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Abstract Germano (Theor Comput Fluid Dyn 17:225–331, 2004) proposed a hybrid-
filter approach, which additively combines an LES-like filter operator (F) and a
RANS-like statistical operator (E) using a blending function k: H = kF + (1 − k)E.
Using turbulent channel flow as an example, we first conducted a priori tests in
order to gain some insights into this hybrid-filter approach, and then performed full
simulations to further assess the approach in actual simulations. For a priori tests,
two separate simulations, RANS (E) and LES (F), were performed using the same
grid in order to construct a hybrid-filtered field (H). It was shown that the extra
terms arising out of the hybrid-filtered Navier–Stokes (HFNS) equations provided
additional energy transfer from the RANS region to the LES region, thus alleviating
the need for the ad hoc forcing term that has been used by some investigators. The
complexity of the governing equations necessitated several modifications in order
to render it suitable for a full numerical simulation. Despite some issues associated
with the numerical implementation, good results were obtained for the mean velocity
and skin friction coefficient. The mean velocity profile did not have an overshoot in
the logarithmic region for most blending functions, confirming that proper energy
transfer from the RANS to the LES region was a key to successful hybrid models. It
is shown that Germano’s hybrid-filter approach is a viable and mathematically more
appealing approach to simulate high Reynolds number turbulent flows.
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1 Introduction

For a simulation of most turbulent flows of industrial interest, a pure large eddy
simulation (LES), let alone direct numerical simulation (DNS), is considered too
costly and is estimated to be infeasible until about 2045 (Spalart [15]). The Reynolds-
average Navier–Stokes (RANS) approach, on the other hand, may not provide the
necessary information of interest and sometimes may even be unreliable. Hybrid
approaches, which combine the strengths of RANS and LES techniques, have
become popular in the last decade. In traditional zonal hybrid methods (e.g., Balaras
et al. [3], Wang and Moin [21], Abe [1], Temmerman et al. [19], and Templeton et al.
[20]), two separate turbulence models—a RANS model in the near-wall region and
a subgrid-scale model for LES in outer regions—are used. The solutions in these
two regions are then combined at a suitably chosen near-wall crossover location
by matching a secondary quantity such as eddy viscosity. However, it has been
widely reported that matching a secondary quantity at the interface is not completely
satisfactory; typically, the total stress at the interface is not fully supported by the
modeled or resolved stresses. Zonal approaches also lack the ability to properly
transfer momentum from the fluctuation-void RANS region to the fluctuation-
resolved LES region.

Detached eddy simulation (DES) (Spalart et al. [18]; Shur et al. [14]; Nikitin
et al. [10]) is different from the zonal approach in that the same eddy viscosity trans-
port equation is used in both RANS and LES regions. The model switches between
RANS and LES by virtue of different length scales used for the destruction term in
the eddy viscosity transport equation. In the original DES, the switch location was
purely determined by the numerical grid used for the simulation. This placed severe
constraints on the quality and type of the grid that can be used to obtain reasonable
results. This also led to several other problems, most notably, (1) grid-induced
separation and (2) non-convergence of solutions upon progressive refinement of the
grid. A modified version of DES, known as delayed DES (DDES) (Spalart et al.
[17]), was an attempt at addressing these two issues. Nonetheless, the model was
still found to be lacking a mechanism for proper momentum and energy transfer
between the RANS to the LES regions. A common consequence of this deficiency
was an overshoot in the log region of the mean velocity profile of a channel flow
simulation, when DES was used as a wall-layer model. Piomelli et al. [11] avoided the
log-layer overshoot by adding a stochastic forcing term to the momentum equation.
The introduction of the stochastic forcing term improved the momentum transfer
significantly and resulted in an induced but sustained production of turbulence
fluctuations at the interface. Higher production at the interface increased resolved
stresses, resulting in the reduction of velocity gradient there. In the original DES
(without stochastic forcing), this velocity gradient was artificially high to compensate
for the reduction in resolved stress caused by the lack of fluctuating quantities at the
interface. The stochastic forcing, however, was rather arbitrary in that the strength
and frequency of forcing required may depend on the grid, flows, and Reynolds
numbers.
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The key point in the above discussion is the requirement of additional turbulence
fluctuations to sustain the correct level of total turbulent stresses at the interface. We
will elaborate on this point later in our discussion. It is Germano’s contention [4] that
a mathematically correct way of blending two disparate models is to formally develop
the properties of a hybrid filter H. Such a hybrid filter model is quite different from
its parent models. For example, Reynolds shear stress derived as a second moment
of velocity fluctuations has a new additional term, and the continuity equation is no
longer divergence free. The objective of the present work was to analyze Germano’s
hybrid-filter approach through a priori tests in order to gain some insights into
the model, and then to perform full simulations to further assess the validity of
Germano’s approach. Our study was also aimed at improving the understanding
of the momentum and energy transfer at the interface of hybrid approaches. We
provide some analysis of this by examining the production of H-field residual kinetic
energy near the interface.

This paper is organized as follows: the hybrid-filtered Navier–Stokes equations
(HFNS) are first derived in Section 2, results from a priori tests are given in Section 3,
full simulation results are presented in Section 4, and a summary and concluding
remarks are given in Section 5.

