
����������
�������

Citation: Zeyu, R.; Yudong, Z.;

Shuihua, W. A Hybrid Framework

for Lung Cancer Classification.

Electronics 2022, 11, 1614.

https://doi.org/10.3390/

electronics11101614

Academic Editor: Gemma Piella

Received: 26 April 2022

Accepted: 16 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Hybrid Framework for Lung Cancer Classification

Zeyu Ren , Yudong Zhang * and Shuihua Wang *

School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
zr41@leicester.ac.uk
* Correspondence: yudongzhang@ieee.org (Y.Z.); shuihuawang@ieee.org (S.W.)

Abstract: Cancer is the second leading cause of death worldwide, and the death rate of lung cancer
is much higher than other types of cancers. In recent years, numerous novel computer-aided
diagnostic techniques with deep learning have been designed to detect lung cancer in early stages.
However, deep learning models are easy to overfit, and the overfitting problem always causes
lower performance. To solve this problem of lung cancer classification tasks, we proposed a hybrid
framework called LCGANT. Specifically, our framework contains two main parts. The first part is
a lung cancer deep convolutional GAN (LCGAN) to generate synthetic lung cancer images. The
second part is a regularization enhanced transfer learning model called VGG-DF to classify lung
cancer images into three classes. Our framework achieves a result of 99.84%± 0.156% (accuracy),
99.84%± 0.153% (precision), 99.84%± 0.156% (sensitivity), and 99.84%± 0.156% (F1-score). The
result reaches the highest performance of the dataset for the lung cancer classification task. The
proposed framework resolves the overfitting problem for lung cancer classification tasks, and it
achieves better performance than other state-of-the-art methods.

Keywords: deep learning; generative adversarial networks; image classification; neural network;
transfer learning

1. Introduction

Cancer leads to 10 million deaths per year and relates to a series of diseases where
the abnormal cells randomly mutate inside the human body [1]. When organs generate
abnormal cells, these cells are spread throughout the body and eventually cause death.
The most commonly affected organs are lungs, liver, stomach, colon, skin, prostate, and
brain. There are various causes of cancer. The primary reasons for cancer range from
daily behaviour such as smoking, high body mass index, or alcohol intake to exposure to
physical carcinogens like radiation, ultraviolet, and electromagnetic fields. Canceration
results from the interaction between a person’s genetic factors and three types of external
factors including chemical carcinogens, biological carcinogens, and genetic carcinogens [1].
Among all the types of cancers, lung cancer is the leading cause of death globally, and
the number of deaths from lung cancer is more than prostate, breast, and pancreatic. In
2022, there will be approximately 609,360 people diagnosed with lung cancers in the US,
and there will be 1700 deaths due to lung cancer per day [2]. Overall, cancer symptoms
are not easily found by doctors or patients without medical approaches such as magnetic
resonance imaging (MRI), computed tomography (CT) scan, X-ray, molecular diagnosis,
or ultrasound.

Using machine learning to analyse medical images by pattern recognition and classifi-
cation is already widely used in computer-aided diagnosis [3]. However, the main challenge
in this area is limited labelled data: First, labelling data is costly and time-consuming; Sec-
ond, there are limited datasets in the biomedical domain. Hence, we proposed a hybrid
framework called lung cancer GAN together with transfer learning (LCGANT) to solve
these challenges. It combines a data augmentation (DA) technique called lung cancer deep
convolutional GAN (LCGAN) to produce synthetic datasets of lung cancer images, and a
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regularisation enhanced transfer learning model called VGG-DF to classify different lung
cancer classes.

We evaluate the effectiveness of our framework by comparing it with related methods
for the same dataset. We explore whether the datasets generated by the LCGAN can
efficiently improve the performance of lung cancer classification by VGG-DF and discuss the
differences between the original dataset and the synthetic dataset. The main contributions
of our work are as follows:

• A novel hybrid framework LCGANT is proposed to classify lung cancer images and
solve the overfitting problem of lung cancer classification tasks.

