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Abstract

We present a hybrid system spanning a fixed-function microarchitecture and a general-purpose microprocessor,

designed to amplify the throughput and decrease the power dissipation of collision detection relative to what can be

achieved using CPUs or GPUs alone. The primary component is one of the two novel microarchitectures designed to

perform the principal elements of broad-phase collision detection. Both microarchitectures consist of pipelines

comprising a plurality of memories, which rearrange the input into a format that maximises parallelism and

bandwidth. The two microarchitectures are combined with the remainder of the system through an original method

for sharing data between a ray tracer and the collision-detection microarchitectures to minimise data structure

construction costs. We effectively demonstrate our system using several benchmarks of varying object counts. These

benchmarks reveal that, for over one million objects, our design achieves an acceleration of 812× relative to a CPU

and an acceleration of 161× relative to a GPU. We also achieve energy efficiencies that enable the mitigation of silicon

power-density challenges, while making the design amenable to both mobile and wearable computing devices.

Keywords: Broad phase, Collision detection, Fixed-function microarchitecture, Microprocessor, Hybrid system,

Energy efficiency

1 Introduction

As technology progresses, increasingly greater realism

is demanded by the consumers of real-time graphics

applications. Collision detection is an important fac-

tor in achieving this realism. It determines if simulated

objects are intersecting, and, in cooperation with collision

response, it maintains realism by preventing objects from

interpenetrating. Collision detection is found in computer

games, animation, robotics and computer-aided design

(CAD). An improvement in collision detection will benefit

myriad applications.

Despite decades of research, collision detection remains

a fundamental problem. It can form a computational bot-

tleneck in many applications. Interactive applications are

particularly challenging as they demand a frame rate of

at least 30 fps to ensure the illusion of visual continu-

ity. Moreover, the inter-frame durations must be sufficient
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to execute the entire program loop, which potentially

comprises input processing, collision detection, collision

response, physics, AI, audio and rendering. The classic

solution is to trade accuracy for speed. This trade-off is

undesirable for most applications, and it is particularly

problematic for robotics and CAD. Additional research is

necessary to find sufficient throughput enhancements.

Algorithms can be executed on fixed-function microar-

chitectures on platforms such as application-specific

integrated circuits (ASICs) or on general-purpose micro-

processors such as CPUs and GPUs. Microarchitectures

sacrifice programmability to dissipate less power and

exhibit superior throughput. These advantages result

from providing the designer with complete control over

component layout and from eliminating the overhead

of executing instructions. As many graphics applications

require the recurrent execution of algorithms at interac-

tive frame rates, these algorithms are good candidates for

microarchitectures, providing they are utilised sufficiently

and do not require programmability. GPU rasterisation is

a good example of an effective microarchitecture.
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Recent articles on the topic of integrated circuit (IC)

power consumption have demonstrated that future ICs

will require additional functionality to be implemented as

microarchitectures. A power dissipation problem is evi-

dent in current multicore architectures. Native transistor

switching speeds continue to double every two process

generations, while processor frequencies are not increas-

ing substantially. This serves to reduce the amount of

utilisation necessary to justify adding custom microar-

chitectures. Their addition is further justified through

the current desire for mobile and wearable computing

devices, which demand energy efficiency to maximise

finite battery lifespans.

We identify collision detection as an algorithm that

is computationally expensive and satisfies the utilisation

requirement for its implementation as a microarchitec-

ture. We specifically select the broad phase due to its

parallelisability, its compute-bound nature and its need for

minimal control logic. Two alternative microarchitectures

are proposed: one focuses on minimising resource con-

sumption while the other supports greater object quanti-

ties. Both use pipelines comprising a plurality ofmemories

that rearrange the input into a format maximising par-

allelism and bandwidth. To increase the object counts

supported and to improve the computational complex-

ity, we propose a hybrid solution that combines these

microarchitectures with a spatial-partitioning stage on a

CPU or GPU. We further propose reusing the hierar-

chies created by a ray tracer to minimise construction

costs. For 1,024,000 objects, this system achieves an accel-

eration of 812× relative to a CPU and an acceleration

of 161× relative to a GPU, while maintaining energy

efficiency.

This article makes the following contributions:

• Two fixed-function microarchitectures for

performing broad-phase collision detection that offer

significant throughput and power advantages relative

to CPU and GPU equivalents
• A novel technique for combining these

microarchitectures with ray-tracing data structures

hosted on a general-purpose microprocessor
• A hybrid system for collision detection comprising

the aforementioned

2 Related work

2.1 Collision detection

Collision-detection systems check a set of n objects for

collision. Most are multiphase, but there are many ways to

delineate these phases. This article will utilise the follow-

ing two definitions:

Broad phase This uses an approximate test to create

a potentially colliding set comprising pairs of objects.

Narrow phase This checks the potentially colliding

set using a more accurate algorithm, and it may also

compute the distance between objects as well as the

point and time of collision.

Multiphase collision detection is based on the hypoth-

esis that the broad phase’s approximate test will elimi-

nate the vast majority of objects from consideration. This

scheme typically leads to a significant improvement in

throughput.

The broad phase is concerned with bounding volumes.

These are convex shapes that simplify complex and non-

convex environment geometry. A plurality of bounding

volumes exist. Spheres [1] are the same as their geometric

counterparts, and their advantage is that they are invari-

ant under rotation. Axis-aligned bounding boxes (AABBs)

[2, 3] are cuboids whose axes are aligned with those of

the environment. Oriented bounding boxes (OBBs) [4]

extend AABBs by removing the axis-aligned requirement.

Discrete-oriented polytopes (k-DOPs) [5] are k-sided par-

allelepipeds where the surfaces consist of hyperplanes

whose normals belong to a fixed set of k vectors. There

exist a number of algorithms to check these bounding

volumes for collision. All-pairs checks every object for

collision against every other object, resulting in n(n−1)
2

comparisons. An alternative is full-sort sweep and prune

[2], which sorts axes to determine when a collision begins

and ends. Incremental sweep and prune [3] improves on

this by using insertion sort to exploit coherence. Spa-

tial partitioning [6] is another alternative that uses grids

to divide the environment into cells before placing each

object within an appropriate cell. It reduces the number

of pairwise collision tests by only checking objects within

the same cell.

