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ABSTRACT This paper proposes a novel fault detection and diagnosis (FDD) technique for grid-tied

PV systems. The proposed approach deals with system uncertainties (current/voltage variability, noise,

measurement errors,. . . ) by using an interval-valued data representation, and with large-scale systems by

using a dataset size-reduction framework. The failures encompassed in this study are the open-circuit/short-

circuit, islanding, output current sensor, and partial shading faults. In the proposed FDD approach, named

interval reduced kernel PCA (IRKPCA)-based Random Forest (IRKPCA-RF), the feature extraction and

selection phase is performed using the IRKPCA models while the fault classification is ensured using the

RF algorithm. The main contribution of the proposed approach is to provide a good trade-off between low

computation time and high classification metrics. The performance of the proposed IRKPCA-RF approach is

assessed using a set of emulated data of a grid-tied PV system operating under healthy and faulty conditions.

The presented results show that the proposed IRKPCA-RF approach is characterized by enhanced diagnosis

metrics, classification rate, and computation time compared to the classical techniques.

INDEX TERMS Random forest, interval-valued data, reduced kernel principal component analysis, fault

diagnosis, feature extraction and selection, fault classification, PV systems.

I. INTRODUCTION

Photovoltaic (PV) has become the fastest growing renewable

energy technology. Unfortunately, the operation of PV sys-

tems is generally accompanied by different types of failures

due to the harsh environmental conditions or internal mal-

functions [1], [2]. Themost common PV systems’ failures are

the line-to-line or line-to-ground faults, short-circuits, junc-

tion box faults, shading effect, inverter fault, grid-connection

fault, and open-circuit fault. In addition, hot spots are

The associate editor coordinating the review of this manuscript and

approving it for publication was Jon Atli Benediktsson .

considered permanent faults. These faults are considered as

the most challenging because they might cause serious phys-

ical damage and affect the efficiency of the solar modules

and electrical power generation. Therefore, the operation of

PV systems should be accompanied by the implementation

of an accurate fault detection and diagnosis (FDD) algo-

rithm in order to reduce power losses and avoid system

collapse [2]–[4]. In recent years, many machine learn-

ing (ML) techniques were developed to deal with FDD in

PV systems [3], [5]–[7]. Among these techniques, artificial

neural network (ANN) [8], support vector machine (SVM)

[9], [10] and random forest (RF) [11] are the most common
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approaches, where RF has been showing better results in

terms of fault diagnosis and classification accuracy [11].

A fault detection technique based-on ANN is proposed for

detecting partial shading on a PV array [12], where the

ANN input data are the solar irradiance, cell temperature,

PV current and voltage [12]. In addition, short-circuit faults

in a PV array were detected using three-layer feed-forward

ANN [12]. In [13], a convolutional neural network (CNN)

is adopted to address defective classification and to improve

the performance of the flexibly and reliably of the aerial

PV module images. The authors in [14] proposed a fault

diagnosis scheme based on PCA technique and support vector

machine (SVM) for a Cascaded Grid-Connected PV inverter.

Based on the concept of bagging, the RF classifier is com-

posed of a random subset of decision trees [15]. In [16],

a random forest (RF) ensemble learning algorithm is pro-

posed for FDD of PV arrays. It aims to detect and classify

the faults of PV arrays by combining multiple learning algo-

rithms to achieve a superior diagnostic performance. In order

to guarantee good detection and diagnosis performances,

the application of the RF classifier algorithm should be pre-

ceded by the preparation of data inputs, where the feature

extraction and selection (FES) are the two most important

steps [17], [18]. The goal of the feature extraction is to extract

the parameters that correctly describe the system operating

conditions, while the feature selection aims to select a small

feature subset using a certain criterion. Many FES techniques

have been proposed in the literature. Principal component

analysis (PCA) [19], independent component analysis (ICA)