• The proposed LCGANT framework is better than other state-of-the-art approaches.
• A lung cancer deep convolutional GAN (LCGAN) can generate synthetic lung cancer

datasets to solve lung cancer classification tasks’ limited labelled data issue. A reg-
ularization enhanced model called VGG-DF can prevent overfitting problems with
pre-trained model auto-selection.

2. Related Work
2.1. Cancer Classification

In 2020, Ref. [4] proposed a light fully automated deep learning model for cervix
classification and detection. They reached 20 times faster than other state-of-art models,
and the proposed pipeline is suitable for deployment on mobile devices.

Ref. [5] recommended an optimised InceptionV3 CNN architecture to classify four
classes of lung cancer. They also analysed the underlying limitations of the existing CNN
image classification for lung tumors.

Ref. [6] compared the different machine learning and deep learning models for col-
orectal cancer (CRC) lymph node metastasis (LNM) classifications. They investigated their
experiments and found that the transfer learning methods reached an accuracy of 0.7583
and an area under the curve of 0.7941. The classification heat-map is used to improve the
interpretability of results.

The optimal deep neural network (ODNN) and linear discriminate analysis (LDA)
were designed by Ref. [7] in 2018 for lung cancer classification. Their results showed that
the classifier resulted in an accuracy of 94.56%, specificity of 94.2%, and sensitivity of 96.2%.

Motivated by the above works, we decided to use pre-trained transfer learning models
to evaluate the quality of images generated by the proposed LCGAN model for lung cancer
classification.

2.2. Data Augmentation

It is common sense that the machine learning model’s performance will be better if
there are more data that can be trained in the model [8]. Traditional transformations use
geometric transformations to process the training data, such as flipping, random cropping,
colour augmentation, and noise injection.

Apart from the traditional transformations, Ref. [9] demonstrated an augmentation
method in the feature space that can be used to improve the performance of the supervised
models. The technique can improve the changeability of the dataset and build a more
robust model. Generative adversarial network (GAN) is another powerful DA technique
proposed by Ref. [10] that includes two models: the generative and the discriminative
models. The discriminator cannot distinguish whether the image generated by the gen-
erator is real or fake if the generator is training well. Since the concept of GANs was
proposed, there have been different variants created such as deep convolutional GAN (DC-
GAN) [11], conditional GAN (cGAN) [12], cycle-consistent GAN (CycleGAN) [13], and
style-based GAN (styleGan) [14]. Adversarial training is also a potential solution for data
augmentation, and it shows great success in improving the resolution of images [15]. Neu-
ral style transfer [16] manipulates sequential data by CNN to another style of the image,
which preserves the features of the original image. It is well known for artistic applications.
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Moreover, the concept of meta-learning also has become very popular since Ref. [17]
suggested it.

There is also some related work from the field of science such as [18,19]. These related
studies provide the scientific background of this study.

2.3. Pre-Trained CNN Architecture for Feature Extraction
2.3.1. VGG-16

The VGG-16 [20] increases the depth of the model by using small 3× 3 convolution
filters in the layers and shows excellent performance even for the small dataset. The
VGG-16 was trained on the ImageNet dataset [21], which has over 14 million images for
1000 classes. The VGG-16 achieved an accuracy of 92.7%. It became one of the most efficient
models in the ImageNet Large Scale Visual Recognition Challenge (ILSCRC) in 2014.

2.3.2. ResNet50

ResNet50 [22] is a residual learning framework with 50 layers. Normally, neural
networks are difficult to train when they have deeper layers. The ResNet50 reconstructs
layers as learning residual functions and connects to the input layer of each residual block.
The residual block skips the connection between different layers to solve the exploding
gradient problem. The ResNet50 was trained on the ImageNet dataset [21], and its pre-
trained network can classify 1000 different classes.

2.3.3. DenseNet121

Each layer in the DenseNet121 [23] architecture will take all the feature maps of
preceding layers as input, and the feature map of the current layer will be used as input to
all subsequent layers. The layer in the DenseNet121 is different from the traditional layer.
The traditional layer only connects with adjacent layers. This feature allows the network to
have fewer parameters, and it is more efficient than traditional CNNs.