The narrow phase typically uses bounding-volume hier-

archies (BVHs) [7]. BVH algorithms traverse these hier-

archies to prune branches where a collision is impossible.

Deformable narrow phases [8] attempt to refit BVHs

to objects undergoing deformation. Recent research has

attempted to improve the accuracy of these algorithms

[9]. Continuous collision detection [10] is also a topic of

current interest. These algorithms attempt to fit BVHs to

the motion of objects so that collisions are not missed

within the intervals between cycles. Alternatives to BVH

traversal such as Lin-Canny [11] and V-Clip [12] work by

tracking the closest features of polyhedra.

There has also been research interest in performing col-

lision detection on GPUs. Originally, this research repur-

posed rasterisation to find overlapping objects [13]. As

GPUs developed fully programmable cores, researchers

moved to utilise these. Liu et al. [14] outline a broad phase

that represents objects as a collection of spheres processed

using spatial partitioning, followed by full-sort sweep and

prune along a single axis chosen to minimise the number
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of overlaps. The narrow phase is avoided using a penalty

algorithm for rigid-body dynamics, although this can

introduce substantial divergences from expected results.

Combining this with the use of sweep and prune along

only a single axis is likely to compound these inaccura-

cies. Significant accelerations are demonstrated, but the

throughput starts to deteriorate above 128,000 objects,

leading to scalability concerns. Avril, Gouranton and

Arnaldi [15] outline an alternative broad phase that uses a

hybrid system comprising CPU-based spatial partitioning

and GPU-based full-sort sweep and prune. A novel map-

ping function and square root approximation logic avoid

global memory accesses and reduce atomic operations.

The authors demonstrate significant accelerations, but the

rate declines as the object count increases, leading to the

same scalability concerns as for the previous research. A

narrow-phase algorithm is proposed by Lauterbach, Mo

and Manocha [16]. This algorithm exploits GPU cores

using a parallelised front-based traversal method. This

method can be specialised for deformable objects [17]. A

derivative exploiting GPU texture memory has been pro-

posed by Zhang and Kim [18]. HPCCD [19] increases

the level of parallelism by splitting a narrow-phase algo-

rithm across a hybrid system comprising a CPU and

GPU operating simultaneously. The CPU performs BVH

traversal while the GPU executes elementary collision

tests.

2.2 Ray tracing

We restrict our review of ray tracing to spatial-

partitioning hierarchies, as these are the only element

germane to this article. Traditionally, the most common

hierarchy was the k-d tree [20]. k-d trees divide the envi-

ronment by splitting along an arbitrary plane aligned to

the world axes. There has recently been significant inter-

est in BVHs for ray tracing [21, 22], which are not the

same generalisable hierarchies used in collision detection

but are instead AABB hierarchies constructed in accor-

dance with the surface-area heuristic (SAH) metric. Their

advantage is that, unlike k-d trees, they can be refitted in

dynamic scenarios.

2.3 Microarchitectures

There is currently significant research interest in microar-

chitectures, as multicore architectures are expected to

soon encounter a utilisation wall when they reach sili-

con power-density limits. This wall will limit the fraction

of a processor that can run at full speed. It results from

increasing transistor counts combined with an inability

to reduce the power to switch a transistor. Esmaeilzadeh

et al. [23] posit that at 8 nm, over 50 % of a processor

will be unutilised. This will result in a 14 % throughput

increase per annum, which is substantially less than cur-

rent trends. The solution proposed by most researchers

is specialisation [24–26], which involves offloading paral-

lelisable computations to embedded microarchitectures.

It has already been used effectively in a variety of proces-

sors. An increasing number of CPUs include specialised

primitives [27], and the Apple iPhone 6 A8 comprises

approximately 64 % fixed-function logic [28].

An early attempt at a collision-detection microar-

chitecture is outlined by Atay, Lockwood and Bayazit

[29]. This exclusively focuses on the narrow phase and

is designed for robotics. The triangle-triangle intersec-

tion test employed by the microarchitecture allows it

to achieve high accuracy at the expense of interactiv-

ity. The CollisionChip [30] is an alternative narrow-phase

microarchitecture that uses 24-DOP hierarchies storing

triangles in the leaf nodes. It traverses a single hierarchy

combining those of the two objects being tested, using an

algorithm designed to reduce memory accesses and node

transformations. A specialised separating-axis test (SAT)

is used to test the k-DOPs and triangles for collision.

The design is specialised for CAD objects with extremely

large quantities of triangles and, like the previousmicroar-

chitecture, is not focused on achieving real-time results.

An alternative approach is employed by the now dis-

continued AGEIA PhysX, which is a commercial IC and

associated driver designed to accelerate physics includ-

ing collision detection. A patent [31] outlines two possible

designs, which both revolve around a specialised very-

long instruction word (VLIW) processor with a plurality

of floating-point units. It is ambiguous as to whether this

system performs collision detection on the PhysX IC, the

CPU or a combination of both.

2.4 Previous research

An earlier revision of our design [32] achieved an accel-

eration of 1.5×, despite being limited to 512 objects

due to object duplication in memory. The current arti-

cle builds on this by providing results for up to 1,024,000

objects, achieved via the integration of the microarchitec-

tures into a complete hybrid system comprising the reuse

of ray-tracing spatial-partitioning hierarchies. This arti-

cle additionally compares and contrasts two alternative

microarchitecture designs, and it provides the expected

throughput if the microarchitectures were implemented

on an ASIC.

3 Design

The design of our hybrid collision-detection system com-

prises three stages:

Spatial-partitioning broad phase This executes on

a processor and divides the environment into cells.

Cell-based broad phase This utilises one of the two

microarchitectures to perform collision detection on

the contents of each cell.
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Narrow phase This stage executes on a pro-

cessor and performs conventional narrow-phase

processing.

We begin by outlining the core element of our system,

the cell-based broad phase, before complementing this

with a description of the spatial-partitioning broad phase.

3.1 Cell-based broad phase

We chose a microarchitecture as the platform for our cell-

based broad phase for three primary reasons.

