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The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding

a minimum-cost path visiting a set of cities exactly once, where each city must be visited

within a specific time window. We propose a hybrid approach for solving the TSPTW that

merges Constraint Programming propagation algorithms for the feasibility viewpoint (find

a path), and Operations Research techniques for coping with the optimization perspective

(find the best path). We show with extensive computational results that the synergy between

Operations Research optimization techniques embedded in global constraints, and Constraint

Programming constraint solving techniques, makes the resulting framework effective in the

TSPTW context also if these results are compared with state-of-the-art algorithms from the

literature.

(Routing; Scheduling; Relaxations; Cutting Planes; Constraint Programming)

1. Introduction

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding

a minimum-cost path visiting a set of cities exactly once, where each city must be visited

within a specific time window. The TSPTW has important applications in routing and

scheduling, and has been extensively studied (see Desrosiers et al. 1995, for a survey).

In the TSPTW two main components coexist, namely a Traveling Salesman Problem

(TSP), and a scheduling problem.

In TSPs, optimization is usually the most difficult issue: although the feasibility problem

of finding a Hamiltonian tour in a graph is NP-hard (Garey and Johnson 1979), in specific

applications it is usually “easy” to find feasible solutions, while the optimal one is very

“hard” to determine. TSPs have been efficiently solved by using Operations Research (OR)
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methods such as branch-and-cut (Applegate et al. 1998) and local search (Johnson and

McGeoch 1997).

On the other hand, scheduling problems with release dates and due dates usually con-

tain difficult feasibility issues since they may involve disjunctive, precedence, and capacity

constraints at the same time. The solution of scheduling problems is probably one of the

most promising Constraint Programming (CP) area of application to date (see, e.g., Baptiste

et al. 1995, Caseau and Laburthe 1994, 1996). This is due to the exploitation of powerful

propagation techniques, such as edge finding (Carlier and Pinson 1995), in global constraints.

In this paper, we propose a hybrid approach for solving the TSPTW that merges OR

techniques for coping with the optimization perspective, and CP propagation algorithms for

the feasibility viewpoint. The approach embeds a set of constraint-propagation algorithms

that classically derive from feasibility reasoning in scheduling and routing contexts. In

addition, we extensively use propagation algorithms exploiting the calculation of bounds

to remove from variable domains those values that cannot lead to better solutions than the

best one found so far (cost-based propagation). This technique, which is standard in OR (the

so-called reduced-cost fixing), has been introduced by Focacci et al. (1999a) in CP, and has

been shown to be particularly effective in this context. Namely, the use of bound calculation

for filtering allows: (i) substantially reducing the search space, thus leading to performance

improvements with respect to pure CP algorithms; and (ii) better coping with information

deriving from the objective function; these aspects are, in general, not effectively handled

by CP tools.

Even more importantly, reduced-cost fixing in the CP context turns out to be very well

integrated in classical CP methodologies since domain filtering deriving from considerations

on costs may trigger other propagation on shared variables, and vice-versa.

We show with extensive computational results that the synergy between OR optimization

techniques embedded in global constraints, and CP constraint-solving techniques, makes the

resulting framework effective in the TSPTW case. The new algorithm largely outperforms

pure CP approaches, can be compared with state-of-the-art OR approaches, and has the big

advantage of being easily adapted to variants of the problem, e.g., TSPTW with precedence

constraints, with pickup and delivery, with multiple time windows.

The paper is organized as follows. In Section 2 the literature on the TSPTW is briefly

reviewed, while in Section 3 preliminaries on Constraint Programming are provided. In

Section 4 both OR and CP models for the problem are presented, whereas in Section 5 the

2



set of propagation techniques proposed to solve the problem are discussed. In Section 6 the

cost-based propagation is presented, and in Section 7 the use of cutting planes to improve the

effectiveness of the cost-based propagation is discussed. Finally, in Section 8 computational

results on a large set of instances from the literature (both symmetric and asymmetric) are

reported and compared with different approaches.

2. Related Literature

The TSPTW is a time-constrained variant of the TSP. It consists of finding the minimum-cost

path to be traveled by a vehicle, starting and returning at the same depot, which must visit

a set of n cities exactly once. Each pair of cities has an associated travel time. The service

at node i should begin within a time window [ai, bi] associated with the node. Early arrivals

are allowed, in the sense that the vehicle can arrive before the time-window lower bound.

However, in this case the vehicle has to wait until the node is ready for the beginning of

service. The problem is NP-hard, and Savelsberg (1985) showed that even finding a feasible

solution of TSPTW is NP-complete.

This problem can be found in a variety of real-life applications such as routing, scheduling,

manufacturing-and-delivery problems, and, for this reason, has been studied both in the OR

and CP contexts.

Namely, the first approaches are due to Christofides et al. (1981) and Baker (1983)

and consider a variant of the problem where the total schedule time has to be minimized

(MPTW). The first paper presents a branch-and-bound algorithm based on a state-space-

relaxation approach, whereas the second one is again a branch-and-bound algorithm exploit-

ing a time-constrained critical-path formulation. Langevin et al. (1993) addressed both

MPTW and TSPTW by using a two-commodity flow formulation within a branch-and-

bound scheme. Dumas et al. (1995) proposed a dynamic-programming approach for the

TSPTW that extensively exploits elimination tests to reduce the state space. More recently,

a dynamic-programming algorithm has been presented by Mingozzi et al. (1997). The algo-

rithm embeds bounding functions able to reduce the state space (derived by a generalization

of the state-space-relaxation technique) and can also be applied to TSPTW problems with

precedence constraints. The most recent approaches are due to Balas and Simonetti (2001)

and to Ascheuer et al. (2001). Specifically, Balas and Simonetti (2001) proposed a special

dynamic-programming approach: under the assumption that, given an initial ordering of the
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cities, city i precedes city j if j ≥ i + k (k > 0), the authors discuss and experiment an

algorithm that is linear in n and exponential in k. For those problems satisfying these con-

ditions, the dynamic-programming procedure finds an optimal solution, while in the other

cases it can be used as a linear time heuristic to explore an exponential-size neighborhood

exactly.