2.3.4. EfficientNet

EfficientNet [24] is an efficient scaling method that can scale the image’s dimensions
by an effective compound coefficient. The network carefully balances the relations between
the depth, width, and resolution to improve performance. The effectiveness of EfficientNet
was evaluated on the MobileNet and ResNet. There are also a series of models called
EfficientNets, and EfficientNet-B7 achieves the 97.1% accuracy on ImageNet.

3. Materials and Methods
3.1. Dataset

We use a dataset that contains 15,000 histopathological images with three different lung
cancer classes from [25]. All images are 768× 768 pixels from the original 1024× 768 pixels,
and each class has 5000 images. The different classes of lung cancer in the dataset are
shown as follows: lung adenocarcinoma is shown in Figure 1a; it is the most common
cancer in the US, and it has a strong relationship with smoking habits; lung benign tissue
is shown in Figure 1b; it is an abnormal tissue that is not cancerous; and lung squamous
cell carcinoma is shown in Figure 1c; it always located in the central part of the lung or the
main airway. All three examples are shown in Figure 1, and all the images are de-identified,
HIPAA compliant, and validated sources.
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(a) (b) (c)

Figure 1. Three examples of different lung cancer classes from the original dataset with size 768× 768:
(a) lung adenocarcinoma, (b) lung benign, (c) lung squamous cell carcinoma.

3.2. Proposed LCGANT Framework for Lung Cancer Classification

Our framework contains three parts: we will illustrate the first part—LCGAN—
in Section 3.2.1 and discuss the second part—regularization enhanced transfer learning
model VGG-DF—in Section 3.2.2. The last part in Section 3.2.3 describes the model auto-
selection method.

3.2.1. Image Synthesis Using LCGAN

Our dataset pre-processing of LCGAN includes two steps: First, we use images of each
class as a single dataset to train three LCGAN models individually. Second, we use three
trained LCGAN to generate different synthetic images for each class. The original dataset
is resized as 64× 64 dimensions with 256 batch size, and we also use bilinear interpolation
as an interpolation algorithm for resizing. A bilinear interpolation algorithm can avoid
generating strange checkerboard patterns of images. After the training process of LCGAN
is finished, we generate 10,000 synthetic images for each class of lung cancer with size
64× 64; we then have two datasets after the LCGAN training process is finished. One is
the original dataset with size 768× 768; the other one is generated by the LCGAN with size
64× 64. Before we use these datasets to train transfer learning models, we construct two
new datasets: the real dataset with size 64× 64, which is resized from the original dataset
(15,000 images in total, each class has 5000 images); and the real and synthetic dataset
with size 64× 64, which combines the original dataset and synthetic dataset (45,000 images
in total, 15,000 images for each class, the images in each class includes 5000 real images
and 10,000 synthetic images). We then split the training and test datasets in 70:30 ratio for
both datasets.

The idea of LCGAN is inspired by the deep convolutional generative adversarial net-
works (DCGANs) [11]. It is a class of unsupervised learning CNNs and contains traditional
convolutional architecture with certain architecture constraints. Nonetheless, the basic
theory for both LCGAN and DCGANs is from the GANs [10]. The whole GANs contain
two parts: a generative model G called generator, which can capture the data distribution
to manufacture outputs; and a discriminative model D called discriminator, which can
estimate the outputs from the generator whether they are artificially created. During the
training procedure of the generator, it will improve the chance for the discriminator to make
mistakes. The idea was inspired by the famous strategy of the minimax two-player game.
If the probability of real and fake images are both equal to 1

2 for the discriminator, we can
say that the generator has enough abilities to generate artificial images. The mathematical
representation of this theory will be explained in the next paragraph.