Degree of parallelism Microarchitectures can

accelerate algorithms with a high degree of paral-

lelism. The broad phase offers significant scope for

parallelisation with a workload that can be stati-

cally balanced to ensure consistently high utilisation

throughout the microarchitecture.

Compute and memory bound Microarchitectures

exploit parallelism to accelerate compute-bound

algorithms but offer fewer advantages to memory-

bound algorithms. The broad phase involves a high

degree of computation with memory accesses that

can be aggregated to reduce their impact.

Sequence of operations Consistent sequences of

operations require minimal control logic and facil-

itate efficient pipelining through the reuse of

standardised computation engines, thereby lending

themselves to microarchitecture implementation.

The broad phase tends to use standard, recurring

collision tests performed in a consistent sequence.

The selection of amicroarchitecture was also influenced

by evidence that the broad phase consumes a consider-

able portion of the interactive application program loop.

Lin and Gottschalk [33] and Fan et al. [34] discovered

that collision detection is often a bottleneck. We calcu-

lated from the 22 benchmarks of the third experiment in

Woulfe andManzke [35] that a mean of 47 % of the overall

collision-detection time is spent in the broad phase. This

calculation can be considered a conservative estimate, as

only the high throughput dynamic bounding-volume tree

(DBVT) algorithm from the Bullet Physics SDK was con-

sidered. Finally, it should be noted that even if the broad

phase were not to account for a major part of the program

loop in a given scenario, the microarchitecture would still

provide throughput improvements that would facilitate

increased realism.

To design the microarchitectures, we began by inves-

tigating the various broad-phase algorithms. The most

commonly used is incremental sweep and prune. How-

ever, it is difficult to parallelise across more threads of exe-

cution than the number of coordinate axes. One solution

would be to switch from incremental to full-sort sweep

and prune, but this essentially obviates the algorithm’s

primary advantage of coherence. The GPU sweep-and-

prune implementations designed by Liu et al. [14] and

Avril, Gouranton and Arnaldi [15] represent an attempt

to trade coherence for parallelism. Despite the promise

shown, full-sort sweep and prune would not be entirely

amenable tomicroarchitectures as it makes significant use

of sorting. Sorting tends to be problematic due to the over-

head of memory access latencies and, therefore, tends to

either inadequately exploit parallelism [36] or have unde-

sirable throughput-to-area trade-offs [37]. Harkins et al.

[38] claim that algorithms utilising sorting are not suited

to microarchitecture implementation. For these reasons,

sweep and prune would be a suboptimal choice. This cor-

responds to the findings of Chen et al. [39] that the best

serial algorithms can have poor parallel scalability.

In contrast, we discovered that all-pairs is ideal for

microarchitecture implementation. It is embarrassingly

parallel, and this parallelism can be used to effectively

exploit resources. AABBs were selected as the bounding

volumes, since they tend to provide a good object fit while

requiring a relatively low quantity of arithmetic compo-

nents, thereby enabling many operations to be performed

in parallel. AABBs have also been successfully used by

the I-COLLIDE [3] and SOLID [7] libraries. A sequential

version of the algorithm is:

function ALLPAIRSAABB

n: Object count

minba: Minimum of AABB a along axis b

maxba: Maximum of AABB a along axis b

for i ← 1 to n − 1 do

for j ← i + 1 to n do

collision ←
(

maxxi ≥ minxj

)

∧
(

minxi ≤ maxxj

)

∧
(

max
y
i ≥ min

y
j

)

∧
(

min
y
i ≤max

y
j

)

∧
(

maxzi ≥ minzj

)

∧
(

minzi ≤maxzj

)

if collision then

result ← result ∪ 〈i, j〉
end if

end for

end for

return result

end function

Another advantage of all-pairs is that its throughput is

deterministic. In contrast, sweep and prune has a com-

putational complexity of O (n + s), where s denotes the

number of swapping operations required to maintain the

algorithm’s sorted object lists. As s cannot be deter-

mined a priori, the behaviour of sweep and prune can

vary significantly. Scenarios with many moving objects
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result in significant increases in s that lead to decreases

in throughput. Tracy, Buss and Woods [40] demonstrate

that scenarios with few moving objects can also per-

form poorly if the total number of objects is very high.

Only all-pairs facilitates the accurate deduction of the

most complex scenario that can be executed within a

given timeframe, without concern that the frame rate

will decrease in certain scenarios. All-pairs unlocks the

possibility of a wider range of scenarios through the avoid-

ance of the non-deterministic throughput of sweep and

prune.

3.1.1 Area-efficientmicroarchitecture

The first design of the cell-based broad-phase microar-

chitecture is area efficient. In other words, it uses a min-

imal quantity of resources to exploit available parallelism.

However, the trade-off is that it is limited in the quantity of

objects supported. The design consists of a pipeline imple-

menting two primary operations—buffer and compare. A

schematic is provided in Fig. 1.

As the availability of resources can vary, the microar-

chitecture is designed to be extensible via a factor m.

When many resources are available, the design can take

full advantage of these to gain the maximum achievable

acceleration, while it will still fit and execute efficiently

when resources are constrained.

The microarchitecture could represent numbers using

fixed-point formats, but these have relatively low accu-

racy. Moreover, their economical use of resources would

offer little advantage as the limiting factor tends to be

the quantity of memory and not the quantity of logic

consumed. In addition, effective use of pipelining almost

entirely eliminates the throughput gains that could be

achieved. Therefore, the microarchitecture represents

numbers using the single-precision IEEE 754 floating-

point format. There is a wealth of research highlighting

the efficiency of performing floating-point computations

on microarchitectures [41]. The number of mainstream

libraries defaulting to single precision, such as SOLID [7]

and Bullet, indicates that this offers sufficient accuracy.

All platforms can use this format, precluding the need to

translate when communicating data.

Buffer The buffer stores each AABB’s data in an efficient

manner for processing by the subsequent compare oper-

ation. During initialisation, the buffer reads each AABB

and stores the data in 6m internal dual-port memories.

