent estimates

of the background-error covariance and that the ex-

tended control variable method can utilize such infor-

mation to provide flow-dependent analysis increments.

Figure 4 shows the 850-hPa temperature increments

from the assimilation of a single 850-hPa temperature

observation that was 1 K warmer than the background

forecast. A weighting factor of 1/	1 � 0 and a covari-

ance localization scale of Se � 2�2S � 2000 km were

used in both cases.

The first case corresponds to the ETKF ensemble at

0000 UTC 14 January 2003. The observation location

was in the middle of a region with a strong temperature

gradient. Positive increments of temperature were

elongated along the isotherms while negative incre-

ments were located in the western part of the cold pool.

The dipole-shaped increment suggested a more nega-

tive tilt to the analyzed thermal trough. In this first case,

the ETKF ensemble primarily indicated uncertainty in

the forecasting of the position and orientation of the

baroclinic zone.

The second case corresponds to the ETKF ensemble

at 0000 UTC 24 January 2003. In this case, the baro-

clinic zone had passed to the south and east of the

observation location, and the simulated observation

was again 1 K warmer than the background forecast.

There was a positive increment in the cold air around

the observation and negative increment in the warm air

to the east. The dipole-shaped increment in this case

suggested the observation should weaken the baroclinic

zone east of the observation. In contrast to the first

case, in the second case the ETKF ensemble indicated

a disagreement on the strength of the baroclinic zone

among ensemble members. Note also that the second

case demonstrated that the ETKF ensemble covariance

indicated that it was appropriate to extrapolate the ob-

servation information into the relative data void in the

western Atlantic. Also note that the magnitude of

maximum increment was smaller in the second case

than the first case.

In summary, the ETKF ensemble estimated the flow-

dependent structure and the magnitude of the back-

ground-error covariance. In both cases, the new hybrid

assimilation system included these flow-dependent co-

variances during the minimization and thus produced

flow-dependent analysis increments.

FIG. 4. The 850-hPa temperature increment by assimilating a

single observation of 850-hPa temperature at the black dot using

localized ETKF ensemble covariance only. The observation was

1° warmer than the background forecast. Thin black contours are

850-hPa temperature from �21° to 15° with a contour interval

(CI) of 3°. The thick black contours are the temperature incre-

ments with a 0.04° CI. Cases from (a) 0000 UTC 14 Jan 2003 and

(b) 0000 UTC 24 Jan 2003.
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b. Verification of the analyses and forecasts

In this section, we evaluate the characteristics of the

analysis and forecast errors for the hybrid and the

3DVAR experiments. The analyses and forecasts were

verified against the truth (i.e., the WRF nature run) for

all model horizontal and vertical grids within the veri-

fication region. Table 2 shows the rms analysis error for

wind (defined as the square root of the mean squared

zonal plus meridional wind errors; same is used for all

wind verification) and potential temperature. The rms

analysis error for the hybrid is shown as a function of

the weighting coefficient 1/	1 and the localization scales

Se . As shown in Table 2, for most of the combinations

of 1/	1 and Se, the hybrid analysis was more accurate

than the 3DVAR, except for the combinations of small

1/	1and relatively large Se. The optimal parameters

were 1/	1 � 0.2, Se � 1414 km for the wind, and 1/	1 �

0.5, Se � 1414 km for the potential temperature. The

best-performing hybrid analyses improved upon the

3DVAR analyses by 20.6% and 14.7% for the wind and

the potential temperature, respectively. For all other

variables of WRF, the hybrid analyses were also more

accurate than the 3DVAR (not shown).

In Table 2, the difference between the 3DVAR and

1/	1 � 1.0 experiments was that the background fore-

cast for the former was from the single control forecast,

whereas for the latter it was from the ETKF ensemble-

mean forecast. The improvement of the analyses for the

1/	1 � 1.0 experiment over the 3DVAR experiment

was presumably because the background forecast from

the ensemble mean was more accurate than the single

control forecast.

Examining the columns of Table 2, for each localiza-

tion scale, as 1/	1 decreased from 1.0 (i.e., more weight

on the ensemble covariance), the rms analysis error

first decreased and then increased. In general, the value

of the optimal 1/	1 decreased with decreasing covari-

ance localization scale. For example, for wind, the op-

timal 1/	1 decreased from 0.5 to 0.2 as Sedecreased from

2828–4242 to 707–1414 km. Relative to 1/	1 � 1.0, the

improvement of the hybrid analysis as 1/	1 started to

decrease demonstrated the improvement of the analysis

through incorporating the flow-dependent ETKF en-

semble covariance. For some localization scales, when

further reducing 1/	1 after it reached the optimal value,

the analysis became worse than the analysis for 1/	1 �

1.0. The value of 1/	1 that produced a worse analysis

than 1/	1 � 1.0 decreased with decreasing localization

scales.