[20] and partial least squares (PLS) [21] are the most com-

monly used feature extraction techniques. In [22], a fault

classification method based on PCA technique and super-

vised machine learning was proposed for a grid-connected

PV (GCPV) system. The PCA technique is also proposed

for enhancing the diagnosis performance by extracting the

most significant linear features from data. However, these

techniques belong to the linear transformation family and

consequently do not consider the nonlinear characteristics of

the process. Thus, a nonlinear PCA version, named Kernel

PCA (KPCA), has been developed to extract the nonlinear

features [23], [24]. The KPCA aims to map the input space

to a high-dimension feature space (using kernel function)

where the linear PCA can be conducted [23]. KPCA method

can effectively extract the nonlinear features contained in

the mapping space in order to obtain better classification

features [25]. However, the classical KPCA finds its lim-

itations in industrial processes where the variables might

be affected by errors/noise leading to an uncertain form of

data. The uncertainty in the systems, which is represented

by the interval-valued data, is the consideration of the mini-

mum and maximum recorded values, while the single-valued

data representation is obtained by a simplification of data

during the mining procedure [26]. As alternative solutions,

various nonlinear data-based interval-valued KPCA (IKPCA)

methods have been developed [27]. The IKPCA technique

transforms first the interval-valued datamatrix on a numerical

data matrix. Then, it projects the input numerical data onto

the feature space through a nonlinear mapping function.

Finally, the PCA is applied in the feature space. In addition,

in [28], an enhanced FDD technique was proposed for

wind energy conversion systems. In the developed approach,

the interval-valued features were extracted based on inter-

val Gaussian Process Regression (IGPR) model, and the

selected features were fed to RF for classification purposes.

Unfortunately, the larger is the size of the training data set,

the lower is the effectiveness of the feature extraction and

selection using the IKPCA as well as IGPR methods in terms

of computation time. This drawback limits the implementa-

tion of these methods in real-world applications with massive

data. To overcome this limitation, an improved technique

based on a data size reduction framework is proposed in this

paper. The proposed technique makes use of the Euclidean

distance (ED) criteria to remove the irrelevant and redundant

interval-valued samples. Then, an IKPCAmodel is employed

to compute the nonlinear interval type features from reduced

interval valued-data. Therefore, two versions of reduced

IKPCA (IRKPCA) are proposed to extract features by trans-

forming the single-valued data set into interval-valued latent

variables with low computation time. The first IRKPCACR

approach concatenates the center and range matrices to com-

pute the new numerical matrix and then fits an RKPCA

model on the matrix. The second method, the IRKPCAUL ,

fits two RKPCA models on the lower and upper bounds of

the interval-valued variables. Next, it is important to select the

most relevant and informative features before performing the

classification task in order to improve the diagnosis effective-

ness. Finally, for a high classification accuracy, the selected

features are fed into a multi-class RF model for fault classifi-

cation purposes.

In summary, the aims of this paper is to propose novel FDD

approaches for uncertain PV systems. The main contribution

is to provide a good trade-off between low computation time

and high classification metrics. Therefore, two multi-class

classifiers called IRKPCACR-RF and IRKPCAUL-RF as well

as a bank of one-class classifiers are proposed (there are as

many classifiers as classes). The effectiveness of the proposed

methods is investigated using a set of PV systems data where

the faults are emulated at different stages (common coupling

point, inverter, sensors, emulated PV arrays,. . .).

The rest of the paper is structured as follows. Section II

describes the IRKPCA-based FES methods. The RF-based

fault classification is detailed in Section III. The perfor-

mance of the proposed IRKPCA-RF methods is evaluated in

Section IV, while interpretations and conclusions are drawn

in Section V.

II. PRE-PROCESSING BY HYBRID

DIMENSIONALITY REDUCTION

This section details the proposed hybrid dimensionality

reduction for FES. The collected data are pre-processed by

extracting the features using the IRKPCA technique and

selecting the most active features during the training process.
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A. FEATURE EXTRACTION BASED ON INTERVAL

REDUCED KPCA TECHNIQUE

Two ED-based IRKPCA models are proposed to remove the

irrelevant and redundant samples during the feature extraction

process.

1) INTERVAL-VALUED DATA AND REDUCTION FRAMEWORK

The use of interval-valued data is motivated by the need

of size reduction of massive datasets in some applications.

An interval-valued variable [xj,k ], can be determined using a

lower and upper bound [27], such as [xj(k)] = [x j,k , x j,k ],

where k ∈ {1, . . . ,N }, x j,k ≤ x j,k , and N is the number of

samples.

Given an N ×m classical training data matrix X , where m

is the number of variables and N is the number of samples,

the interval data matrix [X ] can be constructed as per:

[X ] =









[

x1,1, x1,1
]

. .
[

x1,m, x1,m
]

. . .