We shall use (x, y, z) or (x1, x2, x3) to denote streamwise, wall-normal and span-
wise directions respectively and (u, v, w) or (u1, u2, u3) for corresponding velocity
components. All variables are non-dimensionalized by the centerline velocity, U , and
the channel half width unless stated otherwise. The channel extends from −1 to +1

in the wall-normal direction, but for presentation of results we sometimes modify the
coordinates so that it extends from 0 to 2. The superscript “+” denotes a quantity
normalized by the viscosity and wall-shear velocity.

2 Governing Equations

We reproduce the governing equations from the original paper for completeness. For
the hybrid filter, H = kF + (1 − k)E, if we invoke the assumption of commutativity
of filter operator F and the derivative operator Di = ∂

∂xi
and the fact that EF = E, it

can be shown that

HDi = Di H −
∂k

∂xi

(F − E). (1)

Applied to the continuity equation, (1) leads to the hybrid-filtered continuity equa-
tion (HFCE)

∂
〈

u j

〉

H

∂x j

=
∂k

∂x j

(〈

u j

〉

F
−

〈

u j

〉

E

)

, (2)

where the quantity within 〈 〉 represents a hybrid-filtered, LES-filtered or RANS-
averaged variable, depending on whether the subscript is H, F, or E respectively.
Note that the hybrid-filtered field is non-solenoidal. As can be seen in HFCE, there
is a need to evaluate the F- and E-field quantities from the H-field. Since E is
the statistical operator, it satisfies the property, EH = E. Thus for any scalar or
vector φi

〈φi〉E =
〈

〈φi〉H

〉

E
. (3)
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The F-filtered field can be reconstructed from the definition of H-filter as

〈φi〉F =
〈φi〉H − 〈φi〉E

k
+ 〈φi〉E , (4)

or in its other more useful form:

〈φi〉F =
1 − k

k
(〈φi〉H − 〈φi〉E) + 〈φi〉H . (5)

When the hybrid filter is applied to the Navier–Stokes equations, we obtain the
hybrid-filtered Navier–Stokes (HFNS) equation, which can be written in non-
dimensional form as

∂ 〈ui〉H

∂t
+

∂ 〈ui〉H

〈

u j

〉

H

∂x j

+
∂ 〈p〉H

∂xi

−
1

Re

∂2 〈ui〉H

∂x2
j

= −
∂τH(ui, u j)

∂x j

+
∂k

∂xi

(

〈p〉F − 〈p〉E

)

+
∂k

∂x j

(

〈ui〉F

〈

u j

〉

F
− 〈ui〉E

〈

u j

〉

E

)

+
∂k

∂x j

(τF(ui, u j) − τE(ui, u j))

−
2

Re

∂k

∂x j

∂

∂x j

(〈ui〉F − 〈ui〉E) −
1

Re

∂2k

∂x2
j

(〈ui〉F − 〈ui〉E). (6)

Equation (6) uses the following definition for the nonlinear terms for the H quanti-
ties. Written in general form this is

〈

uiu j

〉

O
= 〈ui〉O

〈

u j

〉

O
+ τO(ui, u j), (7)

in which O could be one of H, F or E, and τH and τF are subgrid scale stresses at
the H and F levels, while τE is the Reynolds stress tensor at the E level. The H-field
SGS stress, τH can be derived as

τH(ui, u j) = kτF(ui, u j) + (1 − k)τE(ui, u j) + Gij, (8)

where

Gij = k(1 − k) (〈ui〉F − 〈ui〉E)
(〈

u j

〉

F
−

〈

u j

〉

E

)

. (9)

We shall discuss more about this term later. Finally, the anisotropic part of τF and τE

are given using the corresponding strain rate and eddy viscosity:

τ a
F = −2νF

〈

Sij

〉

F
(10)

τ a
E = −2νE

〈

Sij

〉

E
. (11)

The crossover occurs according to the specified blending function k. Reconstruction
of E-field from H-field is a statistical averaging procedure, while the F-field is
reconstructed according to (4). More discussions on the reconstruction and the
choice of a blending function will be presented in Section 4.
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Applying the above definitions to (6) we get

∂ 〈ui〉H

∂t
+

∂ 〈ui〉H

〈

u j

〉

H

∂x j

+
∂̃ 〈P〉H

∂xi

−
∂

∂x j

[

1

Re

∂ 〈ui〉H

∂x j

− τ a
H(ui, u j)

]

= +
∂k

∂x j

(

〈ui〉F

〈

u j

〉

F
− 〈ui〉E

〈

u j

〉

E

)

+
∂k

∂x j

(

τ a
F(ui, u j) − τ a

E(ui, u j)
)

−
2

Re

∂k

∂x j

∂

∂x j

(〈ui〉F − 〈ui〉E) −
1

Re

∂2k

∂x2
j

(〈ui〉F − 〈ui〉E) , (12)

where

∂̃ 〈P〉H

∂xi

=
∂ 〈P〉H

∂xi

−
∂k

∂xi

(〈P〉F − 〈P〉E), (13)

and

〈P〉O = 〈p〉O +
2

3
kO, (14)

with O representing one of H,F or E-filtered quantities, and k representing the trace
of the respective Reynolds stress tensor depending on whether the suffix is H, F or
E. Equation (12) is different from that in Germano [4] in that all terms involving
pressure (including the isotropic part of the subgrid stresses as is commonly done)

are combined into one term. Written this way, ∂̃〈P〉H

∂xi
, which constrains the H-field

velocity to satisfy the HFCE, can be solved in the same manner as pressure in LES
(i.e., via a Poisson equation).