Ascheuer et al. (2001) considered several formulations for the asymmetric version of

the problem (among which a new one introduced in the companion paper, Ascheuer et al.

2000), and computationally compared them within a branch-and-cut scheme. The framework

incorporates up-to-date techniques tailored for the Asymmetric TSPTW such as data pre-

processing, primal heuristics, local search, and variable fixing (obviously, besides the specific

separation algorithms).

From the Constraint Programming side, Caseau and Koppstein (1992) have faced a large

task-assignment problem where a set of small TSPTW instances are solved as subproblems.

More recently, Pesant et al. (1998) solved the TSPTW by enriching a simple CP model

with redundant constraints. These additional constraints embed arc-elimination and time-

window-reduction algorithms previously proposed in Langevin et al. (1993) and Desrochers

et al. (1992), respectively. A variant of the TSPTW, called TSP with multiple Time Win-

dows, has been solved by the same authors (Pesant et al. 1999): the CP flexibility is pointed

out by showing that this variant can be solved with exactly the same algorithm used for the

original problem and slightly adapting the model.

Finally, Focacci, Lodi and Milano used the TSPTW as a case-study in a series of papers

(Focacci et al. 1999b, 2000, 2002). Specifically, a small set of TSPTW instances has been

solved in Focacci et al. (1999b) so as to show the effectiveness of the cost-based domain

filtering approach, in Focacci et al. (2002) for comparing different relaxations within the

framework, and in Focacci et al. (2000) for testing a number of possible methods for inte-

grating cutting planes in CP (see Section 7). Starting from these promising computational

results (and mainly those in Focacci et al. 1999b) the present paper summarizes the work

above by concentrating on the efficient solution of the TSPTW. To this aim, a new hybrid

algorithm (whose main ingredients are cost-based domain filtering, the addition of cutting

planes, and the extensive use of Lagrangean techniques) is tailored for TSPTW, computa-

tionally evaluated on a large set of both symmetric and asymmetric instances and compared

with state-of-the-art algorithms from both the OR and CP sides.
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3. CP Preliminaries

The class of programming languages called Constraint Programming combines declarative

programming with constraint solving. CP languages make use of domain variables, i.e.,

variables ranging over the domain of possible values that each variable can assume. Variable

domains are restricted during the computation according to the constraints, thus achieving

the a priori pruning of the search space. Variables are linked by constraints that can be

either mathematical constraints (e.g., X > Y , X 6= Y ) or symbolic constraints. Symbolic

constraints involve a set of variables and enable a concise modeling of the problem while

embedding complex propagation algorithms. For example, a widely used symbolic constraint

is alldifferent. The application of the constraint alldifferent to an array of domain variables

V ars, ensures that all variables in V ars have a different value. From an operational point

of view, such a constraint can be enforced by eliminating value k from the domain of each

variable Xi ∈ V ars, as soon as the value k is assigned to Xj, i 6= j. In addition, more

sophisticated propagation can be performed as described in Régin (1994).

The aim of using symbolic constraints is to “isolate” parts that often appear as substruc-

tures in applications. This has an obvious interest from a modeling point of view, and, since

these parts often have a “clean” structure, such a structure can be exploited for developing

specific and effective propagation algorithms.

The propagation algorithm is part of the constraint itself, and is triggered when an

event is raised due to a domain modification of one variable involved in the constraint. The

event is in general one of the following: removal of a value, reduction of a domain bound,

or instantiation of a variable (the domain is reduced to a single value). Thus, as soon as

one constraint produces a modification on the domain of one variable, say X, all other

constraints involving X are awakened, perform propagation on the basis of the current state

of the variables’ domains, and at the end are suspended to wait for another event.

The constraint-propagation process ends when no more values can be deleted from vari-

able domains. The convergence is guaranteed since domains can only be shrunk and never

be enlarged by constraint propagation. Thus, constraint propagation always reaches a fixed

point, i.e., a quiescent state of the constraint network. At the end of the constraint propa-

gation process, we have three possible scenarios: (i) a domain becomes empty and a failure

occurs; (ii) a solution is found, i.e., all variables are assigned to one value; or (iii) some

domains contain more than one value. In this third case, since constraint propagation is not
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complete, we need a search strategy in order to explore the remaining search tree.

Basically, this step is quite similar to the branching strategies used in OR branch-and-

bound algorithms, i.e., the problem is partitioned in subproblems. In the OR context, each

of these subproblems is relaxed, the optimal solution of the relaxation is computed (bound),

and the bound is exploited to prune suboptimal solutions from the solution space. In the

CP context, instead, propagation algorithms are applied to each subproblem until the fixed

point is reached. Thus, an implicit relaxation is considered but not solved to optimality

unless the subproblem itself is solved by either finding a feasible solution or proving that none

exists. More formally, by restricting consideration, with no loss of generality, to minimization

problems, CP systems usually implement a sort of branch-and-bound algorithm in which the

main idea is to solve a set of decision (feasibility) problems (i.e., a feasible solution is found if

it exists), leading to successively better solutions. In particular, each time a feasible solution

z∗ is found (whose associated cost is f(z∗)), a constraint f(x) < f(z∗), where x is any

feasible solution, is added to each subproblem in the remaining search tree. The purpose of

the added constraint, called an upper-bounding constraint, is to remove portions of the search

space that cannot lead to better solutions than the best one found so far. The problem with

this approach is twofold: (i) CP does not rely on sophisticated algorithms for computing

lower and upper bounds for the objective function, but derives their values starting from the

variable domains; (ii) in general, the link between the objective function and the problem

decision variables is quite poor and does not produce effective domain filtering.

