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ABSTRACT

We propose a novel vessel enhancement filter for retinal images.
The filter can be used as a preprocessing step in applicationssuch
as vessel segmentation/visualization, and pathology detection. The
proposed filter combines the eigenvalues of the Hessian matrix, the
response of matched filters, and edge constraints on multiple scales.
The eigenvectors of the Hessian matrix provide the orientation of
vessels and so only one matched filter is necessary at each pixel in a
given scale. This makes the proposed filter more efficient compared
with existing multiscale matched filters. Edge constraintsare used
to suppress the response of spurious boundary edges. Experimen-
tal evaluation on the publicly available DRIVE dataset demonstrate
improved performance of the proposed filter compared with known
techniques.

Index Terms— vessel enhancement, vessel segmentation, Hes-
sian directions, matched filters, edge constraints, retinal images, med-
ical imaging

1. INTRODUCTION

Optic fundus assessment has been widely used in the medical com-
munity for diagnosing vascular and non-vascular pathology. Inspec-
tion of the retinal vasculature may reveal hypertension, diabetes, ar-
teriosclerosis, cardiovascular disease and stroke [1]. Due to various
imaging conditions retinal images may be degraded. Consequently,
the enhancement of such images and vessels in them is an important
task with direct clinical applications.

There has been substantial research on vessel segmentationin
retinal images. Hoover [2] proposed the segmentation of vessels
using matched filters, where the second derivative of Gaussian func-
tions in 12 directions are convolved with the image. To detect ves-
sels of various radii, the Gaussian functions at multiple scales are
applied. Many other methods have been proposed, such as adaptive
thresholding [3], intensity edges [4], region growing [5],statistical
inferencing [6], mathematical morphology [7], principal component
separation [8], probabilistic modeling [9, 10], and Hessian measures
[11]. Hessian-based multiscale segmentation/enhancement of ves-
sels in retinal images have been extensively studied. By convolving
with Gaussian kernels of various sizes, the normalized second or-
der derivatives [12] can indicate the scale and orientationof vessels.
The use of eigenvalues of the Hessian on multiple scales is still not
sufficient to distinguish false positives at the boundary ofretinal im-
ages, the optic disc, and various pathologies. Sofka et al. [13] pro-
posed a method to segment vessels based on six features: response
of multiscale matched filters, vessel confidence measure, gradient at
the boundary of vessels, and the edge strength at the boundary. The
features on all pixels are computed and their distributionsare eval-
uated based on training images from the publicly available DRIVE

database [14]. Based on the distribution of features of known ves-
sels from 20 training images, the vesselness of each pixel isdefined
statistically by the the likelihood ratio based on the Neyman-Pearson
Lemma [15]. The six features have some redundancy in them. For
example, vessel confidence measure is correlated with edge strength.

In this paper, we propose an effective enhancement filter for
vessels in retinal images. This filter combines the advantages of
Hessian-based filters and matched filters, and incorporatesedge con-
straints of vessels. Since the green channel of retinal images shows
the largest contrast between vessels and the background, wefirst
convert retinal color images into grayscale images by only keeping
the green channel. Unlike vessels in other imaging modalities, ves-
sels in retinal images appear darker than the background. Tobe con-
sistent with other modalities, we invert the image intensities so that
that the intensity of vessels is higher compared to the background.
The following discussion is based on inverted grayscale images.

The paper is organized as follows. Section 2 introduces Hessian-
based vessel filters. Section 3 introduces the multi-scale matched
filter. A detailed description of the proposed filter is presented in
section 4. Experimental results are shown in section 5. Section 6
concludes this paper.

2. HESSIAN-BASED VESSEL ENHANCEMENT

It is widely assumed [16, 13, 2, 17] that the intensity profileof a ves-
sel in the cross section can be modeled by a Gaussian functiondue
to the fact that pixels at the center of vessels are brighter than pix-
els near the boundary. It is also commonly assumed that the intensity
does not change much along vessels. Although some large vessels in
retinal images may have a dark line in their center, such lines can be
easily removed by smoothing, and so such lines do not invalidate the
Gaussian profile assumption. To distinguish vessels from other non-
tubular structures such as planes, second order derivativefeatures
such as curvatures in Hessian-based enhancement filters areused.
Planes have zero curvature in all directions except at the boundary.
Vessels have a large curvature in the sectional direction and a small
curvature along their center lines. The two principal curvatures can
be obtained from the Hessian matrixH which is a second order de-
scriptor. For a 3D image the Hessian is given by:
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Let |λ1| ≥ |λ2| ≥ |λ3| be the three eigenvalues of the Hessian
matrix. For a 3D vessel,λ3 should be close to zero while|λ1| ≈
|λ2| ≫ |λ3|. Therefore, many researchers [18, 19] have proposed
using the ratio between the eigenvalues to enhance vessels.Frangi
et al. [16, 18] compute the scoresRB = |λ3|/
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filter for 3D vessel as:

Vs(x) =
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0 otherwise

(2)
where parameterα, β andγ are constants. For 2D images the first
exponential is removed, and so this filter is not effective indistin-
guishing between step edges and vessels. Hence, in 2D imagesmore
information is necessary for effective vessel segmentation.

