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Abstract: Manufacturing is transitioning from traditional and mass manufacturing to mass per-
sonalization, fast, and intelligent production. Through full automation in various fields and data
sharing, Industry 4.0 (I4.0) contributes to the digitalization of manufacturing by enhancing industrial
flexibility and product customization. I4.0 is being utilized as a strategy for advanced manufacturing
to counter global competitiveness. A company’s manufacturing strategy outputs (MSOs) are critical
to its ability to move forward and remain competitive. Despite their importance, I4.0 technologies
have received less attention in the literature, and it is unclear how they influence MSOs. Thus, this
study aims to build a powerful hybrid MCDM method for ranking the influence of I4.0 technologies
on MSOs by adopting a combination of AHP and fuzzy TOPSIS. The application of fuzzy set theory
has addressed the ambiguity in comparing various I4.0 technologies. The AHP was used to calculate
the weights of criteria and sub-criteria, and the fuzzy-TOPSIS method was utilized to rank the I4.0
technologies. The results revealed that the cost criterion is the most critical factor when implementing
I4.0 technologies. In contrast, additive manufacturing (AM) is the most suitable I4.0 technology for
countering global competition.

Keywords: manufacturing strategies; Industry 4.0 technologies; smart manufacturing; MCDM; AHP;
fuzzy TOPSIS

1. Introduction

Due to limited and predetermined resources, static routing, no interconnection, inde-
pendent control, and separate information, traditional manufacturing systems are unable
to keep organizations competitive. As a result, I4.0 is a new revolution that overcomes
the conventional manufacturing challenges to maintain the organization competitive by
leveraging its features such as various resources, dynamic routing, instant interconnection,
self-organization, and big data capabilities. There has been a rise in the use of I4.0 in order
to help businesses compete on a global scale. The German Federal Government originally
introduced the “Industry 4.0” concept in 2011 [1]. The first revolution used water and
steam power, the second used electric power and infrastructure growth, and the third used
electronics and IT. Independently exchanging data, activating activities, making decisions,
and controlling one another are all features of a fully functional cyber-physical system,
which is a critical component of I4.0, along with smart technologies that can provide the
integration of machinery, factory, and business processes [2,3]. Meanwhile, Industry 5.0
(the Fifth Industrial Revolution) is an emerging era of industrialization in which humans
collaborate with advanced technology and robotics to improve work processes. It is based
on the observation or assumption that I4.0 focuses less on the fundamental values of social
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fairness and sustainability and more on digitalization and supporting technologies for
enhancing production efficiency and flexibility [4,5].

In the 1970s, partial automation with memory-programmable controls and computers
marked the beginning of the Third Industrial Revolution (Industry 3.0). Since introduc-
ing these technologies, it has automated an entire production process—without human
assistance. Robots executing predetermined sequences without human intervention are
examples of this revolution [6,7]. In contrast, Industry 4.0 is characterized by the application
of information and communication technologies to the industrial sector; the Internet of
Things (IoT) has the potential to revolutionize the manufacturing industry. It builds upon
the progress made during the Third Industrial Revolution. Existing production systems
with computer technology are augmented by a network connection and have a digital
twin on the Internet. For practical purposes, a digital twin serves as the indistinguishable
digital counterpart to an intended or actual physical product, system, or process. It is
designed for simulations, integrations, testing, monitoring, and maintenance of real-world
physical products, procedures, or processes. The Digital Twins sector has concentrated
on manufacturing and proposed explicit frameworks and architecture, which presented
difficulties in supporting different integration levels through an agile process [8,9]. It
permits communication with other facilities and the dissemination of information about
themselves. The networking of all systems results in “cyber-physical production systems”
and, consequently, intelligent factories, where production systems, components, and peo-
ple communicate via a network and production is nearly autonomous [7,10,11]. Figure 1
summarizes the differences between I3.0 and I4.0 in terms of manufacturing. The transition
from Industry 3.0 to Industry 4.0 in terms of technology has likely occurred gradually over
the past few decades.
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I4.0 is a revolutionary wave that enables organizations to respond rapidly and effec-
tively to customer demands. Academics and practitioners established it to improve the
competitiveness of the manufacturing industry [12]. Cyber-physical systems (CPS), the
Internet of Things (IoT), and cloud computing are all examples of automation technologies
that are being incorporated into the manufacturing industry as part of the I4.0 program [12].
It all started with the goal of producing items that reflect customer needs through efficient
manufacturing processes; designers may refer to this concept as “flexible integration of the
global value chain” [13,14]. I4.0 allows cost-effective, intelligent, efficient, effective, indi-
vidualized, and customized products. With faster computers, smarter machinery, smaller
sensors, and more affordable data storage and transmission, machines and products could
become more intelligent to communicate and learn from one another [15]. I4.0 promotes
industrial flexibility and the customization of goods via automation and data sharing in
various settings, hence aiding in the digitization of manufacturing [16]. By utilizing I4.0
technologies, mass personalized production can be achieved with the competitive efficiency
of mass production. The rise of individualization and the digital revolution will enable
mass personalization to move beyond today’s mass customizations [8].
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I4.0 is characterized by highly developed automation and digitalization processes,
electronics, and IT in manufacturing and services [17]. In order to manage data flow from
intelligent and dispersed system interaction from the perspective of production and ser-
vice management, I4.0 focuses on developing smart and communicative systems, such as
machine-to-machine and human–machine interaction [18]. The traits of autonomy, interop-
erability, agility, flexibility, decision making and cost-cutting are emphasized throughout
I4.0 [19]. Furthermore, I4.0 comprises “new technologies that combine the physical, digital,
and biological worlds and influence all disciplines, economies, and organizations”. The
technologies include the Internet of Things (IoT), cloud manufacturing (CM), big data (BD),
automation and industrial robotics (AIR), additive manufacturing (AM), augmented reality
(AR), modeling and simulation (MS), and cybersecurity (CS) [20–23]. These technologies
can potentially connect billions of users to the internet and significantly improve business
and organizational effectiveness.