In this paper we show how to use CP for solving TSPTW instances. CP here is prop-

erly extended to maintain its advantages (pruning capabilities, flexibility, and declarative

modeling), and overcome its limitations in dealing with optimality reasoning.

4. TSPTW Models

In this section we present both OR and CP models for the TSPTW, and in particular,

we consider models that refer to the asymmetric version of the problem. Note that the

time-window constraints typically lead symmetric (travel) cost matrices to become somehow

asymmetric by inducing travel directions.

Recently, Ascheuer et al. (2000) proposed an Integer Linear Programming (ILP) model

for the TSPTW based on a graph-theory representation through a directed graph G =

(W, A), where the set W contains a node for each city (n) plus a node (conventionally, node
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0) for the depot. To each node i ∈ W \{0} is associated the time window [ai, bi] in which the

visit has to be performed. The model involves a binary variable xij and a cost tij associated

with each arc (i, j) ∈ A, and is as follows:

Z(TSPTW ) = min
∑

(i,j)∈A

tijxij (1)

subject to: x(δ+(i)) = 1 ∀ i ∈ W (2)

x(δ−(i)) = 1 ∀ i ∈ W (3)

x(A(S)) ≤ |S| − 1 ∀ S ⊂ W, 2 ≤ |S| ≤ n (4)

x(P ) ≤ |P | − 1 = k − 2 ∀ inf. path P = (v1, . . . , vk) (5)

xij ∈ {0, 1} ∀ (i, j) ∈ A (6)

where for each subset S ⊂ W , A(S) represents the set of arcs connecting nodes in S, while

δ+(i) (resp. δ−(i)) represents the set of arcs whose starting (resp. ending) node is i. Let

B ⊆ A be any set of arcs. Then, x(B) denotes the sum of all xij such that (i, j) ∈ B. Finally,

x(P ) denotes the sum of the variables corresponding to a path P , i.e., x(P ) =
∑k−1

i=1 xvi,vi+1
,

where vi ∈ {0, 1, . . . , n}.
Constraints (2)-(3) are degree constraints assuring that each node (city) be visited ex-

actly once, whereas constraints (4) are the so-called subtour elimination constraints (SECs),

and guarantee connectivity. Finally, constraints (5) are called infeasible-path-elimination

constraints, and forbid paths in which the visit in a given node i violates the time window

[ai, bi].

A CP model of the TSPTW has been previously proposed in Pesant et al. (1998);

in this section, we recall it, and the set of constraints used to enforce feasibility. Let V =

{0, 1, 2, . . . , n, n+1} be a set of nodes, where nodes 1, . . . , n represent the cities to be visited,

and nodes 0 and n+1 represent the origin and destination depots. Each node i ∈ V \{0, n+1}
has an associated time window [ai, bi] representing the time frame during which the service at

city i must be executed. Moreover, each node has an associated duration duri representing

the duration of the service at city i. For each pair of cities (i, j), ti,j indicates the travel cost

from i to j.

We define four domain variables per node. Domain variables Nexti and Previ identify

cities visited after and before node i, respectively. The domain of variables Nexti contains

values [1..n + 1], except for variable Nextn+1 which is set to 0, while the domain of each

Previ contains values [0..n], except for variable Prev0, which is set to n+1. Domain variable
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Costi identifies the cost to be paid to go from node i to node Nexti, i.e., ti,Nexti . Finally,

domain variable Starti identifies the time at which the service begins at node i. With no

loss of generality, we can impose Start0 = 0, and Costn+1 = 0.

A feasible solution of the TSPTW is an assignment of a different value to each variable

that avoids tours and respects time-window constraints. An optimal solution of the problem

is the one minimizing the sum of the travel costs ti,Nexti .

Using the introduced variables, a CP model for TSPTW is the following:

Z(TSPTW ) = min
∑
i∈V

Costi (7)

subject to: alldifferent([Next0, ..., Nextn+1]) (8)

nocycle([Next0, ..., Nextn]) (9)

Nexti = j ⇔ Prevj = i ∀i, j ∈ V (10)

Nexti = j ⇒ Costi = ti,j ∀i, j ∈ V (11)

Nexti = j ⇒ Starti + duri + Costi ≤ Startj ∀i, j ∈ V (12)

ai ≤ Starti ≤ bi ∀i ∈ V \ {0, n + 1} (13)

The alldifferent constraint (8) imposes that each node has exactly one outgoing and exactly

one incoming arc, i.e., each city is visited exactly once. The constraint nocycle (9) forbids

tours. (Specifically, since constraint (9) does not involve node n + 1, all cycles, and not

only subcycles, are excluded, and it does not subsume constraint (8).) Constraints (10)

create the link between the Next and Prev variables; constraints (11) create a link between

the travel costs and the Cost variables. More interesting are constraints (12) that define a

connection between the TSP model (Next and Prev variables) and the scheduling model

(Start variables) with sequence dependent set-up times (ti,j). Finally, constraints (13) simply

define the bounds on the Start variables by imposing that the service in a node must start

within the node time window.

Note that the model (7)-(13) involves redundant constraints, i.e., constraints that are

not necessary to guarantee feasibility. The use of redundant constraints is very effective in

the solution phase, since they interact through shared variables, and, by capturing different

aspects of the overall problem, produce a coordinated propagation.

CP Model Implementation. The above model has been implemented by creating a

mapping between the TSPTW and a scheduling problem with a single unary resource and
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sequence-dependent set-up times. In the mapping, each visit (city) corresponds to an activity.

The start-time variable of activity i corresponds to Starti in the TSPTW, and its duration

is equal to duri. A transition-time matrix is defined based on matrix ti,j, which enforces

that the beginning of activity j is after the end of activity i plus ti,j if activity j is scheduled

immediately after activity i.

The flexibility of Constraint Programming allows a profitable interaction between the

routing and scheduling propagation techniques (see Section 5).

5. Propagation Techniques

In this section we define the propagation scheme used for solving the TSPTW. We have

exploited both well-known CP filtering algorithms and problem-oriented propagation tech-

niques.