. . .
[

xN1, xN ,1

]

. .
[

xN ,m, xN ,m

]







 (1)

where, the lowerXL and upperXU boundmatrices are respec-

tively defined by:

XL =









x1,1 . . x1,m
. . .

. . .

xN ,1 . . xN ,m









(2)

XU =









x1,1 . . x1,m
. . .

. . .

xN ,1 . . xN ,m









(3)

The interval-valued variable [xj,k ] can be also expressed by

a couple {xcj,k , x
r
j,k )}.

The center xcj,k of the interval is given by:

xcj,k =
1

2
(x j,k + x j,k ) (4)

and the range xrj (k) of the interval is defined by:

xrj (k) =
1

2
(x j,k − x j,k ) (5)

In this case, the center and range matrices are respectively

defined by:

X c =
1

2









x11 + x1,1 . . x1m + x1,m
. . .

. . .

xN ,1 + xN ,1 . . xN ,m + xN ,m









(6)

X r =
1

2









x11 − x1,1 . . x1,m − x1,m
. . .

. . .

xN ,1 − xN ,1 . . xN ,m − xN ,m









(7)

By the concatenation of the center and range matrices,

the new data matrix XCR can expressed by:

Xcr =
[

Xc Xr
]

(8)

Before applying the KPCA technique, the size of the train-

ing dataset is first reduced by using the ED as a dissimilarity

metric between observations. This indicator is adopted to

select the relevant features. The ED between all observations

are calculated and then the features with the greater ED values

are selected. Let consider xcr = [xc xr ] ∈ R
2m a new

data sample. The data including the dissimilarity between all

pairs of observations can be represented using a dissimilarity

matrix D as per:

D =









d11 d12 . . . d1N
d21 d22 . . . d2N
. . . .

dN1 dN2 . . . dNN









(9)

where dij represents the ED between the rows XCRi and XCRj
of the data matrix XCR. So, dij is given by:

dij =

√

√

√

√

m
∑

k=1

(

x ′
CRi,k

− x ′
CRj,k

)2
(10)

The new reduced data matrix X ′
cr is expressed as:

X ′
CR =

[

x ′
CR1

x ′
CR2

. . . x ′
CRN ′

]T
∈ RN ′×2m

(11)

where N ′ is the size of the reduced data matrix. For the

interval-valued data based on upper and lower bounds,

the lower bound ED (EDL) and upper bound ED (EDU ) are

respectively determined by:

EDLi,j =

√

√

√

√

m
∑

k=1

(

xLi,k − xLj,k

)2
(12)

EDUi,j =

√

√

√

√

m
∑

k=1

(

xUi,k − xUj,k

)2
(13)

Thus, the new lower XL
′
and upper XU

′
matrices are

respectively constructed by:

XL
′

=
[

x ′L
1 x ′L

2 . . . x ′L′
N

]T
∈ RN ′×m (14)

XU
′

=
[

x ′L
1 x ′L

2 . . . x ′L′
N

]T
∈ RN ′×m (15)

2) INTERVAL REDUCED KPCA MODEL

Once the reduced interval training matrices are deter-

mined using interval centers/ranges and lower/upper bounds

approaches, the RKPCA technique is applied to the new

reduced data matrices. The IRKPCA-based interval centers

and ranges IRKPCACR applies the RKPCA technique to the

new data matrix X ′
cr which is formed by the concatenation

of center and range reduced data matrices. The IRKPCACR
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aims first to project the data matrix X ′
cr to the feature space

X
′
CR =

[

φ(x ′
CR1

) φ(x ′
CR2

) . . . φ(x ′
CRN ′

)
]T

.

Then, the covariance C of X ′
CR

can be calculated in the

following form:

C =
1

N ′ − 1
X

′
CR

T
X

′
CR

=
1

N ′ − 1

N ′
∑

i=1

φ(x ′
CRi

)φT (x ′
CRi

) (16)

The eigenvalue λ and the corresponding eigenvector v of

the covariance C can be computed to satisfy the following

equation:

λv = Cv =
1

N ′ − 1

N ′
∑

i=1

φ(x ′
CRi

)φT (x ′
CRi

)v (17)

Note that the eigenvector equation 16 depends only on the dot

products of mapped vectors in the feature space. In general,

the mapping function φ(.) is not explicitly defined. Thus,

the covariance matrix C may not be calculated implicitly.