We assume pdata is the generator’s distribution over data x. The mapping from input
noise variables pz(z) to data space is defined as G(z, θg). The G is regarded as the generator
with parameters θg. Similarly, D(x, θd) is a discriminator with parameters θg that can take
the real data or data from the generator to output a single scalar called D(x). During the
training process, we train discriminator D to increase the accuracy of classifying the real
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images. Simultaneously, we train generator G to generate fake images close to real images
during the training process. Overall, the formula tries to train a discriminator that can
maximise the probability of distinguishing real images and synthetic images. It also trains
a generator that can minimise the probability of distinguishing real and fake images by
the discriminator. Finally, the generator can generate synthetic images that look like real
images, and the discriminator cannot find the differences between them. The formula can
be described as a function V(G, D) below:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)]

+Ez∼pz(z)[log(1− D(G(z)))].
(1)

The LCGAN inherits some default settings from the DCGANs [11]:

• Replace the fully connected layers with a uniform noise distribution for the generator;
• Use the sigmoid function of the flattened layer for the discriminator;
• Add a Batch Normalization [26] layer to generator and discriminator to avoid poor

initialization problems during the training process. The algorithm of Batch Normal-
ization is shown in Equation (2). Here, we use B to represent a mini-batch of an entire
training set with m examples. Then we can calculate the mean and variance of the
mini-batch. Subsequently, we normalize the data xi in the mini-batch. The ε is an arbi-
trarily small constant for numerical stability. Finally, we implement a transformation
step to scale and shift the output.

• All layers in the discriminator use the LeakyReLU function.

µB ←
1
m

m

∑
i=1

xi mean of mini-batch,

σ2
B ←

1
m

m

∑
i=1

(xi − µB)
2 variance of mini-batch,

x̂i ←
xi − µB√

σ2
B + ε

normalize,

yi ← γx̂i + β ≡ BNγ,β(xi) scale and shift.

(2)

Initially, we used most of the default settings from the DCGANs to train our models.
The generated images always blur, and some checkerboard patterns are present in the
synthetic images. Therefore, beyond the default setting from the DCGANs, we redesigned
some features based on the default settings. The overall architecture of LCGAN is shown
in Figure 2, and the innovations of LCGAN are shown as follows:

1. Try to add more filters in the front layers of the generator. More filters in the front
layers can help the generator to get more activation maps to avoid missing essential
features of the original image. Without sufficient filters, the generator will produce
blurry images.

2. Use the LeakyReLU activation function for all the layers in the generator except the
output layer with the Tanh function.

3. Add several dropout layers in the discriminator to avoid overfitting.
4. Avoid checkerboard artefacts:

• During image pre-processing, we use the bilinear interpolation algorithm when
we resize the original size to 64× 64. The bilinear interpolation algorithm is used
to do two-dimensional interpolation for a rectangle. First, we find four points of
a rectangle: (x1, y1), (x1, y2), (x2, y1), and (x2, y2). Second, we assume the values
of four points are Q11 for (x1, y1), Q21 for (x1, y2), Q12 for (x2, y1), and Q22 for
(x2, y2). Finally, we can estimate the value of the formula at any point (x, y). The
algorithm can refer to Equation (3).

• Inspired by the idea from [27], the author uses sub-pixel convolution to get a
better performance in image super-resolution. Set the kernel size that can be
divided by the stride, and try to make the kernel size as big as possible.
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Figure 2. The overall architecture of proposed LCGAN.

f (x, y) ≈ f (Q11)

(x2 − x1)(y2 − y1)
(x2 − x)(y2 − y)

+
f (Q21)

(x2 − x1)(y2 − y1)
(x− x1)(y2 − y)

+
f (Q12)

(x2 − x1)(y2 − y1)
(x2 − x)(y− y1)

+
f (Q22)

(x2 − x1)(y2 − y1)
(x− x1)(y− y1).

(3)

Figure 3 shows synthetic lung benign images based on the different versions of
LCGAN. As Figure 3a shows, the initial version of LCGAN uses the default settings
of the DCGANs, and it causes checkerboard patterns and blurry images. After using our
settings, Figure 3b does not have a checkerboard pattern anymore, but it is still blurry. After
applying all of the methods, Figure 3c becomes clearer than Figure 3b. By comparing with
the real image shown in Figure 3d, the LCGAN generates clearer images that are difficult
to distinguish from the real images.