Concerning the alldifferent constraint, we used the well-known filtering algorithm pro-

posed by Régin (1994), and based on cardinality reasoning over subsets.

For the nocycle constraint, we have implemented the simple, but effective, propagation

described in Caseau and Laburthe (1997) and Pesant et al. (1998). Specifically, as soon as a

variable Nexti (resp. Prevj) is instantiated to value j (resp. i), we remove from the variable

representing the end of the partial path starting in j the value representing the start of the

partial path ending in i.

The set of equations (10) are propagated by considering the counterpart of the constraint:

whenever a value j is removed from the domain of variable Nexti, the value i is removed

from the domain of variable Prevj, and vice-versa.

The set of constraints (11) is maintained by forcing

min
k∈Dom(Nexti)

ti,k ≤ Costi ≤ max
k∈Dom(Nexti)

ti,k ∀ i ∈ V

where Dom(V ) identifies the domain of variable V .

Analogous propagation is performed for constraints (12):

min
k∈Dom(Previ)

{StartMink
+ durk + tk,i} ≤ Starti and

Starti ≤ max
k∈Dom(Nexti)

{StartMaxk
− ti,k − duri} ∀ i ∈ V

where StartMink
and StartMaxk

identify the lower and upper bounds of variable Startk,

respectively.
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Additional propagation on the Next variables is performed by testing if

StartMini
+ duri + ti,j > StartMaxj

∀i, j ∈ V

Whenever this test is successful for some pair (i, j), the value j can be removed from the

domain of variable Nexti.

A more powerful propagation can be performed by maintaining the set of all nodes Bi

(resp. Ai), which must precede (resp. follow) node i (see Langevin et al. 1993 for details).

If, for a given pair of nodes (i, j), the set of successors of i and the set of predecessors of

j have non-empty intersection (Ai ∩ Bj 6= ∅) this implies that at least a third node k must

be inserted between nodes i and j, and therefore we can remove value j from the domain of

variable Nexti, and value j from the one of variable Prevj.

The sets Bi and Ai can be calculated as:

Bi = {k ∈ V |StartMini
+ spi,k > StartMaxk

}

Ai = {k ∈ V |StartMink
+ spk,i > StartMaxi

}

where spi,j is the shortest path in terms of travel cost from i to j. The computation of the

shortest path from any node to any other has a complexity of O(n3). We have experimentally

tested this propagation algorithm by efficiently re-computing, at each node of the search tree,

the shortest paths. Since the trade-off between the propagation obtained and the increasing

of computing times was not satisfactory, we decided to avoid this calculation. However, since

our overall approach is implemented using ILOG Solver and Scheduler (ILOG 2000a, 2000b)

(see Section 8), we used for the sets Bi and Ai the ones defined by the Precedence Graph

Constraint of ILOG Scheduler which maintains, for each activity, its relative position with

respect to the other activities on a given resource. For example, for an activity i we can ask

for the set of activities that surely precede (resp. follow) i in the resource, or activities that

are still unranked with respect to i (i.e., may precede or follow). These sets are gathered

by joining the information associated with time bounds, temporal constraints, disjunctive

constraints, and temporal closure, and are used to build the sets A and B.

Additional propagation on variables based on sets Bi and Ai and shortest paths is pro-

posed in Desrochers et al. (1992), but, after preliminary computational tests and due to its

limited effectiveness, we decided to not use it.

10



6. Cost-Based Domain Filtering

In this section, we describe the cost-based domain-filtering technique introduced in Focacci

et al. (1999a), where it is computationally tested on small TSPs, matching and scheduling

problems with set-up times.

The idea is to create a global constraint embedding a propagation algorithm aimed at

removing from variable domains those assignments that do not improve the best solution

found so far. Domain filtering is achieved by optimally solving a problem that is a relaxation

of the original problem. In this paper, we consider the Assignment Problem (AP) (see

Dell’Amico and Martello (1997) for a recent annotated bibliography) as a relaxation of the

TSP (and, consequently, of the TSPTW) since AP has been shown to be particularly effective

in this context. (In Focacci et al. (2002) we have tested the cost-based domain filtering idea

by using also other relaxations, e.g., the Minimum Spanning Arborescence.)

The AP is the graph-theory problem of finding a set of disjoint subtours in a directed

graph such that all the nodes are visited exactly once, and the overall cost is at a minimum.

An ILP model for AP is the one defined by constraints (1)-(3) and (6), and an optimal

integer solution of AP can be computed in O(n3) time by using the primal-dual Hungarian

algorithm (see Carpaneto et al. 1988 for details). It is easy to see that if this integer solution

is composed by exactly one tour, then it is optimal for the TSP.

The AP relaxation provides: (i) the optimal AP solution, i.e., a variable assignment;

(ii) the value of this solution which is a lower bound LB on the original problem; and

(iii) a reduced-cost matrix t̄. Each t̄ij estimates the additional cost to be added to LB if

variable Nexti is assigned to j. The lower bound value LB is trivially linked to the variable

representing the objective function Z through the constraint LB ≤ Z. More interesting is

the propagation based on reduced costs. Given the reduced-cost matrix t̄ of element t̄ij, it is

known that LBij = LB + t̄ij is a valid lower bound for the problem in which variable Nexti

is forced to the value j. Therefore, the following propagation holds

LBij > Zmax ⇒ Nexti 6= j ∀ i, j ∈ V

where Zmax is the current upper bound on the solution value.

The events triggering this propagation are changes in the upper bound of the objective

function variable Z, and any change in the problem variable domains that involves an assign-

ment belonging to the solution of the current relaxation. As mentioned, the solution of the
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first AP relaxation has a complexity of O(n3), whereas each following AP re-computation due

to a domain reduction can be efficiently computed in O(n2) time through a single augment-

ing path step (see Carpaneto et al. 1988 for details). The reduced-cost matrix is obtained

without extra computational effort during the AP solution, thus the time complexity of the

filtering algorithm is O(n2).