3 A Priori Tests

In order to gain some insights into the hybrid-filter approach, we first conducted
somewhat unique a priori tests. We performed two separate simulations, RANS and
LES, of a channel flow at Reτ = 560 using the same 129 × 129 × 129 grid. For the
RANS simulation, we used the Spalart–Allmaras model [16], while the dynamic
Smagorinsky model [5] was used for the LES. These two solutions were combined
using the blending function k to obtain the H-field. The blending function was quite
similar to the fd function of Spalart in DDES [17],

k = (1.0 + ǫ) − tanh
(

8r3
d + ǫ

)

, (15)

where rd is the same function used in DDES. Here ǫ could be a small positive number
to allow k to start from a non-zero value. For the results presented, we used a k with
ǫ = 0.15 or with ǫ = 0. These two blending functions are shown in Fig. 1.

3.1 The continuity equation for hybrid velocity field

The HFCE (2) is interesting because it is not divergence free. This is owing to the
non-commutativity of the H-filter and derivative operators as seen from (1). At
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Fig. 1 Blending functions:
solid line k = 0 near the wall;
dotted line k = 0.15 near the
wall
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first glance, it is difficult to interpret the meaning of a non-zero divergence in the
continuity equation because a control volume analysis of an arbitrary section of the
channel fails to conserve mass. To understand this we first note that

〈

∂
〈

u j

〉

H

∂x j

〉

E

=

〈

∂k

∂x j

(〈

u j

〉

F
−

〈

u j

〉

E

)

〉

E

∂
〈〈

u j

〉

H

〉

E

∂x j

=
∂k

∂x j

(

〈〈

u j

〉

F

〉

E
−

〈〈

u j

〉

E

〉

E

)

∂
〈

u j

〉

E

∂x j

= 0, (16)

and hence HFCE is divergence free on the average. This can also be seen in Fig. 2,
which shows the right-hand side of the spatially-averaged continuity equation as a
function of time at different wall-normal locations. At all wall-normal locations the
time average tends to be zero.

Strictly speaking, this non-solenoidal continuity equation applies to all hybrid
models, although, to the best of our knowledge, it is usually ignored. Consider a case
where a RANS model is used in the near wall region, and an LES model is used in
the outer region, and the two regions are blended smoothly using a blending function
k. In such a case, the velocity profile is defined as,

ũi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈ui〉 RANS;

kūi + (1 − k) 〈ui〉 interface;

ūi LES

(17)
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Fig. 2 E-averaged continuity
equation plotted for different
wall-normal locations
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where 〈〉 denotes a RANS-averaged field and “bar” represents an LES-filtered field.
The continuity equation for the velocity field, ũi, in this case yields

∂ũi

∂xi

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂ 〈ui〉

∂xi

= 0 RANS;

∂k

∂xi

(ūi − 〈ui〉) �= 0 interface;

∂ūi

∂xi

= 0 LES.

(18)

While equating the divergence to zero is acceptable in the RANS and LES regions,
a divergence-free condition amounts to setting both the RANS and LES velocities
equal in the interface region. Obviously, this is inaccurate. The current form of the
continuity equation is more accurate in situations where a separate RANS and LES
models are combined using a smooth blending function.

3.2 Hybrid stresses

The HFNS contains the H-field subgrid-scale stress term (8), which consists of three
terms. The first two terms of these three are what is expected of a direct blending
of RANS and LES. The third term, Gij which will be referred to as Germano
stresses hereinafter, can be quite significant at the interface owing to the non-zero
fluctuation-like quantity, (〈ui〉F − 〈ui〉E). To examine the contribution of this term we
considered the anisotropic part of τH , which is given as

τ a
H = −2kνF

〈

Sij

〉

F
− 2(1 − k)νE

〈

Sij

〉

E
+ k(1 − k)Ga

ij, (19)

where Gij is given by (9). For the a priori test, we obtained the strain rates, νF , νE

and the exact value of Ga
ij term directly from the LES and RANS solutions. Thus we

could calculate τ a
H exactly. Figure 3a shows the modeled Reynolds shear stress, while

Fig. 3b shows the total (modeled + resolved) stress, both with and without the Ga
ij
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Fig. 3 Reynolds shear stresses. a Solid line modeled stress with the Ga
ij term ; dotted line modeled

stress without the Ga
ij term; circle resolved stress. b Circle total Reynolds shear stress with Ga

ij term;

dotted line total stress without the Ga
ij term; solid line (1-y)

term. It is seen that the modeled stress without the Germano stress term is smaller
than that with it, and the difference is more pronounced when k is neither zero nor
1 (see Fig. 1). This trend is more clearly shown in Fig. 3b, wherein the total stress
without the Ga

ij term is seen to have a defect resulting in an oddly-shaped curve.
This test reveals that the Germano stress term plays a critical role in its contribution
to the total shear stress. Ignoring this term and blending any two models directly
may lead to significant discrepancy in the total Reynolds shear stress. On the other
hand, for a DES-like wall layer model, wherein a single eddy viscosity transport
equation is used, such a trend is not explicitly revealed. Nevertheless, the problem
owing to the lack of this term exists in other forms: depletion of modeled stress for
ambiguous grid densities, improper transport of wall-normal momentum fluxes, poor
skin-friction coefficient, and overly large velocity gradients at the interface leading
to an overshoot in the log-law region.