The 6m memories correspond to m memories for each of

the minimum x, maximum x, minimum y, maximum y,

minimum z and maximum z values. The data are repli-

cated across each set ofmmemories, so that each of them

memories contains the same data. This results in six logi-

cal 2m-port memories, allowing 12m data to be outputted

in a single clock cycle.

In the following sections, the first port of each dual-port

memory will be referred to as A and the second port will

be referred to as B. The six memories that contain each

AABB’s data and that share an index will be referred to as

a memory group. For example, memory group 0 contains

minimum xmemory 0, maximum xmemory 0, minimum

ymemory 0, maximum ymemory 0, minimum zmemory

0 and maximum z memory 0. In the following sequence,

the inputs to each memory belonging to a given memory

group remain the same at all times.

To enable the required sequence of object-object com-

parisons, the AABBs are outputted from the memory

Fig. 1 Schematic of the area-efficient microarchitecture. The buffer and the comparators from the compare operation are replicated three times to

cover the three axes



Woulfe and Manzke EURASIP Journal on Embedded Systems  (2017) 2017:1 Page 6 of 15

groups in a specific sequence. Initially, the address input

to memory group 0’s A is set to 0, while the remaining

2m − 1 are set to the subsequent addresses. On the sub-

sequent cycle, 0’s A retains its value, and the remaining

are each incremented by 2m− 1. This sequence continues

until any input selects n − 1. At this stage, 0’s A is set to 1,

while the remaining are set to the subsequent addresses.

The sequence continues until 0’s A selects n−2. Addresses

after n−1may be accessed using this sequence; thesemust

be subsequently removed. The sequence is exemplified in

Table 1.

In this proposal, the parallelism per cycle varies. It

would be preferable to maintain a consistent high level

of parallelism throughout execution, and a variety of

schemes could be used to achieve this. However, although

practical in theory, these schemes become impossible to

implement in a microarchitecture, as the complexity of

the required control logic would consume large quanti-

ties of resources and the design would fail to achieve an

adequate clock frequency. Through experimentation, we

selected the outlined design as the variable parallelism is

compensated for by the ability to maintain a high clock

frequency.

In the buffer, the memory bandwidth is 2fmw bit/s,

where f is the clock frequency of the microarchitecture in

hertz and w is the bit-width of a single memory location.

The number of cycles required to generate the sequence is

n−2
∑

i=0

⌈

n − i − 1

2m − 1

⌉

.

Compare The compare operation performs the compar-

ison from all-pairs using the data supplied by the buffer. It

compares the data outputted by memory group 0 with the

data outputted by all other memory groups. It comprises

6m − 3 greater-than-or-equal-to and 6m − 3 less-than-

or-equal-to comparators. The outputs are connected to

2m − 1 logical AND gates. Each gate takes six inputs

corresponding to the six comparator results forming an

AABB pair. If a collision is detected, the indices of the two

colliding objects are written to a single line of memory.

3.1.2 Many-object microarchitecture

The second design of the cell-based broad-phase microar-

chitecture supports significantly greater object quantities.

It achieves this advantage through the use of additional

resources to avoid data replication. It, therefore, exhibits

less parallelism. The design consists of a pipeline imple-

menting three primary operations—buffer, reorder and

compare. A schematic is provided in Fig. 2. This microar-

chitecture is also extensible via a factor m and also uses

single-precision floating point.

Buffer During initialisation, the buffer works in the same

way as for the area-efficient microarchitecture. It reads

each AABB and stores the data in 6m dual-port memo-

ries. However, unlike the area-efficient microarchitecture,

these data are stored across the m memories in a format

that precludes data duplication with, for example, the first

AABB stored in the first address of the first memory group

and the second AABB stored in the first address of the

second memory group. This data layout, which is exem-

plified in Table 2, results in a schism between the memory

group address and the index of the AABB being retrieved;

the index can be computed using am + j where a is the

address and j is the memory group being accessed.

Table 1 Area-efficient microarchitecture sequence

Address Comparison

Cycle 0A 0B 1A 1B 2A 2B 3A 3B 0–1 0–2 0–3 0–4 0–5 0–6 0–7

1 0 1 2 3 4 5 6 7 0–1 0–2 0–3 0–4 0–5 0–6 0–7

2 0 8 9 0–8 0–9

3 1 2 3 4 5 6 7 8 1–2 1–3 1–4 1–5 1–6 1–7 1–8

4 1 9 1–9

5 2 3 4 5 6 7 8 9 2–3 2–4 2–5 2–6 2–7 2–8 2–9

6 3 4 5 6 7 8 9 3–4 3–5 3–6 3–7 3–8 3–9

7 4 5 6 7 8 9 4–5 4–6 4–7 4–8 4–9

8 5 6 7 8 9 5–6 5–7 5–8 5–9

9 6 7 8 9 6–7 6–8 6–9

10 7 8 9 7–8 7–9

11 8 9 8–9

An exemplar of the sequencing of the dataflow through the area-efficient microarchitecture with extensibility factorm = 4 and object count n = 10. On each clock cycle,

the microarchitecture requests the specified memory addresses from the memory groups and ports indicated. These data are subsequently compared according to the

comparison sequence outlined
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Fig. 2 Schematic of the many-object microarchitecture. The buffer, the reorder and the comparators from the compare operation are replicated

three times to cover the three axes

As for the area-efficient microarchitecture, the AABBs

are outputted from the memory groups in a specific

sequence. Initially, all memory groups’ A address inputs

are set to 0 while 0’s B is set to 1. The remaining Bs

are set to 0. On the subsequent cycle, 1’s B is incre-

mented to 1, and the other Bs retain their previous values.

This sequence continues until 0’s B selects
⌈

n
m

⌉

, which

ensures that all comparisons to AABB n − 1 have been

performed. At this stage, all As are set to 1, 0’s B is set to

2, and the remaining Bs are set to 1. The sequence con-

tinues until some A selects
⌈

n
m

⌉

− 1, which is the address

corresponding to AABB n − 2, and 0’s B selects
⌈

n
m

⌉

.