Since LBij is just a lower bound on the new AP solution corresponding to forcing the

assignment Nexti = j, it is easy to see that improving it could trigger additional propagation.

In particular, some bounds on the cost of the augmenting path connecting the previous

nodes Nexti and Prevj have been proposed by Focacci et al. (2002), and are used here to

propagate further. Since these bounds, based on storing row and column minima, can again

be computed in O(n2) time, they do not increase the time complexity of the overall filtering

algorithm.

Reduced-cost fixing is a classical component of OR methods, but it seems to assume

a different flavor in CP, appearing to be particularly suited to this context. Sophisticated

OR exact methods are based on the solution of relaxations of the original problem. In this

context reduced-cost fixing is a by-product of the solution technique. In a sense, reduced-cost

fixing is subsumed by the optimal solution of the relaxation. On the contrary, reduced costs

in CP represent additional information that is not derived by traditional CP problem solving

activity. In addition, in CP reduced-cost fixing triggers other constraint propagation, thus

further reducing the search space.

7. Improving Cost-Based Propagation Through Cut-

ting Planes

It is easy to see that the cost-based technique could benefit from an improvement of the

quality of the used bound. Tighter bounds obviously produce a more powerful reduction of

the solution space, but the overall effects are smaller computing times only if the computation

of these bounds can be efficiently performed.

A classical OR method for obtaining good bounds is to use the LP relaxation in con-

junction with cutting planes (or simply “cuts”) so as to tighten the formulation. Focacci et

al. (2000) experimented with several ways of using cutting planes within a CP framework,

namely the addition of cutting planes either just at the root node of the decision tree, or

at each node, and a hybrid approach in which the cuts are added at the root node and
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relaxed in Lagrangean fashion during the search. The idea of the third strategy, which is

discussed in detail in the following sections, is quite simple: we want to obtain an improved

bound through the addition of cutting planes, but we want to solve, during the search, an

AP relaxation since it can be “fast” and incrementally computed.

In the next two sections we describe how the AP relaxation can be tightened by the

addition of cuts, and the method based on the Lagrangean relaxation of these cuts.

7.1 Improving the AP Relaxation

As pointed out in Section 6, the AP relaxation is obtained from model (1)-(6) by relaxing

(removing) SECs and infeasible path constraints. In this way we obtain an integer linear

program with some structure (the AP), which can be solved to optimality through either a

special purpose algorithm (e.g., the Hungarian algorithm) or a general LP solver since the

integrality requirements are, in this case, unessential. Since, in general, the optimal solution

of the AP is not feasible for the TSPTW, in order to improve this bound we need to solve the

so-called separation problem iteratively. More formally, given the optimal solution of a linear

relaxation of TSPTW, say x∗, we call separation the problem of finding a linear inequality

αT x ≤ α0 valid for each feasible solution of TSPTW, and such that αT x∗ > α0, or saying

that none exists. Since the TSPTW is NP-hard, the separation problem as defined above

is also NP-hard (see, Grötschel et al. 1988). However, the separation can be polynomially

solvable for some special class of inequalities (a family of valid constraints sharing a special

structure), and in the other cases some heuristics can be used.

In this paper, the AP bound is improved by the addition of: (i) SECs and (ii) Sequential

Ordering Problem inequalities (SOPs).

SEC Inequalities. The separation problem for SECs can be solved in polynomial time by

computing the minimum capacity cut in the graph induced by x∗ and the same holds for

each following LP obtained by the iterative addition of cuts. For the separation problem

we use an implementation (Jünger et al. 2000) of the mincut algorithm by Padberg and

Rinaldi (1990) to compute a set of subtour-elimination cuts. Note that, although the Pad-

berg and Rinaldi procedure is specific for undirected graphs, i.e., symmetric TSPs, it can

also be used for asymmetric TSPs via a simple transformation (see Fischetti and Toth 1997).
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SOP Inequalities. The precedence-constrained TSP, also known as the Sequential Ordering

Problem, is a relaxation of the TSPTW, so each valid inequality for it can be used for the

solution of the TSPTW. In particular, we consider the following valid inequalities studied

by Balas et al. (1995) in the SOP context. With the notation x(H, K) (H, K ⊂ W \ {0}),
we indicate the sum of the x variables of all arcs in A with starting node in H and ending

node in K.

(i) Predecessor inequalities (14) (π inequalities). Let S ⊆ W \ {0}, S̄ := W \ {0} \ S, then

x((S \ π(S)), (S̄ \ π(S))) ≥ 1 (14)

where π(S) indicates the set of nodes which must precede the nodes in S.

(ii) Successor inequalities (15) (σ inequalities). Let S ⊆ W \ {0}, S̄ := V \ {0} \ S, then

x((S̄ \ σ(S)), (S \ σ(S))) ≥ 1 (15)

where σ(S) indicates the set of nodes which must follow the nodes in S.

For the separation of both π and σ inequalities, we use the heuristic procedure proposed

in Balas et al. (1995) and the corresponding computer code by Ascheuer et al. (2001).

7.2 Lagrangean Relaxation of Cuts

As mentioned at the beginning of Section 7, there are several ways of exploiting the cuts

described in the previous section (and, possibly, some additional classes). However, the

explicit use of cuts during the extensive enumeration performed by a CP framework could be

less effective than in the OR context. Focacci et al. (1999a) have shown that the cost-based

domain-filtering approach is suited to CP when used in conjunction with a special-purpose

algorithm able to solve the corresponding relaxation fast and incrementally. In the TSPTW

case, as soon as a cut is added to the AP relaxation in order to improve it, the drawback

is that the obtained linear program is no longer an AP, thus from that point the relaxation

has to be solved through a general-purpose LP solver.