Examining the rows of Table 2, with increasing

weighting factor, 1/	1 (i.e., increasing weight on the

static covariance), the rms analysis error of the hybrid

became less sensitive to the ensemble covariance local-

ization scales. As discussed in Buehner (2005) and

Wang et al. (2007a), this was because the hybridization

of the static covariance already served to ameliorate the

detrimental effects of the sampling error in the en-

semble covariance. Also note that in general, as 1/	1

decreased (i.e., more weight on the ensemble covari-

ance), the optimal localization scale decreased (i.e.,

tighter localization). Corresponding results for the 12-h

forecasts show similar variations of the errors with re-

spect to Se and 1/	1.

Consider the horizontal (Fig. 5) distribution of the

improvement of the hybrid analysis over the 3DVAR

analysis. Corresponding plots for the 12-h forecasts

show qualitatively similar results. The hybrid with the

weighting factor 1/	1 � 0.2 and the localization scale

Se � 1414 km was used. Figure 5 shows the horizontal

distribution of the difference between the hybrid rms

TABLE 2. The rmse of the wind and potential temperature analyses of the hybrid with various combinations of the weighing

coefficients 1/	1 and the covariance localization scales Se. Please see text for the definition of 1/	1 and Se. Numbers in parentheses

indicate the percentage improvement relative to the 3DVAR with tuned static covariance. The smallest rmses are set boldface. For

1/	1 � 1.0, experiments do not depend on Se.

Wind (m s�1) Se � 4242 km 2828 km 1414 km 707 km

1/	1 � 1.0 1.546 (6.2) — — —

0.8 1.412 (14.3) 1.399 (15.1) 1.401 (15.0) 1.443 (12.4)

0.5 1.378 (16.4) 1.331 (19.2) 1.340 (18.7) 1.392 (15.6)

0.2 1.398 (15.2) 1.359 (17.6) 1.309 (20.6) 1.377 (16.4)

0.0 1.679 (�1.9) 1.594 (3.3) 1.450 (12.0) 1.460 (11.4)

� (K) Se � 4242km 2828 km 1414 km 707 km

1/	1 � 1.0 0.713 (7.4) — — —

0.8 0.692 (10.2) 0.682 (11.5) 0.665 (13.7) 0.676 (12.2)

0.5 0.726 (5.7) 0.685 (11.0) 0.657 (14.7) 0.671 (12.9)

0.2 0.788 (�2.3) 0.756 (1.8) 0.675 (12.4) 0.674 (12.5)

0.0 0.954 (�23.9) 0.921 (�19.6) 0.795 (�3.3) 0.734 (4.7)
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analysis error and the 3DVAR rms analysis error for

the wind over the verification domain. For each

scheme, we first calculated the rms analysis error aver-

aged over all levels in the verification domain and then

plotted the error of the 3DVAR minus the error of the

hybrid. Positive values in Fig. 5 indicate that the hybrid

analysis was more accurate than the 3DVAR analysis.

The rms analysis error of the hybrid was smaller than

the 3DVAR throughout the domain. The hybrid had

larger improvement near the data-sparse regions, such

as the western Atlantic, Gulf of Mexico, and eastern

Pacific. We also found that the improvement of the

hybrid over 3DVAR was in general larger over the

western part of the continent than the eastern part.

Probably this is because the western continent is imme-

diately downstream of eastern Pacific, where there are

no radiosonde observations. The relatively large im-

provement of the analysis over the eastern Pacific pro-

duced relatively large forecast improvement, and thus

relatively large analysis improvement downstream.

These results are consistent with previous studies in

Hamill and Snyder (2000) and Whitaker et al. (2004,

2008), who showed that the flow-dependent ensemble

background-error covariances have the largest impact

over and downstream of where the observational net-

work is sparse.