(a) (b)

(c) (d)

Figure 3. Synthetic lung benign images generated from the different version of LCGAN: (a) image from
the initial version of LCGAN, (b) image from LCGAN which applies avoiding checkerboard methods, (c)
image from LCGAN which applies all the proposed settings, (d) image from original dataset.
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3.2.2. Regularization Enhanced Transfer Learning Model

The second part of the LCGANT framework is based on the pre-trained transfer
learning models. We use four different pre-trained models in our framework: VGG-16,
ResNet50, DenseNet121, and EfficientNetB4. Beyond the traditional transfer learning
process, we add the dropout and fine-tuning techniques to prevent the overfitting problem
and improve the classification performance. Finally, we found that our modified VGG-16
model got the best performance, and we call it VGG-DF.

The overall architecture of VGG-DF is shown in Figure 4. The entire architecture of
VGG-DF includes five blocks, and there are different layers in each block.

.

.

.

.

.

.

MaxPooling

64×64×64

Block1

×2

Block2 Block3

32×32×128

×2 ×3

16×16×128

MaxPooling

MaxPooling

×3

8×8×512

×3

4×4×512

Block4
Block5

MaxPoolingMaxPooling+

Flatten

Dropout

256

128

Input

3

FC

FC
FC

.

.

.

8192

Figure 4. The overall architecture of the proposed VGG-DF.

The large dataset requires sufficient computational power and time to train a model
with better performance, and it is not always ideal to train a model with a large dataset
from scratch. However, if a model is only suitable for specific data and cannot efficiently
work on different datasets, the robustness of the model is poor, and it cannot be widely
used in different domains. Fortunately, the concept of transfer learning can easily use
pre-trained models to adapt to similar datasets.

The typical workflow of transfer learning starts with taking layers of the pre-trained
model. We load the four different models in our proposed framework: VGG-16, ResNet50,
DenseNet121, and EfficientNetB4. The second step is to freeze all the pre-trained model
layers to preserve the existing parameters. We then add trainable layers on top of the
pre-trained models. These layers will be trained to fit the new dataset. In all the pre-trained
models, the last layer is configured with a softmax function to classify three classes of lung
cancer. The fourth step is training the added layer with the dataset. We also use fine-tuning
to unfreeze the entire model, and re-training the entire model with a low learning rate can
help the entire model adapt to the dataset.

To prevent the overfitting problem, we add a dropout layer to each pre-trained model
to improve the generalization ability of the classification performance. Deep learning neural
networks are likely to produce the overfitting problem when the neural network model
has plenty of parameters with an insufficient dataset. On the one hand, the inadequate
performance of the model does not have enough ability to extract the feature maps of the
dataset; On the other hand, if the model fits the training dataset too well, it causes the
overfitting problem. The overfitting problem typically means that the model has good
performance with the training data, but it does not generalize well on the test dataset.

When training each batch of the dataset, the dropout layer randomly removes the
neurons according to the given dropout probability of 0.2, and only the weights of retained
neurons are updated. Due to the random elimination of neurons, the sparsity of the model
improves to a certain level, which can efficiently reduce the synergistic effect. It also
weakens the joint adaptability between neurons and finally enhances the generalization
ability and robustness of the model. The algorithm of dropout for each neuron shows in
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Equation (4). In this equation, each intermediate activation ai is replaced by a value ai
′ with

a dropout probability p.

ai
′ =


0 with probability p,

ai
1−p otherwise.

(4)

All four of these transfer learning models are first trained on the original dataset and
we record the results. The original dataset has 15,000 images that belong to three classes of
lung cancer. After training on the original dataset, LCGAN generates 30,000 images, and
each class has 10,000 new images. We then record the results for it. We will evaluate the
results in Section 4.

3.2.3. Pre-Trained Model Auto-Selection

To ensure that we can get the best performance of each transfer learning model during
the training, we use two callback functions to save the training time and the best model
during the training process. The functions are model checkpoint callback and early stopping
callback. After we get the model, we automatically compare the performance of each model
and choose the model with the best performance of the four pre-trained models.

The model checkpoint callback function will monitor the overall performance of
the current training model. It will save the model when the current model gets the best
performance. As a result, the final model will have the best performance within all the
model variants during the training process. An early stop callback function is also used in
our framework. The early stop callback function will monitor the validation loss with the
patience of 10 epochs, then try to stop the training process when there are no improvements
within 10 epochs.