An alternative way of exploiting cuts is to add them just at the root node of the branch

decision tree, and then relaxing them in Lagrangean fashion in order to obtain again an

AP as a relaxation. (See, e.g., Sellmann and Fahle 2001 and Benoist et al. 2001 for other

references of Lagrangean techniques in CP.) Let LR denote the final linear problem obtained

by adding to the AP model (1)-(3) (plus variable bounds) the set of separated constraints,

and let LBR be the final lower bound value obtained by solving LR to optimality. If LR has
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been solved through the simplex method, the optimal value of the dual variables associated

with every constraint is returned by the LP solver. Moreover, for the LP duality theory,

the vector of dual values returned by the LP solver coincides with the optimal vector of

Lagrangean multipliers, i.e., with the vector of Lagrangean multipliers producing the best

(highest) lower bound.

Formally, the framework is as follows. Let C denote the set of constraints in the form

αT x ≤ α0 added to the AP to obtain LR. If for each constraint αT
i x ≤ αi0 (∀i ∈ C), we

relax it in Lagrangean fashion:

(i) by multiplying it by the Lagrangean multiplier λi (≥ 0), and

(ii) by summing the result to the objective function,

we obtain a new AP (denoted with APR) having objective function

min
∑

(i,j)∈A

tijxij +
∑
i∈C

λi(α
T
i x− αi0) = −

∑
i∈C

λiαi0 + min
∑

(i,j)∈A

t̃ijxij

i.e., an AP with modified cost matrix t̃. Finally, if the value of each λi (∀i ∈ C) is set equal

to the value of the dual variable associated with the constraint i (i.e., we use the optimal

Lagrangean multipliers), the solution value obtained by solving APR through the Hungarian

algorithm coincides with LBR, and the x∗ vector is integer. (Since the cuts are in ≤ form,

the corresponding dual variables are non-positive, thus they must be inverted to be used as

Lagrangean multipliers.)

The integer solution of APR computed through the Hungarian algorithm can be seen as

an advanced (more accurate) starting point for the cost-based domain-filtering algorithm:

at each node of the search tree the relaxation provided by APR is considered and modified

according to branch decisions and variable fixing, but no more cuts nor Lagrangean multi-

pliers are re-computed. The intuition for adding the cuts just at the root node and relaxing

them in Lagrangean fashion is the following. We are confident, within a CP framework, to

be able to explore efficiently even a huge number of branching nodes, thus we exploit cost-

based propagation through a special-purpose, fast and incremental algorithm (the Hungarian

method for AP). However, we want to reduce preliminarily as much as possible the search

tree by using cut generation at the root node. The relaxation in Lagrangean fashion of the

cuts can have, however, some drawbacks during the search. The Lagrangean multipliers as-

sociated to the cuts are fixed to values that are optimal at the root node, but could be “far”

from the optimal ones during the search, and no re-optimization (subgradient optimization)

is performed. In particular, if during the search, a cut αT x ≤ α0, which was tight at the
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root node (i.e., αT x = α0), become trivially satisfied by the current partial instantiation,

i.e., αT x < α0, its contribution to the objective function is a positive value, hence a penalty

with respect to the same solution where the cut is removed. Thus, while at the root node,

the bound produced by the Lagrangean relaxation is in general much better (higher) than

the bound obtained by solving the AP relaxation (without cuts), during the search if cuts

become no longer tight, the bound decreases and, at some point, it may becomes worse than

the pure AP bound.

In any case, the bound obtained by solving APR is always a valid lower bound for the

problem, and the above drawback can be reduced by performing some kind of purging in

order to disable during the search those cuts that are no longer necessary, i.e., both not tight

and trivially satisfied.

Suppose, for example, that the following SEC has been added at the root node to the

problem formulation:

x12 + x21 + x13 + x31 + x23 + x32 ≤ 2 (16)

so as to avoid the subtour involving nodes 1, 2 and 3. The following two examples show

cases in which we are allowed to remove the Lagrangean relaxation of (16) from APR:

(i) during the search the CP variable Next1 is instantiated to value 2 (thus, x12 = 1 and

x13 = 0), values 1 and 3 are removed from the domain of variable Next2 (thus, x21 = 0

and x23 = 0), and values 1 and 2 are removed from the domain of variable Next3

(thus, x31 = 0 and x32 = 0). Then, in the remaining subtree constraint (16) is trivially

satisfied, and no interesting information is associated to it;

(ii) during the search variable Next1 is instantiated to value 5. Since constraint (16) is a

SEC, we know that no subtour in a subset of nodes S ⊂ W can exist if there is an arc

crossing the subset.

In the first example, the cut purging is based on a pure algebraic reasoning, while in the

second example the knowledge of the structure of the cut (and of the problem) is exploited.

(Note that the concept of purging is standard for OR branch-and-cut, cuts that are no longer

“effective” are removed and included in the cutpool so as to keep the LP small, but in case

of Lagrangean relaxation of cuts this operation is even more important since it affects the

value of the bound.)
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Our cost-based algorithm adopts both strategies to purge cuts that are no longer nec-

essary, and in principle a purging operation should be performed each time a variable xij

is instantiated. However, the purging operation can lead to a relevant update of the cost

matrix, thus requiring the computation from scratch of the AP solution (O(n3) time instead

of the simple O(n2)). We adopted specific policies to drive the frequency of the purging, so

as to obtain a good computational performance.

8. Computational Results

We have implemented and tested the overall approach by using ILOG Solver and Scheduler

(ILOG 2000a, 2000b). The algorithm runs on a PC Pentium III 700 MHz (128 MByte of

RAM) using ILOG Cplex 6.5 as LP solver, and has been experimented on two different sets

of instances from the literature.