To avoid this problem, the kernel matrix is defined by

K = X
′
CRX

T ′

CR, which is calculated using the kernel function

φ(x ′
CRi

)Tφ(x ′
CRi

) = k(x ′
CRi

, x ′
CRi

) and given by:

K = X
′
CRX

T ′

CR

=







k(x ′
CR1

, x ′
CR1

) · · · k(x ′
CR1

, x ′
CRN ′

)

...
. . .

...

k(x ′
CRN ′

, x ′
CR1

) · · · k(x ′
CRN ′

, x ′
CRN ′

)






(18)

Many kinds of the kernels k(., .) [29] exist, where the

mostly applied Gaussian kernel function is expressed by:

k(x ′
CRi

, x ′
CRj

)=exp(−
(x ′
CRi

− x ′
CRj

)T (x ′
CRi

− x ′
CRj

)

c
) (19)

where c is the width of the Gaussian function.

To solve the eigenvector equation, it is assumed that α =

X
′
CRv. Multiply both sides of equation 17 with X

′
CR leads to:

Kα = λα (20)

where λ and α are the eigenvalue and the eigenvector of the

kernel matrix K , respectively. Through the expression of α =

X
′
CRv, the eigenvector v can be expressed by:

v = λ−1
X
T ′

CRα (21)

Then, the matrix of the ℓ retained principal loading of

the RKPCA is obtained in the feature space by P̂ =

[v1, . . . , vℓ] ∈ R
N ′×ℓ and the N ′ − ℓ last principal loading

is denoted by P̃ = [vℓ+1, . . . , vN ′ ] ∈ R
N×(N ′−ℓ).

P̂ = [
1

λ1
X
T ′

CRα1, . . . ,
1

λℓ

X
T ′

CRαℓ] (22)

Many studies have investigated the selection of the number

of principal components (PCs). Therefore, in order to deter-

mine the number ℓ of significant PCs, the cumulative percent

variance (CPV) criterion is used [30].

The principal and residual components, respectively

t̂ ∈ Rℓ and t̃ ∈ RN−ℓ of a test vector xCR are then extracted

by projecting φ(xCR) into the principal and residual spaces,

as follows:










t̂ = P̂Tφ(xCR)

= 3− 1
2PT k(xCR)

t̃ = P̃Tφ(xCR)

(23)

where k(xCR) =
[

k(xCR1 , xCR) . . . k(xCRN ′ , xCR)
]T
, P =

[

α1 α2 . . . αℓ

]

and 3 = diag(λ1 . . . λℓ).

For the proposed IRKPCA-based interval lower and upper

bounds IKPCALU , two single-valued RKPCA models are

applied to the lower and upper bounds of the reduced

interval-valued data. To this end, the interval data matrices

should be transformed into the feature space as follows:

X
L ′

=
[

φ(xL
′

1 ) φ(xL
′

2 ) . . . φ(x
N ′L′ )

]T
(24)

X
U ′

=
[

φ(xU
′

1 ) φ(xU
′

2 ) . . . φ(xU
′

N ′ )

]T
(25)

k(x ′
i, x

′
j) = exp

(

−‖x ′
i − x ′

j‖
2

2σ 2

)

(26)

k(x ′
i, x ′

j) = exp

(

−‖x ′
i − x ′

j‖
2

σ 2

)

(27)

Thus, by using the kernel function for the lower bound data,

the kernel matrix in the feature space is expressed by:

KL =X
′L
X

′LT =













k(x ′
1, x

′
1) . . . k(x ′

1, x
′′
N )

.

.

.

. . .

.

.

.

k(x ′′
N , x ′

1) . . . k(x ′′
N , x ′′

N )













(28)

KU =X
′U

X
′UT =













k(x ′
1, x ′

1) . . . k(x ′
1, x ′′

N )

.

.

.

. . .

.

.

.

k(x ′′

N , x ′
1) . . . k(x ′′

N , x ′′

N )













(29)

The eigen-decomposition of the kernel matrixKL provides

the necessary information to compute the projections of the

lower φ(x) vector in the feature space which are given by:

{

t̂L = (3L)−
1
2 (PL)T k(x)

t̃L = (P̃L)Tφ(x)
(30)

where k(x) =
[

k(x ′
1, x) . . . k(x

′
N ′ , x)

]T
,

PL =
[

αL1 αL2 . . . α
ℓL
L

]

and 3L = diag(λL1 . . . λ
ℓL
L ).