Blue lines in Fig. 6 shows the rms analysis errors of

the hybrid and the 3DVAR as a function of model

levels. For both the hybrid and the 3DVAR, the rms

error peaked at about 300 hPa for wind and 200 hPa for

potential temperature, and then increased again in the

lower stratosphere. The improvement of the hybrid

(solid) over the 3DVAR (dotted) was nearly uniform

except near the model top, where the improvement of

FIG. 5. The difference of the rms vertically averaged wind analysis error between the hybrid

(ensemble size 50, 1/	1 � 0.2, and Se � 1414 km) and the 3DVAR for the verification domain.

Positive values mean the hybrid analysis was more accurate than the 3DVAR.
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the hybrid was much smaller than at lower levels. To

understand why the analysis error was large near the

model top and why the improvement of the hybrid was

small at the model top, we conducted extra diagnostics

and experiments.

We first calculated the time-averaged and domain-

averaged vertical correlation of the 12-h forecast error

between the model top level (level 27) and other levels.

The correlation decreased quickly from 1.0 at level 27

to 0.16 at level 24 (about 100 hPa) for wind and to 0.1

at level 24 for potential temperature. The correlation

then decreased to nearly zero at level 21 (about 180

hPa).

The observations were below 100 hPa in the study.

The weak correlation between the model uppermost

levels and the observation levels clearly has the poten-

tial to lead to relatively larger errors at the uppermost

model levels. We have confirmed this through experi-

ments with observations extended to 50 hPa. These re-

vealed significantly reduced errors (by more than 50%

at level 27) at the model top for both the hybrid and the

3DVAR. Significant improvement of the hybrid over

the 3DVAR was also found even at the model top,

consistent with the performance of the hybrid at lower

levels (not shown).

In the hybrid system, the linear combination of the

static covariance B with the ensemble covariance ame-

liorates but does not remove the effect of the sampling

errors of the vertical error correlation estimated by the

ensemble. The weak correlation between the model up-

permost levels and the levels below 100 hPa has the

potential to increase the detrimental effects of sampling

errors in the hybrid, since for fixed ensemble size, ex-

pected errors in the sample estimate of a correlation are

largest when the correlation is small. We hypothesize

that the small improvement of the hybrid relative to the

3DVAR at the model top shown in Fig. 6 was due to the

sampling errors. To test this hypothesis, we conducted

another hybrid experiment with the ensemble size in-

creased from 50 to 100. The corresponding profile of

the rms analysis error is shown in Fig. 6 as the black

line. The improvements from the larger ensemble (and

its reduced sampling error) were largest at the model

top. With the larger ensemble, the hybrid also signifi-

cantly improved on the 3DVAR even at the uppermost

levels.

Figure 6 also shows the rms forecast errors at 12- (red

lines) and 24-h (green lines) lead times. As the analysis,

the hybrid forecast is more accurate than the 3DVAR

forecasts nearly uniformly below level 25. The hybrid

12-h forecast is even more accurate than the 3DVAR

analysis below level 15. Note that since the same LBCs

were used to run the forecasts for both the hybrid and

the 3DVAR, with increasing forecast lead times the

influence of the LBCs becomes more dominant over

the verification region and the difference of the fore-

casts between the hybrid and the 3DVAR becomes

smaller. Plotting the forecast errors separately over the

western and the eastern part of the verification domain

shows that the differences of the forecast errors be-

FIG. 6. Vertical profiles (as a function of model eta levels) of the

analysis errors (blue), 12-h (red) and 24-h (green) forecast errors

for the 3DVAR (dotted) and the hybrid with ensemble size 50,

1/	1 � 0.2, and Se � 1414 km (solid). The analysis error for the

hybrid with ensemble size 100, 1/	1 � 0.2, and Se � 1414 km is in

black: (a) wind and (b) potential temperature. The pressure on

the right axis was calculated from the eta values, the top model

pressure of 50 hPa, and the approximated surface pressure of 1000

hPa.
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tween the hybrid and the 3DVAR starts to diminish

earlier over the western part than the eastern part (not

shown), which verifies this hypothesis.

c. Verification of the ETKF ensemble spread

In this section, we compare the 12-h ETKF ensemble

forecast spread to the 12-h background forecast errors

to see how well the ensemble spread estimated the

magnitude of the background forecast errors. The re-

sults shown below correspond to the hybrid experiment

with 1/	1 � 0.2 and Se � 1414 km.