3. THE MULTISCALE MATCHED FILTER

A multiscale matched filter [17, 13] is based on the same vessel pro-
file assumption. It differs from Hessian filters in that it convolves
the image with the second order derivative of a Gaussian function
over multiple scales and takes the maximum response of the output.
Given a input functionf(x) and a filters(x), the output of the filter
is:

h(x) =

Z ∞

−∞

s(x − x′)f(x′)dx′ (3)

The filter that produces the largest response is the matched filter. Its
shape can be obtained by reversing the shape of the signal to be de-
tected [15]. Chaudhuri et al. [20] used a matched filter to detect
vessels in retinal images. The filter gives maximum responsewhen
its orientation and shape is the same as the intensity profile. Ves-
sels are modeled as piecewise linear segments with Gaussiancross
sections. Twelve Gaussian templates at different orientations and a
single scale are used. The work in [13, 17] proposed using multi-
scale matched filters to measure the vesselness of vessels inretinal
images based on normalized derivatives [12, 21]. The filtering at
each scale is implemented by maximizing the response over a set of
kernel orientations. In [13], two one dimensional kernels are applied
successively to compute the response of a two-dimensional separable
kernel. The kernel in the tangential direction is simply a Gaussian
function and the kernel in the normal direction is the secondorder
derivative of the Gaussian function. In a coordinate systemrotated to
alignu with the tangential direction andv with the normal direction,
the matched filter response is defined as

M(R;u, v; tu, tv) = −

Z ∞

−∞

Z ∞

−∞

gvv(v − v′; tv)·

g(u − u′; tu) · f(u′, v′; t0)du′dv′

(4)

wheretu and tv are the variances of the Gaussian kernel in each
direction andf(u′, v′; t0) is the image intensity after smoothed by a
Gaussian function with kernel size equal tot0. To detect vessels at a
variety of widths, the matched filter is applied at multiple scales and
the response on multiple scales are combined.

4. THE PROPOSED HYBRID FILTER

As discussed earlier, a Hessian-based filters can enhance vessels of
various size and estimate their directions at the same time.However,
Hessian-based filters can not distinguish step edges from vessels ef-
fectively. Matched filters can distinguish step edges from vessels
more effectively. Matched filters are normally applied at multiple
scales, whereas at each scale multiple kernels are used to enhance
vessels in different directions. Consequently, the computational cost
of matched filters is higher than that of Hessian-based filters. To
solve the problem of false detection of edges, Sofka [13] proposed

using the edge information at the boundary of vessels. A vessel
should have two edges on each side of it which can be used to ef-
fectively distinguish between vessels and edges in the image. The
proposed enhancement filter combines the advantages of Hessian-
based filters, matched filters, and edge information. The proposed
filter is parametric and is simple to implement.

We assume that vessels in retinal images have the following
three properties: the profile in the cross section is Gaussian, the in-
tensity changes little along the center line of vessels, andthere are
two edges at the boundary of vessels. Similar to Hessian-based fil-
ters, we compute the Hessian matrix at each pixel of the imageon
multiple scales by convolving the image with Gaussian kernels of
multiple sizes. Let|λ1τ | > |λ2τ | be the eigenvalues of the Hessian
matrix at scaleτ and letuτ , vτ be the eigenvector associated with
λ1τ , λ2τ respectively. Based on the vessel assumptions above the
ratio |λ2τ |

|λ1τ |
should be close to zero anduτ should be in the cross sec-

tion of the vessel whereasvτ should be in the direction of the center
line. Based onλ1τ , λ2τ , andτ , we define the following term:

Vhτ (x) =

(

exp(− |λ2τ /λ1τ |2

2β2 )(1 − exp(− |λ1τ |2

2γ2 )) if λ1τ < 0

0 otherwise
(5)

whereγ = Ixy/(α/τ 0.5), Ixy denotes the intensity at point(x, y)
of the image, andα is a constant. The filter is not sensitive to the
choice ofα. In our experiments, it is set to 36. The Hessian matrix
is computed on multiple scales. Because retinal images havemany
wide strip areas with low intensity, the introduction of thewidth τ in
γ can effectively suppress the response of such structures.