The sequence is exemplified in Table 3. As for the area-

efficient microarchitecture, this design exhibits a variable

degree of parallelism, as addresses after n − 1 may be

Table 2 Many-object microarchitecture buffer layout

Object index

Address 0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9

An exemplar indicating the layout of the objects in the buffer operation of the

many-object microarchitecture with extensibility factorm = 4 and object count

n = 10

accessed; the outlined solution represents a compromise

between parallelism and clock frequency.

In the buffer, the memory bandwidth is 2fmw bit/s. The

number of cycles required to generate the sequence is

⌈ n
m⌉−1
∑

i=0

(n − im − 1) .

Reorder If the data emitted from the buffer were imme-

diately sent to the compare operation, only a fraction of

the required comparisons would take place and some of

these would be repeated. The goal of the reorder opera-

tion is to rectify this using 6m multiplexers to create the

appropriate sequence of comparisons. These multiplexers

consume significant resources, which is the reason this

microarchitecture is less area efficient than the previous.

Following from the definition of a memory group, we

use the termmultiplexer group to denote a set of six mul-

tiplexers sharing the same index. For example, multiplexer

group 0 comprises minimum x multiplexer 0, maximum

x multiplexer 0, minimum y multiplexer 0, maximum y

multiplexer 0, minimum z multiplexer 0 and maximum z

multiplexer 0.

On initialisation of the reorder operation, multiplexer

group 0’s selector is set to 1, 1’s is set to 2,m − 2’s is set to

m− 1 andm− 1’s is set to 0. On each cycle, every selector
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Table 3 Many-object microarchitecture sequence

Address Object index Address Object index Multiplexer

Cycle 0A 1A 2A 3A 0A 1A 2A 3A 0B 1B 2B 3B 0B 1B 2B 3B 0 1 2 3

1 0 0 0 0 0∗ 1† 2‡ 3§ 1 0 0 0 4§ 1∗ 2† 3‡ 1 2 3 0

2 0 0 0 0 0∗ 1† 2‡ 3§ 1 1 0 0 4‡ 5§ 2∗ 3† 2 3 0 1

3 0 0 0 0 0∗ 1† 2‡ 3§ 1 1 1 0 4† 5‡ 6§ 3∗ 3 0 1 2

4 0 0 0 0 0∗ 1† 2‡ 3§ 1 1 1 1 4∗ 5† 6‡ 7§ 0 1 2 3

5 0 0 0 0 0∗ 1† 2‡ 3§ 2 1 1 1 8§ 5∗ 6† 7‡ 1 2 3 0

6 0 0 0 0 0∗ 1† 2‡ 3§ 2 2 1 1 8‡ 9§ 6∗ 7† 2 3 0 1

7 0 0 0 0 0∗ 1† 2‡ 3§ 2 2 2 1 8† 9‡ § 7∗ 3 0 1 2

8 0 0 0 0 0∗ 1† 2‡ 3§ 2 2 2 2 8∗ 9† ‡ § 0 1 2 3

9 0 0 0 0 0∗ 1† 2‡ 3§ 3 2 2 2 § 9∗ † ‡ 1 2 3 0

10 1 1 1 1 4∗ 5† 6‡ 7§ 2 1 1 1 8§ 5∗ 6† 7‡ 1 2 3 0

11 1 1 1 1 4∗ 5† 6‡ 7§ 2 2 1 1 8‡ 9§ 6∗ 7† 2 3 0 1

12 1 1 1 1 4∗ 5† 6‡ 7§ 2 2 2 1 8† 9‡ § 7∗ 3 0 1 2

13 1 1 1 1 4∗ 5† 6‡ 7§ 2 2 2 2 8∗ 9† ‡ § 0 1 2 3

14 1 1 1 1 4∗ 5† 6‡ 7§ 3 2 2 2 § 9∗ † ‡ 1 2 3 0

15 2 2 2 2 8∗ † ‡ § 3 2 2 2 § 9∗ † ‡ 1 2 3 0

An exemplar of the sequencing of the dataflow through the many-object microarchitecture with extensibility factorm = 4 and object count n = 10. On each clock cycle, the

microarchitecture requests the specified memory addresses from the memory groups and ports indicated. These memory addresses result in the outputting of the specified

object indices. The symbols ∗, †, ‡ and § indicate the indices used in each comparison performed within the microarchtecture’s compare operation, which are chosen using

the multiplexer selectors specified

is incremented by 1 modm. The sequence restarts any

time the buffer’s A is modified. This is exemplified in

Table 3.

Compare The compare operation comprises 3m greater-

than-or-equal-to and 3m less-than-or-equal-to compara-

tors. The outputs are connected to m logical AND gates.

Each gate takes six inputs corresponding to the six com-

parator results forming an AABB pair. If a collision is

detected, the indices of the two colliding objects are writ-

ten to a single line of memory.

3.2 Spatial partitioning

Despite the microarchitectures’ effective exploitation of

parallelism and bandwidth, there are two potential con-

cerns. The first concern is that the depth of the memories

results in a restriction on the quantity of bounding vol-

umes and, therefore, on the quantity of objects. Although

many microarchitecture memories are now of substantial

depth, the imposition of any such limit could be consid-

ered unsatisfactory. The second concern is that all-pairs

suffers from an undesirable computational complexity of

O
(

n2
)

, resulting from the algorithm’s non-exploitation

of coherence. Neither issue affects scenarios of small or

moderate size, and the microarchitectures operating in

isolation are sufficient to accelerate these. However, it is

desirable to find a solution to these issues in order to

unlock the possibility of larger scenarios.

Our solution is to transform the broad phase into a

hybrid system combining the microarchitectures with a

processor. This processor executes spatial partitioning to

divide the list of objects into appropriately sized cells for

microarchitecture processing. It has the primary advan-

tages of overcoming object limits and reducing computa-

tional complexity. An auxiliary advantage is the possibility

of increased parallelism through the overlapping of com-

putations performed by the different stages. Once the

potentially colliding set corresponding to a cell is received

from the microarchitecture, narrow-phase processing of

the cell can proceed while themicroarchitecture processes

the subsequent cell.