Branching Strategies. We implemented simple branching strategies that are typical of

the scheduling context. In this field, very often a solution is built in chronological order: at

each node of the search tree the activity with the minimum earliest start time is chosen and

scheduled. Hence, all nodes are sequenced by starting with the assignment of a node to the

initial depot, until the last node is assigned to the final depot. This strategy (forward fash-

ion) has an obvious counterpart: the activity with the minimum latest end time is initially

assigned to the final depot, and the sequence is built in backward fashion. We heuristically

choose, by a simple preprocessing, which scheduling strategy to adopt. In both cases, we

choose the following (resp. previous) node by exploiting the information provided by the

reduced costs: among all values having zero reduced cost (there always exists at least one),

we select the one corresponding to the node with the minimum latest start (resp. earliest

end) time.

Asymmetric Instances. The asymmetric TSPTW instances considered are the rbg real-

world instances introduced by Ascheuer (1995), and deriving “from an industry project with

the aim to minimize the unloaded travel time of a stacker crane within an automated storage

system”. We consider a set of 40 instances with up to 125 nodes, and the results are reported

in Table 1.

For each instance, Table 1 reports its name (name), and the number of nodes (n). For
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Table 1: TSPTW Asymmetric Instances (Computing Times in Seconds).

Ascheuer et al. 2001 AP-bound Lagrangean-bound
name n rLB Val Time rLB UB Time Fails rLB UB Time Fails
rbg010a 12 148 149 0.1 148 149 ∗ 0.0 6 148 149 ∗ 0.1 11
rbg016a 18 177 179 0.2 167 179 ∗ 0.1 21 167 179 ∗ 0.1 21
rbg016b 18 133 142 8.8 126 142 ∗ 0.1 27 129 142 ∗ 0.2 106
rbg017.2 17 107 107 0.0 100 107 ∗ 0.0 17 107 107 ∗ 0.1 28
rbg017 17 148 148 0.8 124 148 ∗ 0.1 30 138 148 ∗ 0.1 27
rbg017a 19 146 146 0.1 143 146 ∗ 0.1 22 146 146 ∗ 0.1 25
rbg019a 21 217 217 0.0 217 217 ∗ 0.0 14 217 217 ∗ 0.1 14
rbg019b 21 180 182 54.6 175 182 ∗ 0.2 80 175 182 ∗ 0.2 184
rbg019c 21 182 190 8.7 179 190 ∗ 0.3 81 180 190 ∗ 0.7 189
rbg019d 21 343 344 0.7 338 344 ∗ 0.0 32 338 344 ∗ 0.1 538
rbg020a 22 210 210 0.2 207 210 ∗ 0.0 9 209 210 ∗ 0.1 10
rbg021.2 21 182 182 0.2 179 182 ∗ 0.2 44 180 182 ∗ 0.3 52
rbg021.3 21 178 182 27.1 166 182 ∗ 0.4 107 168 182 ∗ 0.5 198
rbg021.4 21 177 179 5.8 166 179 ∗ 0.3 124 167 179 ∗ 0.4 121
rbg021.5 21 167 169 6.6 160 169 ∗ 0.2 55 161 169 ∗ 0.3 65
rbg021.6 21 133 134 1.3 126 134 ∗ 0.9 318 128 134 ∗ 0.7 2k
rbg021.7 21 128 133 4.3 125 133 ∗ 0.6 237 128 133 ∗ 1.0 2k
rbg021.8 21 129 132 17.4 125 132 ∗ 0.8 222 128 132 ∗ 0.6 297
rbg021.9 21 128 132 26.1 125 132 ∗ 0.8 310 128 132 ∗ 0.9 536
rbg021 21 182 190 8.5 179 190 ∗ 0.3 81 180 190 ∗ 0.7 189
rbg027a 29 266 268 2.2 260 268 ∗ 0.2 53 264 268 ∗ 0.3 50
rbg031a 33 328 328 1.7 275 328 ∗ 12.9 4k 319 328 ∗ 2.7 841
rbg033a 35 433 433 1.8 402 433 ∗ 1.0 480 418 433 – –
rbg034a 36 401 403 1.0 391 403 ∗ 55.2 13k 399 403 ∗ 777.1 776k
rbg035a.2 37 158 166 1.8 155 166 ∗ 36.8 5k 155 166 ∗ 38.4 5k
rbg035a 37 254 254 64.8 221 254 ∗ 3.5 841 248 254 ∗ 11.9 3k
rbg038a 40 466 466 4232.2 466 466 ∗ 0.2 49 466 466 ∗ 0.6 998
rbg040a 42 355 386 751.8 282 386 ∗ 738.1 136k 316 386 – –
rbg041a 43 361 [382,417] – 316 403 – – 352 404 – –
rbg042a 44 394 [409,435] – 370 411 ∗ 149.8 19k 382 411 ∗ 1036.4 177k
rbg048a 50 454 [455,527] – 442 492 – – 444 500 – –
rbg049a 51 408 [418,501] – 403 488 – – 403 492 – –
rbg050a 52 414 414 18.6 405 414 ∗ 180.4 19k 409 414 ∗ 95.6 38k
rbg050b 52 447 [453,542] – 435 551 – – 446 527 – –
rbg050c 52 507 [509,536] – 494 543 – – 504 544 – –
rbg055a 57 813 814 6.4 799 814 ∗ 2.5 384 809 814 – –
rbg067a 69 1047 1048 5.9 1033 1048 ∗ 4.0 493 1043 1051 – –
rbg086a 88 1042 [1049,1052] – 994 1094 – – 1023 1086 – –
rbg092a 94 1084 [1102,1111] – 1061 1150 – – 1080 1109 – –
rbg125a 127 1402 1410 229.8 1335 1453 – – 1383 1446 – –
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the branch-and-cut algorithm of Ascheuer et al. (2001) we report the lower bound value

at the root node (rLB), the optimal solution value (or the best final [lower,upper] bounds)

(Val) and a column (Time) indicating either the computing time on a Sun Sparc Station

10 if optimality is reached or a “–” otherwise. Moreover, the results of our algorithm are

reported for the case in which the simple AP bound is used in the cost-based algorithm, and

for the one in which the Lagrangean bound is used. In both cases, Table 1 reports the root

lower bound value (rLB), the value of the best solution found (with a “∗” if this solution is

proven to be optimal) (UB), a column (Time) indicating either the computing time on a PC

Pentium III 700 MHz if optimality is reached or a “–” otherwise, and the number of fails

(Fails). A time limit of 1,800 CPU seconds has been given to both versions of our algorithm,

and when this limit is reached the corresponding solution value is possibly not optimal (and

the number of fails is not reported).