The eigenvalues and eigenvectors decomposition of the

matrixKU will be determined to obtain a RKPCA representa-

tion of the nonlinear uncertain data. Then, the newmatrices of

the eigenvectors PU and eigenvalues3U are used to compute
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the scores of the upper φ(x) vector which are defined by:

{

t̂u = (3U )−
1
2 (PU )T k(x)

t̃U = (P̃U )Tφ(x)
(31)

where k(x) =
[

k(x ′
1, x) . . . k(x ′

N ′ , x)
]T
,

PU =
[

αu1 αU2 . . . αU
ℓU

]

and 3U = diag(λU1 . . . λUℓu ).

B. FEATURE SELECTION

The first ℓ IKPCs constitute the features extracted from the

IRKPCA model. Several effective features can be computed

from the IKPCs. In the current work, the Hotelling’s T 2

statistic, squared prediction error statistic (SPE), combined

index ϕ, sampled mean M , variance D2, skewness S, and

kurtosis K metrics are applied for feature selection [22], [31].

In the following, more details about the computation of these

features are presented.

1) IRKPCACR-BASED FEATURE SELECTION

The above mentioned feature selection methods of the first

ℓ retained KPCs t̂ , obtained from the IRKPCACR model for

interval valued data, are described as follows:

T 2 = k(xCR)P3−1PT k(xCR) (32)

SPE = k(xCR, xCR) − k(xCR)
TCk(xCR) (33)

where C = P3−1PT .

ϕ =
SPE

δ2
+
T 2

τ 2
(34)

Mj =
1

ℓ

ℓ
∑

i=1

t̂ji (35)

D2
j =

1

ℓ

ℓ
∑

i=1

(t̂ji −Mj)
2 (36)

Sj =
1

ℓ

ℓ
∑

i=1

(

t̂ji −Mj

D2
j

)3

(37)

Kj =
1

ℓ

ℓ
∑

i=1

(

t̂ji −Mj

D2
j

)4

(38)

2) IRKPCALU -BASED FEATURE SELECTION

In this case, the interval features are selected from the

IRKPCALU model. The selected features of the lower bound

are described as follows:

(T L)2 = k(x)PL(3L)−1(PL)T k(x) (39)

SPEL = k(x, x) − k(x)TCLk(x) (40)

where CL = PL(3L)−1(PL)T .

ϕL =
SPEL

(δL)2
+

(T L)2

(τL)2
(41)

where δL and τL are the threshold of the SPEL and (T L)2

indices of the lower bound.

ML
j =

1

ℓL

ℓL
∑

i=1

t̂Lji (42)

(DLj )
2 =

1

ℓL

ℓL
∑

i=1

(t̂Lji −ML
j )

2 (43)

SLj =
1

ℓL

ℓL
∑

i=1

(

t̂Lji −ML
j

D2
j

)3

(44)

KL
j =

1

ℓL

ℓL
∑

i=1

(

t̂Lji −ML
j

(DLj )
2

)4

(45)

The selected features of the upper bound are defined as

follows:

(TU )2 = k(x)PU (3U )−1(PU )T k(x) (46)

SPEU = k(x, x) − k(x)TCUk(overlinex) (47)

where CU = PU (3U )−1(PU )T .

ϕU =
SPEU

(δU )2
+

(TU )2

(τU )2
(48)

where δU and τU are the threshold of the SPEU and (TU )2

indices of the upper bound.

MU
j =

1

ℓU

ℓU
∑

i=1

t̂Uji (49)

(DUj )
2 =

1

ℓU

ℓU
∑

i=1

(t̂Uji −MU
j )2 (50)

SUj =
1

ℓU

ℓU
∑

i=1

(

t̂Uji −MU
j

D2
j

)3

(51)

KU
j =

1

ℓU

ℓU
∑

i=1

(

t̂Uji −MU
j

(DUj )
2

)4

(52)

In order to take into account the upper and lower bounds

at the same time, new interval-valued statistical features are

used. The unified representation of the interval features is

defined by:

� = γ� + (1 − γ )� (53)

where � is the unified form of the statistical features that

could be one of the available detection indices, the mean,

variance, skewness, or kurtosis. γ ∈ [0, 1] is the weight that

defines the trade-off between the upper and lower bounds.