3.3 Contributions of extra terms in HFNS

In this section we analyze the contribution of the extra terms, i.e., the terms that
contain the derivatives of k in the HFNS equations. For this let us define

Qi =
∂k

∂x j

(

〈ui〉F

〈

u j

〉

F
− 〈ui〉E

〈

u j

〉

E
+ τ a

F − τ a
E −

2

Re

∂

∂x j

(〈ui〉F − 〈ui〉E)

)

−
1

Re

∂2k

∂x2
j

(〈ui〉F − 〈ui〉E) (20)

and then the right hand side of the HFNS is

Ri = −
∂τ a

H

∂x j

+ Qi. (21)
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Now the ratio
Qi

Ri
will represent the fractional contribution due to the extra terms.

Figure 4 shows the instantaneous values of the ratio
Qi

Ri
at different wall-normal

locations. Note that for the blending function chosen, the extra terms contribute only
near the RANS-LES interface. At y+ = 45, where the blending function just starts
to increase from zero, the contribution of the extra terms is about 7%. At y+ ≈ 90,
where about 55% of H-filtered velocity is due to LES, the extra terms contribute
about 33%. In the next two locations, y+ ≈ 110 and y+ ≈ 160, where LES is about
79% and 92% respectively, the contribution due to the extra terms is reduced to
15% and 8%. Recognizing that Qi is significant near the RANS/LES region only, we
conclude that Qi plays a similar role to the ad hoc forcing term added into traditional
hybrid approaches. However, Qi in the hybrid-filter approach arises naturally as a
consequence of formal blending of two filtered fields.

3.4 Instantaneous velocity field

The transport of turbulence fluctuations in the wall-normal direction is a major prob-
lem in hybrid models. This is understandable because the fluctuation-void RANS
simulation and fluctuation-resolved LES simulation are merged at the interface
“forcibly” in usual hybrid models. The only way the fluctuations can be transported
has been by artificially including additional fluctuations at the interface. This was
done in Piomelli et al. [11]. In the H-filter approach, this is accomplished by three
means: the smooth blending function, the Germano stresses, and the extra terms
in the momentum equation. Notably, all three terms are most active only near the
interface. The H-filter adjusts the amount of fluctuations transferred from the fully

time
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Fig. 4 Contributions of extra terms to the HFNS equation at different wall-normal locations: a y+ =

45; b y+ = 90; c y+ = 110; d y+ = 160
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RANS region to the fully LES region, depending on the local grid density and
the blending function used. In our past work, and as reported by Piomelli [11], we
observed artificially long streamwise streaks in velocity fluctuations in the near-
wall region for DES. These were blamed for adversely affecting the momentum
and energy transport at the interface, causing large velocity gradients and resulting
in an overshoot in the log-layer. In the current H-filter approach, this deficiency
is expected to be diminished, if not completely eliminated, and thereby the long
streamwise streaks would break down, yielding results similar to those obtained by
stochastic forcing case of Piomelli [11]. In order to examine this phenomenon, we
constructed the H-field fluctuation defined as,

〈

u′
i

〉

H
= 〈ui〉H − 〈〈ui〉H〉E . (22)

Contours of this quantity are shown in Fig. 5. At y+ = 6, very close to the wall, we
see that the long streamwise streaks are broken down as was seen in Piomelli et al.’s
stochastic forcing case, thus confirming the sufficiency of “forcing” at the interface
in the H-filter approach. At other locations, LES has dominant contributions to the
total solution and contours show turbulent fluctuations similar to those observed in
LES.

3.5 H-filtered turbulent kinetic energy budget

The H-filtered energy equation is obtained by multiplying (12) by 〈ui〉H :

DH 〈E〉H

Dt
+

〈

u j

〉

H

∂̃ 〈P〉H

∂x j

+
∂

〈

T j

〉

H

∂x j

= 〈ε〉H + 〈P〉H + 〈Q〉H , (23)

y+ = 6 y+ = 80

y+ = 220 y+ = 500

Fig. 5 Contours of streamwise velocity fluctuations, Reτ = 560. Plotted at four different wall-normal
locations as shown
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where

DH

Dt
=

∂

∂t
+

〈

u j

〉

H

∂

∂x j

, 〈E〉H =

〈

u j

〉

H

〈

u j

〉

H

2
, 〈ε〉H = −

2

Re

〈

Sij

〉

H

〈

Sij

〉

H
,

〈

T j

〉

H
= 〈ui〉H τ a

H(ui, u j) −
2

Re
〈ui〉H

〈

Sij

〉

H
, 〈P〉H = τ a

H(ui, u j)
〈

Sij

〉

H
,

〈Q〉H =
∂k

∂x j

[

〈ui〉H

(〈

uiu j

〉

F
−

〈

uiu j

〉

E

)

− 2 〈E〉H

(〈

u j

〉

F
−

〈

u j

〉

E

)

−
2

Re
〈ui〉H

∂ 〈ui〉F

∂x j

]

−

−
1

Re

∂2k

∂x2
j

〈ui〉H (〈ui〉F − 〈ui〉E) −
1

Re
〈ui〉H

∂

∂xi

(

∂k

∂x j

(〈

u j

〉

F
−

〈

u j

〉

E

)

)

.