As mentioned in section 2b, the ETKF employs two

tunable factors, the inflation factor (), and the factor

(�) that estimates the fraction of the first-guess (en-

semble mean) error variance projected onto the en-

semble subspace, in the ETKF. These factors are in-

tended to ameliorate the systematic underestimate on

the error variance by the ETKF due to the limited en-

semble size. Both factors were determined adaptively

in the ETKF. Figure 7 shows the factors  and � during

the 4-week data assimilation period. The factors started

to converge to constant values after 5 days (10 cycles).

The average values after day 5 for  and � were 3.4%

and 28.7%, respectively.

To evaluate how well the ensemble spread performs

as an estimate of forecast errors, Fig. 8 shows the ver-

tical profile of the 12-h ensemble spread versus the rms

error of the 12-h background forecast for wind and po-

tential temperature. For each model level, the spread

and rms error were averaged over all grid points within

the verification domain over the verification period.

The ETKF ensemble spread in general agreed with the

first-guess rms error, except at the top levels where the

ensemble spread was systematically smaller than the

first-guess error. As discussed in section 2b, the adap-

tive inflation factor for the ETKF was determined by

the innovations over all observations. Therefore, it only

ensured that over the observation space, the ensemble

spread on average agreed with the first-guess error. The

relatively large discrepancy of the spread and the first-

FIG. 7. The inflation factor () and the factor (�) of percentage

projection of the first-guess error variance onto the ensemble sub-

space for the ETKF in the hybrid experiment with 1/	1 � 0.2 and

Se � 1414 km.

FIG. 8. The ETKF ensemble spread (dotted) and the rms first-

guess error (solid) as a function of model levels for the hybrid with

simulated observation up to 100 hPa, ensemble size 50, 1/	1 � 0.2,

and Se � 1414 km: (a) wind and (b) �.
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guess error at the top levels may be because the lack of

observation above 100 hPa in this experiment. For the

experiment where observations were extended to the

top model level, the corresponding plot (not shown)

shows that the magnitude of the spread and that of the

first-guess error were about the same at the top model

levels. Note that the adaptive inflation factor used in

this study had the same value for all model grids and

variables, which will not ensure matching of the spread

and the first-guess error for each level and each vari-

able. For future work, we may explore and apply the

inflation factor so that it is not only adaptive in time but

also adaptive in space (J. L. Anderson 2008, unpub-

lished manuscript).

Comparing the ensemble spread to the rms first-

guess error averaged over all grid points on a level like

in Fig. 8 provides a first-order measurement of the re-

lationship of the spread and the error at that level. Next

we consider a second-order measure; namely, whether

the ETKF spread can distinguish large background

forecast error from small background forecast error.

For example, Fig. 9 shows that for the first-order mea-

sure, the ETKF spread agreed with the rms background

error at model level 17 (�330 hPa). To provide a sec-

ond-order measure for that level, we used a method

similar to that used in Majumdar et al. (2001) and Wang

et al. (2007a). We first produced a scatterplot where the

ordinate and abscissa of each point were the squared

first-guess error and the ensemble variance for a par-

ticular variable of interest, respectively. We collected

samples over all grid points at level 17 over the verifi-

cation domain and all times. We then divided these

points into equally populated bins, arranged in order of

increasing ensemble variance. Next, we averaged the

squared forecast error and ensemble variance sepa-

rately for each bin. Note that as discussed in Wang and

Bishop (2003), comparing a squared first-guess error

with the ensemble variance does not make sense since

the former is a random draw from the latter if the en-

semble variance is perfect. In other words, we need to

average the squared first-guess error first before com-

paring it with the ensemble variance. We then plotted

the square roots of the averaged squared forecast error

against the square roots of the averaged ensemble vari-

ance. The connecting curve described the relationship

between the ensemble spread and the rms forecast er-

ror. Figure 9 shows such a curve for the wind and po-

tential temperature, where we used 12 bins. Results

using three bins are smoother than that shown in Fig. 9.

The curve in Fig. 9 closely aligned with the 45° line,

which means the ETKF ensemble spread can distin-

guish large background errors from small background

errors and thus make quantitative predictions of the

expected background errors. To see if the result is sta-

tistically significant, we randomly picked half of the

samples and plotted the same curve 10 times. Thus, in

each bin we collected 10 pairs of square roots of aver-

aged squared first-guess errors and the averaged en-

semble covariance. We then calculated the standard de-

viations from these 10 samples in each bin. The bars in

Fig. 9 shows the plus and minus three standard devia-

tions with respect to both axes. This test suggested that

FIG. 9. Second-order measure of the skill of the ETKF ensemble

spread for model level 17 of Fig. 8: (a) wind and (b) �.
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the conclusion that the ETKF ensemble spread can well

predict the expected forecast errors is statistically ro-

bust.