III. IRKPCA-BASED RANDOM FOREST

FAULT CLASSIFICATION

In the proposed IRKPCA based Random Forest

(IRKPCA-RF) for fault classification, the most relevant fea-

tures including interval statistical features are firstly com-

puted using the IRKPCA model, then they are introduced to
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RFmodel for classification purposes. RF is a type ofArtificial

intelligence technique to identify the state of the PV system.

It aims to create a forest using multiple decision trees [32].

RF can enhance the classification accuracy resulting to grow

a set of trees andmake them vote for themost promising class.

In the classification stage, the direct use of the measured

variables by the RF classifier lower its performance in case

of data noises and redundancies. Thus, the extraction and

selection the relevant features using the IRKPCA models

are proposed in this paper. Then, the relevant features are

introduced to RF classifier to perform fault classification.

Thus, enhanced approaches based on the proposed IRKPCA

methods the RF classifier are presented. The aim of the

developed IRKPCA-RF techniques is to provide the best

compromise between high classification metrics and low

computational time. To discriminate between the healthy and

faulty cases, the developed IRKPCA-RF approaches collect

first the interval-valued PV data and then divide it (step

1 in Figure 1) into training and testing data sets. During the

training phase, the size of the raw data is firstly reduced

using the DR metrics while retaining the non-redundant

information. Secondly, the IRKPCA models are applied to

extract and select the relevant features (step 2 in Figure 1).

In step 3, the RF uses the selected features for training.

In step 4, the classification model is completed as per shown

in Figure 1). After the IRKPCA models are constructed

and well-trained, the testing data set is used to evaluate

the model performance for fault classification. In step 5,

the IRKPCA model is applied to extract and select the most

relevant features. The interval statistical features are selected

to provide good performance, reduce the number of features

and increase accuracy. Finally, the final features are fed to

the RF classifier to detect and classify faults. The main

advantages of the proposed methods is the introduction of

the features extraction and selection steps which can improve

the fault classification accuracy by avoiding data noises and

redundancies.

FIGURE 1. Flowchart of the proposed fault detection and diagnosis.

Algorithm 1 summarizes the overall procedure of the the

IRKPCA-RF algorithms.

Algorithm 1 IRKPCA-RF Algorithm

STEP 1. Inputs: N × m input interval data matrix [X ],

STEP 2. After data acquisition, compute the reduced inter-

val data matrix to reduce the data dimensionality space

while removing the relative samples which are redundant

and even degrade the performance of the process,

STEP 3. Extracting the interval features using IRKPCACR

and IRKPCALU algorithms,

STEP 4. Selecting the significant features from the features

obtained from the IRKPCACR and IRKPCALU models,

STEP 5. TheRF classifier is trained using the selected

features then evaluated by testing features.

STEP 6. Classifying the healthy and faulty operating con-

ditions.

IV. RESULTS AND DISCUSSION

In this section, the performance of the proposed FDD meth-

ods is assessed using a set of emulated PV system data.

The diagnosis assessment indicators include: 1) Normalized

Classification Accuracy (NCA), which represents the ratio of

the number of correct predictions to the total number of input

samples, 2) Normalized Recall (NR), which is the percentage

of fault measurements that are correctly classified over the

total number of measurements in the pertinent fault class,

3) Normalized Precision (NP), which defines the number

of samples properly classified divided by the number of

classified samples, and 4) Computation Time (CT), which

represents the time required to execute the FDD algorithm.

A. PV SYSTEM DATA COLLECTION

Figure 3 shows the synoptic of the grid-tied PV system

under study, where Chroma PV and grid emulators are used.

The system variables shown in Figure 3 were measured

every 5-15s depending on the nature of the faults and their

occurrence.

The faults were emulated at the common coupling point,

inverter, sensors, and PV emulator [22], [31]. In the AC side,

an open-circuit fault introduced on one inverter switch at the

time is referred as an inverter fault F1, while the islanding

(grid-connection fault) is represented by an F3 fault. In the

PV side, the output current sensor wiring/reading errors are

denoted by the F2 fault. Additionally, a 10-20 % perma-

nent partial shading fault (PV panel fault F4) and open-

circuit/short-circuit on PV cells connection faults (connection

faults F5) were emulated using the Chroma PV emulator

functions.