When we finished the training process of four transfer learning models, we compared
the performance of each model and chose the VGG-DF with the best performance as the
second part of the LCGANT framework.

4. Results
4.1. Set-Up of Experiments

The hyperparameters of the experiments are shown in Table 1. The LCGAN and
VGG-DF are running on a TESLA P100 16GB RAM GPU provided by the Kaggle service,
as well as the Intel Xeon CPU with 13GB RAM. The data augmentation for the original
dataset to the new dataset with 64× 64 dimensions was trained on a GTX 1070 8GB GPU
with i7-8700k CPU and 32 GB RAM.

Table 1. Hyperparameter settings of LCGAN.

Hyperparameter Value

Optimizer Adam
Loss (LCGAN) Binary Crossentropy
Loss (VGG-DF) Categorical Crossentropy
Dropout Probability 0.2
Batch Size 256
Number of Epochs (LCGAN) 15,000
Number of Epochs (VGG-DF) 5
Kernel Size (G) 4
Kernel Size (D) 3

The detailed structures of the generator and discriminator are shown in Tables 2 and 3,
respectively.
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Table 2. The architecture of the generator.

Layer (Type) Output Shape Number of Parameters

Input 100 0
Dense 8192 827,392
LeakyReLU 8192 0
Reshape 4× 4× 512 0
TransConv 8× 8× 512 4,194,816
BatchNorm 8× 8× 512 2048
LeakyReLU 8× 8× 512 0
TransConv 16× 16× 512 2,097,408
BatchNorm 16× 16× 512 1024
LeakyReLU 16× 16× 512 0
TransConv 32× 32× 128 524,416
BatchNorm 32× 32× 128 512
LeakyReLU 32× 32× 128 0
TransConv 64× 64× 64 131,136
BatchNorm 64× 64× 64 256
LeakyReLU 64× 64× 64 0
TransConv 64× 64× 3 3075
Activation 64× 64× 3 0

Total Parameters: 7,782,083
Trainable Parameters: 7,780,163
Non-trainable Parameters: 1920

Table 3. The architecture of the discriminator.

Layer (Type) Output Shape Number of Parameters

Input 64× 64× 3 0
Conv2D 64× 64× 128 3584
LeakyReLU 64× 64× 128 0
BatchNorm 64× 64× 128 512
Conv2D 64× 64× 128 147,584
LeakyReLU 64× 64× 128 0
BatchNorm 64× 64× 128 512
MaxPooling 21× 21× 128 0
Dropout 21× 21× 128 0
Conv2D 21× 21× 128 147,584
LeakyReLU 21× 21× 128 0
BatchNorm 21× 21× 128 512
Conv2D 21× 21× 128 147,584
LeakyReLU 21× 21× 128 0
BatchNorm 21× 21× 128 512
MaxPooling 7× 7× 128 0
Dropout 7× 7× 128 0
Flatten 6272 0
Dense 128 802,944
LeakyReLU 128 0
Dense 128 16,512
LeakyReLU 128 0
Dense 1 129

Total Parameters: 1,267,969
Trainable Parameters: 1,266,945
Non-trainable Parameters: 1024
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4.2. Results and Analysis
4.2.1. Lung Images Generated by DCGAN Generator

Figure 5a illustrates examples of lung adenocarcinoma images. The two images on
the left side are real, and the two images on the right side are synthetic images from
the LCGAN. As we can see, the synthetic images look very similar to the real images,
and synthetic images also inherit the patterns and features from the original lung cancer
images. Additionally, for the lung benign tissue images shown in Figure 5b and the lung
squamous cell carcinoma images shown in Figure 5c, the left sides of these figures are real
images, and the right sides are synthetic images. Although there are some slight differences
between real images and synthetic images, they do not affect the performance improvement.
After generating synthetic images, we do experiments based on different transfer learning
models to evaluate the performance of our LCGAN model. The results are discussed in the
following Section 4.2.2.

(a) (b) (c)

Figure 5. Comparison between real and LCGAN images: (a) lung adenocarcinoma, (b) lung benign,
(c) lung squamous cell carcinoma.