However, this new stage could consume additional com-

putational resources and negatively affect overall system

throughput. To ameliorate this issue, we reuse the hier-

archies from ray tracing. Reusing an existing data struc-

ture offers a significant reduction in construction costs

and memory footprint. Moreover, by selecting ray-tracing

hierarchies, we benefit from the current high degree of

research interest in ray tracing, while aligning with the

direction in which graphics applications are ultimately

heading.

One significant difference exists in the way ray trac-

ing optimally consumes hierarchies and the way our

microarchitectures optimally consume them. For ray

tracing’s broad phase, it is usually beneficial to sub-

divide hierarchy branches as far as possible, aiming
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to achieve approximately one object per leaf. The ray

tracer will use the generated leaf nodes to perform ray-

object culling. This high degree of subdivision is not

beneficial for the microarchitectures; they are designed

to efficiently process moderate quantities of objects to

effectively exploit parallelism. To reconcile this differ-

ence, we retain, during construction of the hierarchy,

the leaf nodes with a quantity of objects less than or

equal to the selected microarchitecture object limit. Once

broad-phase collision-detection processing commences,

the contents of the recorded cells are accessed by the

microarchitectures.

Most contemporary ray tracers use BVHs, but these are

not entirely suitable for collision detection as they per-

mit objects to overlap cell boundaries. These overlapping

objects would need to be resolved before performing col-

lision detection, and this resolution would nullify many of

the benefits of reuse. One ray-tracing hierarchy that pro-

vides a solution is the k-d tree, as this hierarchy places

objects that overlap cell boundaries within all overlapped

cells. Although a k-d tree would offer excellent through-

put for collision detection, it would be less desirable for ray

tracing, as k-d trees cannot be easily refitted for dynamic

scenarios. To reconcile the throughput of BVHs with the

flexibility of k-d trees, we propose a two-level hierarchy.

Our proposal consists of a k-d tree that is subdivided

until each leaf node contains a quantity of objects less

than or equal to themicroarchitecture object limit.Within

each leaf, a BVH splits the cells until each contains a sin-

gle object in accordance with ray-tracing practice. The

two-level hierarchy is not time consuming to construct,

as only relatively few levels of the k-d tree are required,

and the throughput degradation is negligible as they can

be constructed in O
(

n log n
)

[20]. In some cycles of the

interactive application program loop, it may be necessary

to perform slight alterations to the k-d tree if the posi-

tion of objects changes significantly. This could require

migration of objects between cells, but the large cell sizes

mean migration will occur infrequently and the cost will

be negligible. It is, furthermore, unlikely that the quantity

of objects in a cell will precisely equal the cell-size limit,

thereby allowing cells to accommodate additional objects

without rebuilding or refitting in many cases. The under-

lying BVHs serve to maximise throughput as they can

be efficiently refitted on each cycle. Therefore, the pro-

posed two-level hierarchy maximises the throughput of

both collision detection and ray tracing.

4 Implementation

We envisage our cell-based broad-phase microarchitec-

tures fabricated as part of an IC that would also execute

the remainder of the interactive application program loop.

Using a single platform would allow for the elimina-

tion of data transfer overheads. This concept has been

successfully adopted to integrate a CPU and GPU within

some Intel Core processors [42] as well as AMD accel-

erated processing units (APUs) [43], such as those in the

PlayStation 4. Within the spectrum of platforms read-

ily available today, our microarchitectures could natu-

rally reside within the fixed-function logic of GPUs, as

there is already a significant focus on relocating many

elements of the interactive application program loop to

these platforms [44]. The remainder of the program loop

could utilise the programmable elements of the GPU.

Adding one of the microarchitectures would not com-

promise GPU programmability, as all GPUs include some

fixed-function logic such as rasterisation. This is unlikely

to change due to power-density limits as well as the

lacklustre throughput achieved when traditionally fixed-

function elements have been reimplemented using the

programmable elements of a GPU [45]. Moreover, it is not

prohibitively expensive to include one of the microarchi-

tectures, as the large production volumes of commodity

platforms amortises the cost [27]. Therefore, there exists

sufficient motivation for the fabrication of our logic as

part of a future GPU.

These platforms were unavailable to us, and we were

limited to prototyping our microarchitectures on a field-

programmable gate array (FPGA), to which we translated,

mapped, placed and routed a complete design written

in hardware-description language (HDL). FPGAs are ICs

that are reconfigurable, meaning that a single FPGA

can implement different microarchitectures at different

times. However, this reconfigurability incurs significant

throughput, power and area penalties.

One of the primary characteristics of the microarchitec-

tures is the possibility of their adaptation to the size of

the underlying platform.We found that the limiting factor

for both microarchitectures was the quantity of internal

memories, which constrained both designs to m = 16.

Based on this value, it was possible to process a maximum

of 1024 objects using the area-efficient microarchitecture

and a maximum of 16,384 objects using the many-object

microarchitecture.

When targeting platforms such as GPUs, the FPGA can

be used to verify the functionality of the microarchitec-

tures and to analyse their behaviour, but it is insufficient

for gaining a true reflection of throughput. To address

this, we adapted the throughput metrics from the FPGA

implementations to a clock frequency of 500 MHz in

accordance with assumptions made in existing research

[46–48]. Since 500 MHz is significantly lower than the

clock frequencies of modern GPUs, we, therefore, derive

a conservative estimate of throughput. We excluded the

communication overhead as we intend that our microar-

chitectures would reside on the same IC as all associated

computation. All other elements retained the same val-

ues as their FPGA counterparts. In practice, however, it
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is likely that the constraints on internal memory sizes

would be less severe, thereby facilitating the possibility

of simulating many more objects without spatial parti-

tioning. In addition, it is likely that m could be increased

due to the greater density of resources. Therefore, all

throughput metrics are conservative estimates of what

would be achieved in a practical system centred around

a GPU.

Our CPU-based software utilised the Bullet Physics

SDK. We added custom C++ code to adapt the broad

phase to gather the relevant data from the ray-tracing

hierarchies, before invoking the appropriate microarchi-

tecture operations and reading the resultant potentially

colliding sets.

5 Results and discussion

The adapted Bullet code was compiled using G++ with

throughput optimisations enabled. The host system con-

sisted of a Quad-Core AMD Opteron 2350 clocked at

2 GHz with 8 GB of RAM. The operating system was

64-bit Ubuntu Linux. Our GPU results were measured

using an NVIDIA GeForce GTX 670 with 2 GB of external

memory.