1) Grid-side faults

• F1: Inverter fault (open-circuit fault on one switch

at the time),

• F3: Grid-connection fault (switch to the standalone

operation for protection reasons).

2) PV-side faults

• F2: Output current sensor fault (poor connection

and/or erroneous reading),
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FIGURE 2. Schematic diagram of the IRKPCA-RF methodology.

FIGURE 3. Synoptic of the studied grid-tied PV system.

• F4: PV panel fault (permanent 10-20 % partial

shading)

• F5: PV panel connection fault (open-circuit,

short-circuit, sudden disconnection)

The database is constructed by one healthy mode assigned

to class C0 and F1-F5 faulty modes assigned to classes C1-C5

respectively (Table 1).

TABLE 1. Constructed FDD database.

B. FAULT DIAGNOSIS RESULTS

During the first step, the data set was standardized to zero

mean and unit variance. Then, the interval training data set

was used to create the IKPCACR and IKPCALU models,

while the IRKPCACR and IRKPCALU models are created

by means of the interval reduced data sets obtained using

the ED. The number of IKPCs are determined using the

cumulative percent variance (CPV) with 95% as an explained

variance threshold. The retained number of IKPCs using both

IKPCACR and IKPCALU models is equal to 31, while it is

equal to 18 using IRKPCACR and IRKPCALU models. The

faults are labeled within the built database and the best signif-

icant features are selected from the extracted characteristics

to obtain good classification results. Therefore, five arbitrary

groups of features are used and the best one is selected

(Table 2).

TABLE 2. Selected features for fault classification.

The scatter plot of the IKPC1 and IKPC2 retained under

different operating conditions of the GCPV system is illus-

trated in Figure 4. In addition, the various plan-projections

of the features are given in Figures 5 to 7. It is clearly

shown from these figures that all classes are clearly observed.

Besides, we can show that the six classes are not totally distin-

guished. Therefore, the selected features will be introduced

as inputs to RF classifier in order to enhance further the

classification results.

The labeled data are then used as inputs for the proposed

techniques which can be divided into two stages: amulti-class

classifier stage (see Table 3) and a bank of one-class classi-

fiers (see Table 8). The first step is to extract features from

the data, and then select the most significant group from the

extracted features which gives the best classification results.

Therefore, an evaluation of the two proposed multi-class

methods has been performed using groups 1-5 for training

and testing phases (Table 3).
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FIGURE 4. Scatter plot of IKPC1 and IKPC2.

FIGURE 5. Scatter plot of mean and IT 2 statistics.

FIGURE 6. Scatter plot of mean and ISPE statistics.

FIGURE 7. Scatter plot of mean and Iφ statistics.

One can notice that using group 5, the developed tech-

niques can achieve a perfect NCA. As shown in Table 3,

both IRKPCA-RF and IKPCA-RF methods achieved perfect

TABLE 3. Classification accuracy of the proposed IRKPCACR -RF and
IRKPCAUL-RF techniques.

FIGURE 8. Scatter plot of mean, variance, kurtosis and skewness of the ℓ

retained IKPCs statistics.

results in terms of NCA for the training (1) and testing (1)

phases using the group of features 5.

The confusionmatrix is another performancemeasurement

for machine learning classification. The confusion matrices

of the investigated techniques are presented in Tables 4 and 5,

where the correct classified and mis-classified observations

for the condition modes (C0 to C5) are presented. One can

notice from these tables that the IKPCA-RF and IRKPCA-RF

techniques identify 1501 observations among 1501 (true pos-

itive) in six different modes. Besides, the NP is 1 and its recall

is 1 for all different modes. This confirms that the proposed

TABLE 4. Confusion matrix of IKPCACR -RF and IKPCAUL-RF classifiers
using group 5.

TABLE 5. Confusion matrix of IRKPCACR -RF and IRKPCAUL-RF classifiers
using group 5.

64274 VOLUME 9, 2021



K. Dhibi et al.: Hybrid FDD of Grid-Tied PV Systems

TABLE 6. Comparative classification accuracy and computation time
results using group 5.

techniques can distinguish between the six operating modes

and provide a perfect classification accuracy.