The term 〈Q〉H arises owing to the extra terms in the momentum equation and owing
to the non-divergence-free form of the continuity equation. The corresponding LES
equation for the filtered velocity field is

D̄E f

Dt
+ ū j

∂ p̄

∂x j

+
∂T j

∂x j

= ε f + P, (24)

where

D̄

Dt
=

∂

∂t
+ ū j

∂

∂x j

,

E f =
ū jū j

2
,

T j = ūiτ
a
ij −

2

Re
ūi S̄ij,

ε f = −
2

Re
S̄ijS̄ij,

P = τ a
ij S̄ij. (25)

Like the momentum equations, the kinetic energy equation of the H-filtered (23)
and LES (24) fields have analogous terms. The only difference is the appearance of
the term 〈Q〉H in the former. As in the momentum equation, these extra terms are
effective only in the interface region, and therefore adds or removes the energy only
in this region. Whereas the net contribution of the extra terms in the momentum
equation is zero in the mean, the term

〈

〈Q〉H

〉

E
in the energy equation is not. In this

sense, this model is quite similar to Piomelli et al.’s [11] stochastic backscatter model,
which adds significant energy (without adding net mean momentum) at the interface.
Figure 6 shows the mean 〈Q〉H , which is non-zero only at the interface. It is worth
noting that this extra term removes energy from the region facing the RANS region
and adds energy to the region facing the LES region, thus providing wall-normal
energy transport that is absent in conventional hybrid approaches.

Next, we examine the terms P = τ a
ij S̄ij (bar represents LES filtering) and 〈P〉H =

τ a
H(ui, u j)

〈

Sij

〉

H
. The 〈P〉H term, which is actually a sink in the H-filtered kinetic energy

equation (even though it appears with a positive sign), will be a source in the
residual kinetic energy equation. In other words, it represents the energy transfer
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Fig. 6 Solid line production of
residual kinetic energy for
LES; solid-f illed circle-solid
line production of the residual
kinetic energy for H-field;
solid-open circle-solid line,
〈Q〉H in (23)

y
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from resolvable-scale motions to subgrid-scale motions. Mean values of P and 〈P〉H

are shown in Fig. 6. Note that the magnitude of 〈P〉H is much larger than that of P .
This is because the former depends on RANS and LES eddy viscosities while the
latter depends on LES eddy viscosity only. Recall that 〈P〉H represents the energy
transfer from H-field to subgrid field that includes RANS and LES subgrid scales,
whereas P represents the energy transfer from LES resolved scales to subgrid scales.

4 Simulations

The ultimate success (or failure) of a numerical procedure and turbulence model
can be measured by its performance in actual simulations. In this section, we present
how the hybrid-filter approach was implemented, along with some issues that arose
during the implementation, and then we discuss simulation results.

4.1 Hybrid-filtered Navier–Stokes equations

Starting from (12), the governing equations can be written as

∂ 〈ui〉H

∂t
+

∂ 〈ui〉H

〈

u j

〉

H

∂x j

+
d̃ 〈P〉E

dx1

δ1i +
∂̃ 〈P′〉H

∂xi

−
∂

∂x j

[

1

Re

∂ 〈ui〉H

∂x j

− τ a
H(ui, u j)

]

= +
∂k

∂x j

(

〈ui〉F

〈

u j

〉

F
− 〈ui〉E

〈

u j

〉

E

)

+
∂k

∂x j

(

τ a
F(ui, u j) − τ a

E(ui, u j)
)

−
2

Re

∂k

∂x j

∂

∂x j

(〈ui〉F − 〈ui〉E) −
1

Re

∂2k

∂x j∂x j

(〈ui〉F − 〈ui〉E) , (26)

where the pressure gradient term is split into its mean and fluctuation.
The subgrid-scale stresses at the F and E levels in (26) are modeled, respectively,

through the dynamic Smagrorinsky model and Spalart–Allmaras eddy viscosity
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model. The subgrid-scale stress at the H level could be computed directly from

τ a
H = kτ a

F + (1 − k)τ a
E + k(1 − k)Ga

ij. (27)

It turned out, however, that the H-level eddy viscosity determined this way was
not dissipative enough, resulting in noisy or unstable solutions. Instead, we used an
equivalent eddy viscosity model for H-level subgrid-scale stress,

τ a
H = −2νH

〈

Sij

〉

H
. (28)

Substituting (28) and the corresponding eddy viscosity model for F and E levels into
(27) yields,

− 2νH

〈

Sij

〉

H
= −2kνF

〈

Sij

〉

F
− 2(1 − k)νE

〈

Sij

〉

E
+ k(1 − k)Ga

ij. (29)

By contracting the above equation with
〈

Sij

〉

H

− 2νH

〈

Sij

〉

H

〈

Sij

〉

H
= −2kνF

〈

Sij

〉

F

〈

Sij

〉

H
− 2(1 − k)νE

〈

Sij

〉

E

〈

Sij

〉

H

+k(1 − k)Ga
ij

〈

Sij

〉

H
, (30)

we get

νH =
kνF

〈

Sij

〉

F

〈

Sij

〉

H
+ (1 − k)νE

〈

Sij

〉

E

〈

Sij

〉

H
− k(1−k)

2
Ga

ij

〈

Sij

〉

H

S2
, (31)

where S2 =
〈

Sij

〉

H

〈

Sij

〉

H
. This procedure has some resemblance to the dynamic eddy-

viscosity model of Lilly [9]. Analytically, the H-level subgrid scale stress determined
using the equivalent eddy-viscosity ((28) and (31)) should be the same as that
computed directly using (27). However, direct computation of the H-level subgrid
scale stress using (27) led to a numerical instability due to a lack of dissipation,
whereas using the equivalent eddy viscosity ((28) and (31)) produced stable solutions
with good modeled and resolved Reynolds shear stresses (see Section 4.4). For
further discussions, the reader is referred to Rajamani [12].