5. Conclusions and discussion

In this study, we introduced a new hybrid ETKF–

3DVAR data assimilation method developed for WRF.

The system was built based on the existing WRF

3DVAR. In the hybrid system, the background-error

statistics were estimated from a combination of the tra-

ditional static covariance with the flow-dependent en-

semble covariance. Specifically, the ensemble covari-

ance was included in the variational update through

extending control variables. At each data assimilation

time, the deviations of the ensemble members about

the mean were updated by the computationally effi-

cient ETKF.

As a pilot study on the WRF ETKF–3DVAR hybrid

data assimilation system, in this Part I we conducted an

identical-twin OSSE experiment with a coarse grid

spacing (200 km) and a relatively sparse network of

simulated radiosonde wind and temperature observa-

tions in a region around the North America. (The ac-

companying Part II discusses real-data experiments).

The hybrid provided �15%–20% more accurate analy-

ses than the 3DVAR. The horizontal distribution of the

rms analysis error showed that the improvement of the

hybrid over the 3DVAR was larger over data-sparse

regions than over data-dense regions. We also found

that the ETKF ensemble spread in general was consis-

tent with the rms first-guess error in both the first- and

the second-order measurements.

The benefit of the hybrid may be diminished in real-

world implementations with imperfect models and a

denser observation network. Since an ensemble of

simulations with an imperfect forecast model will not

be able to describe the error covariances due to model

error and the current state-of-the-art method to ac-

count for model error in the ensembles may not be

effective, the positive impact of ensemble may thus di-

minish (Part II). Also, several previous studies have

shown that as observation density increases, the impact

of the flow-dependent covariances is diminished

(Hamill and Snyder 2000; Whitaker et al. 2004, 2008).

Our choice of a coarse grid spacing in this study em-

phasized the synoptic scales. The real-world regional-

scale application adopts a much finer resolution. As

grid spacing is refined and mesoscale features are re-

solved, it is possible that these mesoscale features,

which are more sensitive to the details of imperfect

model parameterizations, may not be handled as well as

the synoptic scales. On the other hand, increasing reso-

lution may reduce the model error for synoptic scales

and thus improve the ensemble covariance and the

analysis of the hybrid. Also note that the hybrid may

demonstrate its advantage in mesoscales because me-

soscales are relatively poorly observed as compared

with large scales, and they do not exhibit as strongly the

balances assumed by the 3DVAR covariance model.

Therefore, caution needs to be taken to extrapolate the

results of this study to a more realistic context. Param-

eters such as the weighting coefficients and the local-

ization length scale may need to be retuned.

A hybrid formulation using the ETKF has some ap-

pealing characteristics. The hybrid is straightforward to

implement in the framework of operational variational

schemes. It may be more robust than conventional en-

semble filters when the ensemble size is small or when

the model error is large. The computational expense of

the ensemble update step using the ETKF is much

more efficient than the conventional ensemble-based

data assimilation schemes. Conceptually, there is no

reason why a 4DVAR system could not be hybridized

with an ETKF ensemble.

If one needs to run ensemble forecasts anyway, the

only extra cost of the hybrid results from the analysis

procedure. The hybrid formulation proposed here pro-

duced a modest increase in computational expense

from the extension of the control variables in the varia-

tional minimization. In the current experiments, with

this 50-member ensemble hybrid and horizontal covari-

ance localization, the number of control variables was

increased by 46% relative to 3DVAR. The computa-

tional expense of minimization for the hybrid was about

twice that of 3DVAR. Here, to minimize the computa-

tional expense, the extended control variables in the

current system did not apply localization for the vertical

covariance estimated by the ensemble (the effect of the

sampling error of the vertical covariance estimated by

the ensemble was somewhat ameliorated by the static

covariance). It is unclear how much the hybrid filter

accuracy will improve with vertical covariance localiza-

tion through extended control variables. It may be pos-

sible to include the vertical covariance localization at

modest expense through one of several possible tech-

niques. These include modeling the vertical correlation

using truncated EOFs, similar to the vertical transform

in the current WRF 3DVAR (Barker et al. 2004), or to

use the extended control variables on a coarser grid.

Other improvements in the efficiency of the hybrid may

be possible through further optimization.
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