Our experiments used an updated version of the frame-

work for benchmarking collision detection [35]. Our

benchmarks consisted of 1000 collision-detection cycles

of a scenario comprising a cube enclosing n objects, as

illustrated in Fig. 3. The dimensions of the cube were
3
√
503 × 5n m. The objects were uniformly distributed

throughout the environment, and all object properties

were determined using the uniform probability distri-

bution with different values possible for each axis. The

objects were spheres, cuboids, cylinders and cones, and

their sizes lay between 25 and 75 m. The linear veloc-

ity spanned from (−25,−25,−25) to (25, 25, 25) m/s, and

the angular velocity spanned from (−2.5,−2.5,−2.5) to

(2.5, 2.5, 2.5) rad/s. In all of the benchmarks, our goal

was to generate a large quantity of objects undergoing

Fig. 3 Sample benchmarks. a 100 objects. b 200 objects. c 300 objects. d 400 objects
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a high degree of movement and interaction, in order to

thoroughly assess throughput under what are traditionally

considered the most challenging cases for broad-phase

algorithms. In addition, we used relatively simple objects,

as the broad phase is only concerned with objects and

ignores details such as their complexity.

The throughput was computed using 20 variants of

the benchmark. For our system, only the microarchitec-

ture computations were recorded; the spatial-partitioning

hierarchy construction was excluded as this would form

part of a ray tracer and would not add to the system’s

execution time. A variety of cell sizes—1024 for the area-

efficient microarchitecture and 1024, 2048, 4096, 8192

and 16,384 for the many-object microarchitecture—was

tested to determine the optimal. Throughput counters

embedded in the microarchitectures were used to record

the timing metrics. For comparison purposes, we mea-

sured the execution times of broad-phase algorithms exe-

cuting on a CPU and GPU. For the CPU comparison, we

selected Bullet’s DBVT algorithm, for which we recorded

the execution times using high-resolution throughput

counters present in the CPU. We selected this algorithm

as it achieves optimal throughput for the vast majority

of scenarios. It performs spatial partitioning using two

AABB hierarchies whose nodes can be dynamically rear-

ranged. One hierarchy represents static objects and the

other represents dynamic objects. The objects are moved

between the two hierarchies as their statuses change. For

the GPU comparison, we selected Bullet’s GPU-based

sweep and prune, for which we recorded the time spent

checking for collisions between objects, while excluding

the transfer of data between the CPU and GPU. It is an

implementation of the design proposed by Liu et al. [14].

The execution times of all these systems are tabulated in

Table 4, and the acceleration factors of our system relative

to the CPU and GPU are plotted in Fig. 4.

All of our results indicate that very significant acceler-

ations can be achieved, as all benchmarks have been sig-

nificantly accelerated relative to both the CPU and GPU.

The results also show that the area-efficient microarchi-

tecture outperforms the many-object microarchitecture

by a factor of 3.14×. The higher degree of acceleration

can be explained by the greater quantity of comparisons

performed in parallel. Using the results from the area-

efficient microarchitecture, it can be observed that for

those benchmarks involving no spatial partitioning, the

Table 4 Execution times for the CPU, GPU, area-efficient microarchitecture and many-object microarchitecture

Area-efficient Many-object
microarchitecture microarchitecture

Objects CPU GPU None 1024 None 1024 2048 4096 8192 16,384

100 0.2213 0.9732 0.0005 0.0008

200 0.4478 0.9982 0.0016 0.0029

300 0.7990 1.0347 0.0033 0.0062

400 0.9994 1.0441 0.0057 0.0107

500 1.2966 1.0302 0.0087 0.0165

600 1.5770 1.0727 0.0124 0.0236

700 1.9871 1.0796 0.0168 0.0319

800 2.5760 1.0889 0.0217 0.0414

900 2.9700 1.1072 0.0273 0.0522

1000 3.1694 1.0945 0.0336 0.0643

2000 6.0023 1.2040 0.0423 0.2535 0.0804

4000 14.2332 1.4039 0.0913 1.0070 0.1727 0.4036

8000 30.7177 1.9585 0.1665 4.0140 0.3153 0.6270 1.7638

16,000 69.8204 3.6801 0.3074 16.0280 0.5821 1.2199 2.5936 8.2487

32,000 159.5770 8.3066 0.5676 1.0749 2.2525 4.7891 15.2312 36.9132

64,000 375.3380 22.8188 1.0481 1.9848 4.1592 8.8431 28.1244 68.1603

128,000 834.9720 67.5312 1.9353 3.6649 7.6800 16.3288 51.9317 125.8579

256,000 1940.2600 187.3310 3.5735 6.7672 14.1811 30.1512 95.8919 232.3967

512,000 4423.3300 605.7710 6.5985 12.4957 26.1853 55.6742 177.0645 429.1206

1,024,000 9897.0100 1958.8776 12.1841 23.0732 48.3512 102.8025 326.9497 792.3714

All execution times are in milliseconds. ‘CPU’ is Bullet’s DBVT, ‘GPU’ is Bullet’s GPU sweep and prune, and the numeric table headers indicate the spatial-partitioning cell size

used with the microarchitectures. Bold results highlight the optimal time for each microarchitecture
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Fig. 4 Acceleration factors of the hybrid system relative to the CPU and GPU. The vertical lines indicate a change of scale along the x axis

acceleration never decreases below 94× relative to the

CPU or below 33× relative to the GPU. If the results

comprising spatial partitioning are included, the accel-

erations increase further. Compared to the CPU, our

system achieves an acceleration of up to 812×, while

compared to the GPU, it achieves an acceleration of up

to 161×. In both cases, these accelerations correspond

to the highest object counts. The results indicate that

our system provides significant advantages to all bench-

marks, both with and without spatial partitioning, and

that the most challenging benchmarks for traditional

collision detection are those most accelerated by our

system.