4.2 Blending function and reconstruction

The blending function, k, not only delineates the RANS and LES regions, but also
plays a major role in the reconstruction of F-field from H-filed. Traditional blending
functions, which perform RANS only near the walls (k = 0) and LES away from
the walls (k = 1), as shown in Fig. 1, imply ǫ = 0 in (15). However, reconstruction
of LES field from H-field becomes difficult with this choice of ǫ. The problem
occurs not near the wall where k = 0, but around the location where k starts to
increase from zero. This is because near the wall, where k = 0, although the recovery

factor
1 − k

k
(see (5)) is undefined, a RANS-only simulation in this region means

〈ui〉H = 〈ui〉E. As we reach the cusp of the RANS-LES interface, some LES will
be performed and hence the term 〈ui〉H − 〈ui〉E is no longer zero. The recovery
factor at this location is, however, large owing to the occurrence of a very small k

in the denominator. One way to overcome this problem is to construct a blending
function with 0 < ǫ ≪ 1, i.e., k �= 0 near the wall. The implication of a non-zero ǫ is
obvious: some large-scale fluctuations are captured by a coarse LES. We performed
all our simulations in this paper with a non-zero ǫ.
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In solving (26) for the H-field, we need to reconstruct the E- and F-field.
Reconstruction of the E-field is straightforward from (3). Reconstruction of the F-
field from the H-field, on the other hand, is an ill-posed deconvolution problem and
is an inherently noisy process. This is indeed a weakness of the present hybrid-filter
approach. In our simulations, F-level velocity field was replaced by H- and E-level
velocity by using (4). The hybrid-filtered Navier–Stokes equations and the continuity
equation in terms of H- and E-level velocity are then:

∂ 〈ui〉H

∂t
+

∂ 〈ui〉H

〈

u j

〉

H

∂x j

+
d̃ 〈P〉E

dx1

δ1i +
∂̃ 〈P′〉H

∂xi

−
∂

∂x j

[(

1

Re
+ νH

)

∂ 〈ui〉H

∂x j

]

=
∂k

∂x j

[

(

〈ui〉F

〈

u j

〉

F
−〈ui〉E

〈

u j

〉

E

)a
−2

(

νF

〈

Sij

〉

F
−νE

〈

Sij

〉

E

)

−
2

Re

∂

∂x j

(

〈ui〉H −〈ui〉E

k

)]

−
1

Re

∂2k

∂x2
j

(

〈ui〉H − 〈ui〉E

k

)

+ νH

∂

∂xi

[

∂k

∂x j

(
〈

u j

〉

H
−

〈

u j

〉

E

k

)]

+
∂νH

∂x j

∂
〈

u j

〉

H

∂xi

, (32)

∂
〈

u j

〉

H

∂x j

=
1

k

∂k

∂x j

(〈

u j

〉

H
−

〈

u j

〉

E

)

. (33)

Similarly, the Germano stresses were obtained from

Ga
ij =

1 − k

k

[

(〈ui〉H − 〈ui〉E)
(〈

u j

〉

H
−

〈

u j

〉

E

)]a
. (34)

4.3 Numerical methods

Equations (32)–(34) were solved using the fractional-step method of Kim and
Moin [7]. The viscous terms were treated implicitly using the Crank–Nicolson
method, and all other terms were treated explicitly using a low-storage third-order
Runge–Kutta method. The Poisson equation for pressure, which was necessary to
enforce the continuity equation, in the same manner as enforcing the divergence-free
continuity equation for LES or DNS, was solved using a hybrid of fast transformation
and a multigrid method (the multigrid method was not necessary for channel flows,
but the code was written for generalized coordinates in order to handle more com-
plex geometries). The accuracy of this finite-difference code was validated against the
spectral code of Kim et al. [8] for DNS of a regular channel flow. For further details
on the numerical methods and validations, the reader is referred to Rajamani [12].

4.4 Simulation results

We first performed, as a benchmark case, a simulation for the same Reynolds
number, grid and blending function as those used in the a priori tests presented
in Section 3. The grid used for the study was 129 × 129 × 129 with 	y+

w = 0.6 and
	y+

c = 2.4 and the blending function k as given in Fig. 1 (ǫ = 0.15). The mean
velocity profile obtained from the HFNS and that obtained from LES on the same
grid are shown together in Fig. 7a, indicating a good agreement. Note that there is
no overshoot in the log region and beyond in contrast to those obtained from most
existing hybrid approaches (without the special ad hoc forcing). In fact, the H-filter
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Fig. 7 a Mean velocity profile, Reτ = 560: solid line current H-filter result; open circle LES; dashed

line u+ = y+; dash-dot-dashed line u+ =
1

κ
log y+ + 5.0.. b Reynolds shear stress: dash-dot-dashed

line modeled stress; dashed line resolved stress; dotted line total = modeled + resolved; solid line
1 − y

velocity profile follows the log law (with a logarithmic intercept of B = 5.0) more
closely than the LES profile. On this grid, the logarithmic intercept of the LES profile
was determined to be 5.1.