As discussed earlier, the ratio of eigenvalues can not distinguish
edges from vessels as effectively as matched filters. Therefore, an
additional filter response is obtained by convolving the image with a
matched filter in the cross direction of the vessels. The matched filter
is a second order derivative of a one dimensional Gaussian function
as shown in Equation 4. The kernel size of the Gaussian function
is τ . For simplicity, this filter can be implemented by convolving
the pixels in the cross section with a vectorm, wheremi|i=1:τ =
−1, mi|i=τ+1:3τ = 1, mi|i=3τ+1:4τ = −1. Let p represent the
intensities of pixels in in the cross section. Obviously, the length of
p is 4τ . The response of the matched filter at scaleτ is computed
asVmτ = p·m

|p||m|
. The vesselness of the proposed filter at scaleτ is

defined byVτ = Vhτ · Vmτ .
Beside the vesselness measureVτ , the proposed filter also in-

corporates the constraint that a vessel has two edges. Givena vessel
of radiusr, there should be two parallel edges at distancer from the
center line. The two edges can be simply modeled as step edges. The
response of the two edges is obtained by convolving the pixels with
a step edge filterm′, wherem′

i|i=1:τ = 1 andm′
i|i=τ+1:2τ = −1.

Let p′ be a vector that contains the intensity of pixels in the crossdi-
rection of the vessel on one side of the center line. The edge response
at scaleτ is given by:Veτ = p′·m′

|p′||m′|
. Since vessels are brighter than

the background, the edge response on vessels should be positive. Let
V 1

eτ andV 2
eτ be the two edge responses. By applying the constraint

that bothV 1
eτ andV 2

eτ must be positive, we can effectively distin-
guish step edges in retinal images from vessels. The final response
of the filter on one scale is defined by:

Fτ (x) =



Vhτ · Vmτ if V 1
eτ > 0 ∧ V 2

eτ > 0
0 otherwise

(6)

Given a set of scalesS, the final filter response is given by:

F (x) = max{Fτ (x) | τ ∈ S} (7)



5. EXPERIMENTAL RESULTS

The performance of the proposed hybrid filter is evaluated bycom-
paring it with a multiscale matched filter and the Frangi filter using
the publicly available DRIVE database [14]. The three filters were
applied to all 40 images in this database. Figure 2 shows an ex-
ample of obtained results. Figure 1 shows the ROC curves and the
1-Precision Recall curves of the three filters. To cope with potential
inaccuracies in the ground truth which was created by manuallabel-
ing, true positives are counted as following way. For every pixel in
the known vessels, if there is a pixel marked as vessel pixelsby the
filters within a3×3 neighborhood, it is counted as a true positive. If
a pixel is marked as a vessel pixel but it is not included in anyknown
vessel, it is counted as a false positive. The ROC curve produced by
the hybrid filter is better than that of the compared filters. The ar-
eas under the ROC curve of the hybrid filter, the multiscale matched
filter, and the Frangi filter are 0.97228, 0.96303, and 0.9485, respec-
tively. The difference is not large due to the small area portion of
vessels in retinal images, which makes all three ROC curves steep.
To demonstrate the effectiveness of the hybrid filter better, we use a
1-Precision Recall curve. The vertical axis of the 1-Precision Recall
curve is the same as that of the ROC curve. The horizontal axisis
defined as the fraction of false positives and all marked positives.
It shows how many detected vessels are false positives. As can be
observed, the curve of the hybrid filter is to the left of the curves
of the other filters, thus demonstrating that the hybrid filter can dis-
tinguish vessels from other structures in retinal images more effec-
tively. Table 1 shows the the sensitivity (SE) and specificity (SP) of
the filter on twenty images from the training set of DRIVE database
under a single thresholdτ = 4, whereSE = TP/(TP + FN) and
SP = TN/(FP +TN). The mean SP is 0.90234 and the mean SE
is 0.95175. This result is better compared to other reportedresults
[22].

6. CONCLUSION

We propose a hybrid filter which combines a Hessian-based filter
with a matched filter and incorporates edge constraints. In the hybrid
filter, eigenvalues and eigenvectors are computed from the Hessian
matrix at multiple scales. The filter response depends in part on the
ratio between the smallest and largest eigenvalues. The eigenvectors
determine the direction in which the matched filter is applied. Thus,
only one matched filter is needed at each scale. This is in contrast
to other matched filters which require multiple filters per pixel. The
product between the response from eigenvalue filter and the matched
filter is computed using an edge constraint which mandates that two
edges must exist at the boundary of vessels. The final output of
the filter is the maximal response at multiple scales. Experimental
evaluation on the DRIVE database show improvement over existing
methods. The proposed filter can be used in the preprocessingstep
of various applications such as vessel segmentation, visualization,
and pathology detection.
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