To further highlight the classification performance of

the proposed approaches, Table 6 shows a comparison

in terms of classification accuracy and computation time

between the developed techniques, two IKPCA-RF tech-

niques, an IPCA-RF approach [33], Neural Network (NN)

and Recurrent Neural Network (RNN). In fact, the NCA

of both IKPCA-RF and IRKPCA-RF methods is 1 during

the training and testing phases, while only 0.92 and 0.91

NCA is achieved by the IPCA-RF algorithm. One can notice

from Table 6 that the proposed methods provide the best

NCA compared to the NN and RNN methods. It is worth

noting that the NN has a low computation time (9.11 s) while

presenting a low classification accuracy (0.60/0.68). More-

over, the CT comparison shows low values for the IPCA and

the proposed IRKPCAUL-RF and IRKPCACR-RF methods

compared to the IKPCA-based ones, where the best trade-off

between NCA and CT is offered by the IRKPCACR-RF tech-

nique. Besides, the proposedmethods based on data reduction

framework provide a significant reduction in terms of compu-

tation time compared to the IKPCA-RF methods. As shown

in Table 6, the computation time of the proposed IRKPCA-RF

methods is reduced approximately to 60% compared to the

ones recorded for the IKPCA-RF methods. Based on the

above discussion, the best trade-off between the computation

time and classification metrics is obtained using the proposed

IRKPCA-RF approaches.

Additionally, in order to further investigate the perfor-

mance of the proposed FDD techniques, a bank of one-class

classifiers containing six classifiers is considered. Each clas-

sifier is trained to classify a specific class with a label 1 or

−1 according to the input features which are computed and

compared (see Table 7). Table 8 presents the global per-

formance accuracy using the selected features of group 5 as

inputs in the case of one-class classifiers scenario. As shown

in Table 8, all four methods give comparable average accu-

racy in the training and testing phases. Besides, it is clearly

shown in this Table that more than 50% of CT reduction

is offered by both IRKPCA-RF methods compared to the

TABLE 7. Multiple one-class classifiers logic for fault diagnosis.

TABLE 8. NCA and average CT using group 5 with different one-class
classifiers.

IKPCA-RF classifiers. From this table, one can notice that

the proposed methods based on the data reduction framework

achieve the best compromise between classification metrics

and computation time.

V. CONCLUSION

In this paper, two interval reduced kernel PCA (IRKPCA)-

based Random Forrest (RF) algorithms (IRKPCA-RF)

were proposed for fault detection and diagnosis (FDD) of

grid-tied PV systems. Firstly, two IRKPCA models with a

data-reduction framework using the Euclidean distance (ED)

metric were developed. The first proposed IRKPCACR model

used a kernel PCA model-based reduced interval centers

and ranges of intervals. The second IRKPCAUL technique

consisted of applying a kernel PCA on a reduced interval

upper and lower bounds of intervals. The idea behind the

developed IRKPCAmodels was to extract and select the most

relevant features from data with the minimum computation

time. Secondly, the final features were introduced as inputs

into the RF algorithm for fault classification purposes. The

feasibility and effectiveness of the proposed IRKPCA-RF

techniques were evaluated under normal and faulty operating

conditions. Based on the experimental results, the developed

techniques were powerfully effective in terms of computation

time and diagnosis metrics.

In future work, approaches to improve further the perfor-

mance of the IRKPCA-RF method in fault diagnosis will

be explored. In the current work, the classical RF algorithm

was utilized to model the dynamic nature in both offline

training and online update phase using the newly arrived
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measurements. Instead, using online extensions of RF model

in the first place, such as online incremental RF (presented

in [34]) or Mondrian forests (described in [35], [36]), may

reduce the training and update time. Moreover, there is a

number of threats that may have an impact on the results of

this study. The fault diagnosis approaches proposed in this

study were built by using default parameters. Thus, it has

not been investigated how these approaches are affected by

the parameters variation. In consequence, other approaches

might be better in diagnosing the faults. The parameters

to be optimized include mainly the number of trees in the

forest and the maximum depth of each tree. This task reduces

the requirements for research experience during parameter

tuning and avoids the need for tedious manual tuning. More-

over, the optimized RF model can achieve improved diag-

nosis performance. The optimization tools including particle

swarm optimization (PSO), Genetic Algorithm (GA) and

Multi-Objective Optimization (MOO) will be employed to

optimize the RF parameters. The main challenge is to provide

a good trade-off between low computation time and high

classification metrics.
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