4.2.2. the Results of Different Transfer Learning Models with Different Training Datasets

We run two experiments based on different datasets. Each experiment trains four
different transfer learning models, including VGG-DF, ResNet50, DenseNet121, and Ef-
ficientNetB4. The first experiment was trained on the original dataset, and the second
experiment was trained on the dataset that combines the original and synthetic datasets
generated by LCGAN. First, we compared results between different transfer learning
models with the same dataset so we can find the most efficient model by this comparison.
Second, we compared the results between different datasets with the same model so we
can evaluate whether the synthetic dataset improves the performance of same transfer
learning model. We ran both experiments 10 times and calculated the average metrics for
each model.

As Table 4 shows, the VGG-DF, ResNet50, DenseNet121, and EfficientNetB4 reach
average classification accuracy of 95.80%, 95.56%, 53.87%, and 45.96%, respectively. We can
see that the VGG-DF shows the highest accuracy of 95.80%, precision of 95.81%, sensitivity
of 95.80%, and F1-score of 95.80%, and the EfficientNetB4 shows the lowest performance.
ResNet50 also shows good performance, close to the results of VGG-DF. Overall, the
first experiment shows that the VGG-DF and ResNet50 models perform better than the
DenseNet121 and EfficientNetB4 models.

Table 4. Results of different transfer learning models trained on the original dataset.

VGG-DF (Ours) ResNet50 DenseNet121 EfficientNetB4

Accuracy 95.80% 95.56% 53.87% 45.96%
Precision 95.81% 95.56% 76.86% 75.93%
Sensitivity 95.80% 95.56% 53.87% 45.96%
F1-score 95.80% 95.56% 49.62% 38.44%
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Table 5 shows the results of the second experiment in which training on the dataset
combines the original and synthetic datasets. The four models reach classification accuracies
of 99.84% for VGG-DF, 95.46% for ResNet50, 79.64% for DenseNet121, and 51.74% for
EfficientNetB4. These are the same as for the first experiment. The VGG-DF model shows
the best result with an accuracy of 99.84%, precision of 99.84%, sensitivity of 99.84%, and
F1-score of 99.84%. The ResNet50 shows the nearest results with VGG-DF; the DenseNet121
and EfficientNetB4 show 79.64% and 51.74% for accuracy, respectively. We can conclude
that the VGG-DF and ResNet50 models show the best performance for the lung cancer
classification task. The DenseNet121 and EfficientNetB4 did not work very well compared
with the other models in the second experiment.

Table 5. Results of different transfer learning models trained on the dataset that combines original
and synthetic datasets.

VGG-DF (Ours) ResNet50 DenseNet121 EfficientNetB4

Accuracy 99.84% 99.46% 79.64% 51.74%
Precision 99.84% 99.49% 66.81% 68.70%
Sensitivity 99.84% 99.46% 59.19% 51.74%
F1-score 99.84% 99.46% 52.06% 43.03%

To evaluate the quality of synthetic images generated by the LCGAN, we compare the
results from Tables 4 and 5. As we noted previously, Table 4 shows the first experiment’s
results, for which all the training images are real images. Table 5 shows the results of the
second experiment, for which the training dataset combines original images and synthetic
images. First, we compare the VGG-DF model from the two tables. Accuracy, precision,
sensitivity, and F1-score improve by 4.04%, 4.03%, 4.04%, and 4.04% respectively, with
extra synthetic data. The ResNet50 model improves by 3.90%, 3.93%, 3.90%, and 3.90% for
each metric with extra synthetic data. For the third model, the accuracy of DenseNet121
increases by 25.77%, the precision decreases by 10.05%, sensitivity increases by 5.32%,
and the F1-score improves by 2.44%. The last model is EfficientNetB4, for which the
accuracy, sensitivity, and F1-score increased by 5.78%, 5.78%, and 4.59%, respectively, and
the precision decreased by 7.23%. To summarize these comparisons, the synthetic data
generated by the LCGAN remarkably improve the lung cancer classification performance
for the VGG-DF and ResNet50 models. For DenseNet121 and EfficientNetB4, the accuracy,
sensitivity, and F1-score are increased, whereas the precision is not. Especially for the
VGG-DF and ResNet50, the overall performance is very good.