For any hybrid method, including DES, an important test for the robustness of
the model is the behavior of the Reynolds shear stress at or around the RANS/LES
interface. Here, the total stress has to be sustained by both modeled and resolved
stresses. Figure 7b shows that the modeled and resolved stresses budget themselves
at the interface so that the total stress follows the 1 − y line closely.

Having validated the hybrid filter approach at Reτ = 560, we performed several
simulations at Reτ = 5,000 in order to evaluate its performance at high Reynolds
numbers, for which LES would require much finer grids than those described below.
We used several different blending functions and two different grids in the wall-
normal direction in order to examine the sensitivity. The motivation for using two
different wall-normal grids was based on our observation that DES results often
suffer from the lack of grid convergence due the fact that RANS/LES region varies as
the wall-normal grid varies. We used 129 × 97 × 129 (grid “g1”) and 129 × 129 × 129

(grid “g2”), the domain size was 2π × 2 × π , respectively, for the streamwise, wall-
normal and spanwise directions. Thus, 	x = 0.049 and 	z = 0.025 respectively. For
the wall-normal direction, 	y+

w = 1.43 and 	y+
c = 350 for 129 × 97 × 129 grid and

	y+
w = 1.2 and 	y+

c = 225 for 129 × 129 × 129 grid. Six cases to be discussed in this
paper are shown in Table 1, and different blending functions used are shown in Fig. 8.

Table 1 Flow simulation cases
performed

Case Reτ Ny k 	y+
w 	y+

c C f % err

k00g15K 5,000 97 Fig. 8a 1.43 350 5.56

k01g15K 5,000 97 Fig. 8a 1.43 350 6.24

k02g15K 5,000 97 Fig. 8a 1.43 350 11.32

k03g25K 5,000 129 Fig. 8b 1.2 225 4.19

k04g25K 5,000 129 Fig. 8b 1.2 225 5.01

k05g25K 5,000 129 Fig. 8b 1.2 225 5.19
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Fig. 8 Different blending functions used in this study generated using different α and β (see (15)). a
On grid 129 × 97 × 129 (“g1” cases): solid line k00g15K; dashed line k01g15K; dash-dot-dashed line
k02g15K. b On grid 129 × 129 × 129 (“g2” cases): solid line k03g25K; dashed line k04g25K; dash-dot-
dashed line k05g25K

Simulations performed on many other grids and blending functions can be found in
Rajamani [12].

4.4.1 Mean velocity prof ile

Figure 9 shows mean velocity profiles for six cases. Also plotted in Fig. 9a is a result
from DES using the same grid as other cases in the figure. In contrast to the DES
result, which shows the typical overshoot (caused in part due to an under-prediction
of the skin friction), all H-field simulations follow the log law very well. The case
k02g15K, which had the smallest RANS region, shows a deviation from the log law
in the central region. For the combination of the grid and blending function used
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in this case, near-wall region was under-resolved for an early LES. The success
of the hybrid-filter approach in reproducing the good mean profiles is attributed
to the increased momentum transport near the RANS/LES transition region. The

skin-friction coefficient, C f =
τw

1
2
ρU2

, is another good indicator of the robustness

of the RANS/LES transition zone. The absolute values of percentage errors in the
skin-friction coefficient compared with Dean’s correlation, C f = 0.073 Re−0.25, are
shown in Table 1. These errors are better than that of typical hybrid approaches and
comparable to that obtained with ad hoc forcing (e.g., Piomelli et al. [11]). From the
mean velocity profiles and the C f errors, we notice a close correlation between the
shape of the former and the model’s ability to predict the latter. We conclude that
the same mechanisms that caused the poor prediction of the mean velocity profile
is the reason for the poor prediction of the skin friction coefficient as well. This is
consistent with the explanations of Baggett [2] and Piomelli et al. [11] that the lack of
fluctuations in the RANS region induces artificially long and stable near-wall streaks,
which were unable to transfer wall-normal momentum, ultimately leading to a wrong
skin friction at the wall.

4.4.2 Reynolds shear stresses

Reynolds shear stresses—modeled, resolved and total—are shown in Figs. 10 and 11.
The shapes of the modeled and resolved stresses in these figures reveal that if the
blending function is flat in the near wall region and then starts to increase, the
modeled stress reaches its peak value and falls monotonically. The resolved stresses
adjusts its near wall behavior (Figs. 10b and 11b) such that the total stress (Figs. 10c,
and 11c) follows the 1 − y line in a fully-developed state. The behavior of the
modeled and resolved stresses is interesting because, at the interface, the blending
function, the RANS and LES eddy viscosity models, and the grid resolution together
should produce the right amount of “LES content” without depleting the modeled
stresses. This is seen to be true for all cases. One reason for the total stresses to have
this correct behavior is due to the Germano stress term as we observed in our a priori
tests.