The behavior of our algorithms is quite satisfactory. From one side, all the instances

that were solved to optimality by the branch-and-cut, but rbg125a, can also be solved by

the AP-bound version of our code. Instead, this version our algorithm optimally solves

instance rbg042a and improves the best known solution for instances rbg041a, rbg048a

and rbg049a. From the other side, the Lagrangean-bound version fails to solve optimally

within the time limit instances rbg033a, rbg055a and rbg067a, solves instance rbg042a,

and improves the best solution found by the branch-and-cut for instances rbg041a, rbg048a,

rbg049a, rbg50b and rbg92a. Since the branch-and-cut algorithm runs on a Sun Sparc

Station 10, a fair comparison of the computing times is not easy. However, the time limit

given for the computation in Ascheuer et al. (2001) was 5 hours, so we feel that 1,800 seconds

is a reasonable computing time.

Table 1 shows that, for this set of instances, the Lagrangean-bound version is slightly

less effective than the AP-bound one. Although the improvement of the initial lower bound

is relevant (the root lower bound is not “far” from the one of the branch-and-cut algorithm),

the algorithm does not seem to benefit from this advanced starting point while it suffers from

the increase of the computational complexity. Indeed, the AP bound is already reasonably

good and, used within the cost-based filtering framework, it turns out to be enough on

the medium-size problems for which our current implementation is tailored. (Ten large-size

instances with up to 233 nodes are also described in Ascheuer (1995).)

Finally, the improvements obtained for some of the unsolved instances are significant

mainly because our current implementation does not use a primal heuristic (while an ef-
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fective one is used in Ascheuer et al. 2001). This suggests that our framework, possibly

enhanced by the addition of a primal heuristic, could be used for finding good approximate

solutions.

Symmetric Instances. The symmetric TSPTW instances considered are the rc instances

proposed by Solomon (1987) in the Vehicle Routing Problem with Time Windows (VRPTW)

context. In particular, the TSPTW instances are obtained by considering the single-vehicle

decomposition deriving from VRPTW solutions in the literature (i.e., Rochat and Taillard

1995 and Taillard et al. 1995). This decomposition generates instances with up to 44 cities

that have been recently considered by Pesant et al. (1998). Since for these instances the travel

times among the cities are computed as Euclidean distances, a relevant point concerns the

precision. Pesant et al. (1998) have shown that an optimal solution computed with distances

truncated to two decimal places may even become infeasible by allowing a precision of four

decimal places. (In the same paper, it is also pointed out that CP-based algorithms do not

suffer from an increase of precision, while dynamic programming approaches obviously do.)

For this reason, and to allow a fair comparison, we also considered four decimal places in

the data.

The overall set is composed of 27 instances, and the results are reported in Table 2.

For each instance, Table 2 contains the same information of Table 1, but, obviously, the

comparison is given with the CP algorithm by Pesant et al. (1998). For this algorithm, Table

2 reports the best solution found (UB), a column (Time) indicating either the computing

time on a Sun SS1000 8xSuprSP if optimality is reached or a “–” otherwise, and the number

of fails (Fails). Since the algorithm in Pesant et al. (1998) starts by “knowing” the best

upper bound in the literature, we indicate with “◦” those solutions for which this upper

bound has not been improved by the algorithm within the time limit of 1 day (neither an

initial bound nor a primal heuristic is used by our algorithm). Again, the values indicated

in the columns “UB” are proved to be optimal only if the time limit (1,800 CPU seconds for

both version of our algorithm) has not been reached.

The behavior of our algorithm is, for these instances, very satisfactory. The AP-bound

version is able to solve to optimality eight instances more than the CP approach in Pesant

et al. (1998), and the Lagrangean-bound one is even better solving to optimality two more

instances, namely, rc207.1 and rc206.0. A fair comparison of the computing times is again

difficult, however, if an instance is optimally solved by all the algorithms, the number of fails
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gives a very good indication of the performance of the algorithms. Specifically, the number

of fails of our algorithms is almost always much smaller than the one of the CP approach in

Pesant et al. (1998), and in general the Lagrangean-bound version performs better than the

AP-bound one. The only instance for which our algorithms are not able to find a feasible

solution within the time limit is instance rc208.0. The fact that the Lagrangean-bound

version performs clearly better than the AP-bound one is possibly motivated by the big

improvement of the bound at the root node, which is often close to the optimal solution

value.

In Pesant et al. (1998) the results for seven instances over the 27 in the benchmark are

improved with respect to the state-of-the-art result obtained by effective heuristic approaches

(Rochat and Taillard 1995 and Taillard et al. 1995). Besides these seven instances, our

algorithms improve the results for four more instances, namely rc203.2, rc205.2, rc206.0

and rc208.2.

9. Conclusions

We have presented a new algorithm for solving the Traveling Salesman Problem with Time

Windows. The algorithm is based on a CP framework, and extensively uses problem-oriented

propagation algorithms, and, in particular, a filtering algorithm based on the calculation of

bounds on the optimal solution value. This filtering algorithm, which has been presented as

a general framework (Focacci et al. 1999a), turns out to be affective for the TSPTW, and

the overall approach is effective also if compared with the state-of-the-art methods in the

literature.

A final remark concerns the use of the same algorithm without the cost-based filtering

approach, i.e., a pure CP implementation. We have already shown in Focacci et al. (1999b)

that the cost-based filtering algorithm is crucial for TSPTW: the number of instances of the

previous sets solved to optimality are less than one third of those solved with the cost-based

algorithm, and the computing times are at least ten times larger.
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