4.3. Comparison with State-Of-Art Methods for the Same Dataset

In Table 6, we compared our outcome with other related work for the same dataset.
Most related work uses the CNN model to classify lung cancers, and there is no one using
the GANs to improve the performance of the models. Our framework is the only one that
combines the GANs and CNN models. By comparing the matrix with other work, our
framework reached the best accuracy, precision, sensitivity, and F1-score. Furthermore, we
believe that our framework is also suitable for other datasets to improve performance by
using additional synthetic data.
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Table 6. Comparison of state-of-art methods.

Reference Model (Method) Accuracy Precision Sensitivity F1-Score

[28]
RESNET50 93.91% 95.74% 81.82% 96.26%
RESNET18 93.04% 96.81% 84.21% 95.79%
RESNET34 93.04% 95.74% 80.95% 95.74%

[29] Ensemble 91% 92% 91% 91%
ResNet50V2 90% 91% 90% 90%

[30] CNN-D 94.6% - - -

[31] DL-based CNN 96.33% 96.39% 96.37% 96.38%

[32] CNN 97.2% 97.33% 97.33% 97.33%

[33] XGBoost 99.53% 99.33% 99.33% 99.33%

Our method LCGANT 99.84% 99.84% 99.84% 99.84%

5. Discussion

This study proposed the LCGANT, which includes a lung cancer deep convolutional
GAN called LCGAN with regularization enhanced transfer learning model VGG-DF. The
LCGAN can generate additional synthetic lung cancer images, and the VGG-DF can use
original and synthetic datasets to classify different lung cancer classes. Our results indicate
that the synthetic lung cancer images are indistinguishable from the original images, and
the synthetic images indeed can improve the performance of backbone models.

Generative adversarial networks (GANs) are one of the unsupervised deep learning
models used in medical image analysis [34]. There are also other models like autoencoders
(AEs) and variants, restricted Boltzmann machines (RBMs), deep belief networks (DBNs),
and deep Bolzmann machines (DBMs). Recently, GANs have made great progress in differ-
ent domains. In our proposed LCGAN, we add extra settings to help the generator produce
high-quality lung cancer images and use different techniques to avoid the checkerboard
effects of generated images.

After we completed the training process of the LCGAN, we add synthetic images as
an additional dataset to train our regularization enhanced VGG-DF model. As Section 4
describes, the synthetic images improve the performance of VGG-DF. It also proves that the
synthetic images generated by our LCGAN can be applied to train deep learning models
that resolve the limit labelled lung cancer images in the biomedical domain. However, the
validity of synthetic images generated by the LCGAN for diagnostic applications has not
been provided. Therefore it has the potential risk of making conclusions for clinical or
scientific applications.

This study has several limitations. Alhough the proposed framework got good results,
there are still some drawbacks to the current framework:

• The synthetic images generated by the LCGAN have slight differences from real
images.

• The dimension of images produced by the generator is 64× 64. This is not sufficient
for the biomedical domain. Images with high resolution are very essential in this area.

In our future work, we will evaluate the current framework on the different datasets
and explore other potential GANs in the biomedical domain. Moreover, we will explore
the reasons for the differences between real and synthetic data and design a more effective
architecture to create high-resolution synthetic images.

6. Conclusions

This article proposed a framework LCGANT for addressing the overfitting problem of
lung cancer classification tasks. The framework contains two main parts: the lung cancer
deep convolutional GAN (LCGAN) to generate synthetic lung cancer images and the
regularization enhanced transfer learning model VGG-DF to classify lung cancer datasets.
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The dataset of VGG-DF contains original and synthetic images. The result shows that the
performance of different classification models improved by adding additional synthetic
data from the LCGAN. Based on the results in Tables 4 and 5, our LCGANT showed
the best performance with the results of: 99.84% (accuracy), 99.84% (precision), 99.84%
(sensitivity), and 99.84% (F1-score). The results prove that the proposed LCGANT is an
effective framework for solving the overfitting problem of lung cancer classification tasks.
It also achieves better performance compared with other state-of-art methods.
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