4.4.3 Instantaneous velocity f ield

In Section 3.4 we showed, through a priori tests, that the blending function and
the extra terms in HFNS, the Germano stress term in particular, would provide
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additional velocity fluctuations in the RANS/LES transition region. Additional
velocity fluctuations would provide adequate momentum transport from RANS to
LES region, and would break down the artificially long and stable streaky structures
that were observed in many hybrid simulations. This expectation was confirmed
in simulations. Consistent with the a priori test results, artificially long streaky
structures that extended the entire channel along the streamwise direction were
absent (Fig. 12). Such streaks were observed by Baggett [2], Piomelli et al. [11] and in
our own DES calculations. In the stochastic forcing case of Piomelli et al. [11], these
streaks were seen to be broken down. The present results demonstrate the strength of
the hybrid-filter approach in that it does not require any additional ad hoc stochastic
forcing in order to have proper momentum transfer in the RANS/LES region, which
in turn leads to more accurate turbulence structures in the wall region.

y+
= 25 y+

= 400

y+
= 1500 y+

= 3500

Fig. 12 Contours of streamwise velocity fluctuations, case k02g15K. Plotted for four different wall-
normal locations shown
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5 Summary and Concluding Remarks

We have examined Germano’s hybrid-filter approach, first through a unique a priori
test, and then through simulations of turbulent channel flow. We have also addressed
the fundamental question of blending two disparate solution techniques. Unlike
most existing hybrid methods, which combine two disparate solutions somewhat
arbitrarily, Germano’s approach defines the combined field in a more precise manner
by blending two disparate solutions through a hybrid filter. This process introduces
additional terms in the hybrid-filtered Navier–Stokes equations (HFNS). We pro-
vided clear evidence that it was essential to have a Germano stress- like term in the
Reynolds stresses in order to achieve the correct total stress at the interface. Blending
a RANS model and an LES model at a chosen location and matching a secondary
quantity such as Reynolds shear stress was not adequate because the Germano
stress term (or likewise term) was missing in such approaches (it was brought to our
attention by an anonymous referee that Sánchez-Rocha and Menon [13] also used
an additive-filter in their hybrid simulation of a compressible boundary layer and
drew a similar conclusion). Also clear from the present work was why such methods
as the stochastic forcing applied by Piomelli et al. [11] and additional filtering at
the interface by Hamba [6] yielded improved results. In these methods, the total
Reynolds stresses at the interface was sustained more accurately, albeit artificially,
via the additional source terms. It is worth noting that only as an a posteriori exercise,
it may be possible to specify the required forcing for a given grid and Reynolds
number. It was also shown that the extra terms in HFNS made the transition from the
RANS to LES region smoother than a smooth blending function alone can provide,
thus also capturing the wall-layer structure correctly.

We were able to successfully simulate the channel flow using the new HFNS equa-
tions. The governing equations had several difficulties to overcome. For example,
tackling the extra terms in the momentum equation numerically, devising a suitable
blending function that minimizes errors in the reconstruction of F-field, incorporat-
ing a non-solenoidal form of continuity equation into the fractional step method,
and finally introducing an equivalent eddy-viscosity to allow enough dissipation to
stabilize the H-filtered velocity field evaluation were some of the problems we had
to overcome in the full simulation of HFNS equations. Despite these difficulties the
hybrid-filter approach produced better mean-velocity, skin-friction, Reynolds shear
stress and turbulence structures (especially in the RANS/LES region) than other
hybrid approaches, including DES, that we have tested. It was shown that the present
approach was superior to other hybrid methods in that it did not require any ad hoc
forcing in order to have adequate momentum transfer from RANS to LES region.

There are plenty of issues and challenges to overcome before the hybrid-filter
approach can be applied to complex turbulent flows at a high Reynolds number, the
ultimate goal of all hybrid RANS/LES approaches. Choice of the blending function,
appropriate grid resolution (especially in the RANS/LES transition region), and
reconstruction of F-field from computed H-field are among the most critical issues.
Based on our observations (some presented in this paper and others not shown
here), we draw the following conclusions regarding the blending function and grid
resolution:

– The blending function, k, can neither be too close to zero in the near-wall region,
nor can it be too large. If k is too small, reconstructed LES field is poor; if it is too
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large, higher resolution is required to sustain the increased grid scale stresses. An
optimum near-wall value of k appears to be about 0.15.

– In order for the solution to not be adversely affected in the outer layer, the
blending function must have a flat (constant) RANS region. Otherwise, the grid
resolution requirements will be excessive in the transition region. This was based
on simulations (not shown here) with an extreme blending function, which rises
very quickly into the LES region.

– The grid density and blending function are closely related to one another, and
the resolution requirement in the near-wall region depends on the shape and
value (in the wall region) of the blending function.

– H-field solutions did not deteriorate as the grid was refined, in contrast to some
DES solutions.

– It is worth noting that H-field solutions are different from a numerically under-
resolved LES field in that all sub-grid scales both at E- and F-levels are, at
least in principle, properly accounted for by each model. Here we use the
term ‘filtered’ differently from the traditional LES since H-filter involves the
averaging operator E (equivalent to filtering all fluctuations).

Finally, we conclude that issues and challenges notwithstanding, Germano’s
hybrid-filter approach appears to be a viable tool for simulating turbulent flows at
large Reynolds numbers, for which neither LES nor DNS is feasible in the near
future.
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