The results also indicate that spatial partitioning has

a beneficial effect on throughput. Without spatial par-

titioning, an O
(

n2
)

computational complexity can be

observed. This complexity can be disregarded for up to

1000 objects, as it is minimal and has little impact due

to the significant accelerations provided by parallelism.

However, it is apparent that the complexity may affect

throughput for larger object quantities. This is rectified

by spatial partitioning, which our results indicate lowers

the computational complexity to O
(

n log n
)

. The positive

effect is most evident when comparing against the CPU;

it is less evident when comparing against the GPU as the

GPU throughput is relatively poor for benchmarks with

1000 objects or fewer. The results also indicate that the

optimal cell size is 1024, irrespective of microarchitec-

ture. This is the optimal as the microarchitectures execute

efficiently with moderate quantities of objects. Since both

microarchitectures accommodate this cell size, we recom-

mend selecting the area-efficient microarchitecture in all

cases due to its enhanced throughput.

The results also demonstrate that our system is not

significantly affected by object count, even when the

count greatly exceeds what can be typically expected. This

demonstrates that our designs do not need optimisation

or specialisation for specific scenarios. In contrast, there

are certain object-count ranges for which the CPU and

GPU perform poorly. Higher object counts significantly

degrade CPU throughput. The GPU tends to perform

poorly with both large object counts which cannot be pro-

cessed efficiently, as well as small object counts which

inadequately exploit parallelism.
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We further compare the previously provided through-

put figures from the area-efficient microarchitecture with

the throughput figures provided within two recent GPU

broad-phase collision-detection articles in Table 5 and

Fig. 5. The results demonstrate that our system signif-

icantly outperforms all of the algorithms for all object

counts, with up to 14× acceleration over Liu et al. [14]

and up to 40× acceleration over Avril, Gouranton and

Arnaldi [15]. These results are not as representative of

expected throughput as our prior results, since the bench-

marks used in the articles differ significantly from those

that we used. Our benchmarks included a high degree

of object movement and interaction, to thoroughly assess

the most challenging scenarios and prove that use of

our system facilitates scenarios traditionally avoided due

to their potentially negative impact on throughput. In

contrast, many of the benchmarks used by the aforemen-

tioned articles choose scenarios that are more favourable

to algorithms sensitive to object movement and interac-

tion. Irrespective of these differences, the results clearly

demonstrate that our system significantly outperforms the

state of the art.

We previously mentioned that we envisage our microar-

chitectures implemented as fixed-function logic on a plat-

form such as a GPU. To assess how the microarchitectures

would fit, we computed the approximate size if imple-

mented on the NVIDIA GeForce GTX TITAN X, using

information on process widths, die sizes and transistor

counts for our FPGA and the GPU, as well as research

into the difference in area consumption between FPGA

and ASIC implementations [49]. We deduced that the

area-efficient microarchitecture would consume approx-

imately 0.072 % of the GPU die area, while the many-

object microarchitecture would consume approximately

Table 5 Execution time comparisons for recent GPU

broad-phase collision-detection algorithms against the

area-efficient microarchitecture

Article Microarchitecture
Article Objects execution times execution times

Liu et al. 16,000 3.0000 0.3074

128,000 11.0000 1.9353

960,000 161.0000 11.4859

Avril, Gouranton 1000 1.3500 0.0336
and Arnaldi 5000 1.3900 0.1101

10,000 2.4100 0.2017

50,000 10.2100 0.8379

100,000 22.5200 1.5471

500,000 116.7200 7.5946

1,000,000 245.9500 11.9223

All execution times are in milliseconds. Bold results highlight the optimal time for

each object count

0.086 %. It would also be useful to have assessed the

expected power consumption of the microarchitectures

when implemented on a GPU. Unfortunately, there were

insufficient data available to accurately compute this

information. However, a substantive body of research

[23–26] indicates that specialised logic consumes signif-

icantly less power than programmable logic due to the

removal of overheads such as instruction processing, reg-

ister accesses and inefficient memory layouts. Analyses

indicate a 16× power decrease can be expected, with up

to a 500× decrease possible for some applications [50].

It is, therefore, evident that the microarchitectures would

reduce power consumption appreciably.

6 Conclusions

We presented a hybrid system comprising one of

two fixed-function microarchitectures complemented by

a general-purpose microprocessor. The objective was

to achieve significant acceleration and energy effi-

ciencies for collision detection through the effective

exploitation of parallelism and memory bandwidth. The

area-efficient microarchitecture focused on occupying

minimum resources, while the many-object microarchi-

tecture focused on supporting greater object quantities.

To compensate for potential challenges, such as a limit on

the quantity of objects supported, the microarchitectures

were combined with a spatial-partitioning phase execut-

ing on a processor. We outlined a novel means of com-

bining this spatial-partitioning phase with the hierarchies

constructed by ray tracers, thereby reducing computation

time and memory consumption.

Overall, we demonstrated a significant enhancement in

the throughput of collision detection, with a 1,024,000-

object benchmark demonstrating an acceleration of 812×
when compared against a CPU and an acceleration of

161× when compared against a GPU. Throughput was

maintained for large object counts where traditional sys-

tems perform inadequately. The area-efficient microar-

chitecture with a spatial-partitioning cell size of 1024

was found to be the optimal of our designs due to

its greater exploitation of parallelism. Moreover, fixed-

function microarchitectures significantly reduce power

consumption, and this allowed us to mitigate silicon

power-density challenges, while facilitating computation

on mobile and wearable computing devices.

Although we have demonstrated that our system is

highly efficient, there exists some scope for expansion.

In particular, it would be interesting to experiment

with shifting additional stages of the interactive appli-

cation program loop from processors to microarchitec-

tures. For instance, a microarchitecture for constructing

BVHs [48] could complement ours. This would accept

the k-d tree cells generated by the processor and con-

struct or refit the BVHs associated with each cell. It
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Fig. 5 Acceleration factors of the hybrid system using the area-efficient microarchitecture relative to recent GPU broad-phase collision-detection

algorithms

would also be constructive to try adding an aforemen-

tioned narrow-phase microarchitecture [29, 30]. Overall,

it is evident that these proposed ideas would develop

our system, but, even without adaptation, our system

achieves significant throughput and power efficiency

advantages.
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