Recent interest in I4.0 has increased due to its numerous advantages for manufacturing
organizations. I4.0 is characterized by highly developed automation and digitalization
processes, electronics, and IT in manufacturing and services [17]. Machine-to-Machine
and Human-to-Machine Interaction are just two examples of the types of intelligent and
communicative systems that I4.0 prioritizes in order to manage the flow of data generated
by the interaction of smart and distributed systems in production and service delivery [18].
Autonomous interoperability, agility, flexibility, decision making, efficiency, and cost re-
ductions are just some of the benefits of I4.0. Several authors [24–29] described the I4.0
technologies. The I4.0 technologies and their descriptions have been summarized in Table 1.

Organizations often struggle to adopt cutting-edge and I 4.0 technologies due to the
complexity and expense of arrangement. As part of Industry 5.0’s efforts to address sig-
nificant concerns, such as economic, social, technological, and cohesion between I4.0 and
Industry 5.0, increased cohesion between technology and human-centric models should
result in more environmentally friendly products with greater sustainability. Significant ob-
stacles reinforce one another and overlap. According to [30], the frontiers of manufacturing
technologies include economic, socio, and technological challenges.

Manufacturing strategies (MS) are long-term plans for using the manufacturing sys-
tem’s resources to support the business strategy and, consequently, to achieve the organi-
zation’s objectives. MS is a collection of manufacturing strategies designed to maximize
performance while balancing competing success criteria in order to accomplish production
goals. A company’s manufacturing strategy is how it utilizes its resources and prioritizes
its activities in order to achieve its company goals. A company’s manufacturing strategy is
a pattern of competitiveness that attempts to gain a competitive advantage. The executive
team’s job is to ensure that the manufacturing strategy is consistent and that all policies
support and supplement the strategic plan [31]. Manufacturing has become a strategic
competitive component that manufacturers utilize to differentiate themselves from competi-
tors [32]. Consequently, developing a manufacturing strategy for a business is now crucial.
MS is essential to establishing the company’s competitive advantage in the market [33].

The manufacturing strategy implementation process begins with strategy formulation
and ends with company performance. MS helps companies establish a well-organized
manufacturing system to decrease the associated difficulties [34]. The organized struc-
ture of a manufacturing company improves performance and helps gain a competitive
advantage [35]. This structure can be achieved by effectively managing manufacturing
decisions. A company’s competitiveness is “the firm’s ability to create, produce, and mar-
ket products that are superior to those offered by competitors, taking price and non-price
features into consideration” [36]. Maintaining growth and profits in the manufacturing
sector requires a focus on customer loyalty, which can be achieved through the creation
of high-quality products that can be delivered in a rapid global market. The degree of
manufacturing competitiveness depends on accomplishing competitive priorities and man-
ufacturing performance [37,38]. Utilizing servitization, differentiation, and innovation,
companies become more competitive in manufacturing [39]. Manufacturing capability is
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a company’s output (cost, quality, flexibility, delivery, performance, and innovativeness),
which helps maintain a competitive advantage [34,37].

Table 1. I4.0 technologies.

I4.0 Tech Description

Internet of Things (loT)

The Internet of Things allows things to exchange information, collaborate on tasks, and earn real-time
decisions [40]. It creates a network between things and people. IoT applications in production systems
reduce the magnitude of product recalls, the identification of defective goods early, the change of
product designs, and the performance of production systems.

Cloud manufacturing (CM)

Described as a service-oriented business model for the cloud-based sharing of manufacturing resources
and capabilities. Cloud-based manufacturing offers cloud-based software, a web-based management
dashboard, and cloud-based collaboration to manufacturers. It facilitates the integration of distributed
manufacturing resources and the creation of a scalable, shared platform across geographically distant
production sites and services [41].

Big data and analytics (BD)

It is characterized as enormous collections of heterogeneous data entering from multiple sources in
various formats and transferring in real time [42]. This technology and system illustrate how companies
can gain a competitive advantage by discovering, processing, and analyzing vast volumes of different
data [43].

Automation and industrial robotics (AIR)
There is a growing trend toward using AIR in industrial and increasingly common settings [25].
Electronics, food, logistics, and life sciences will need advanced robot technology to develop production
processes (gluing, coating, laser-based processes, precision assembly, and fiber material processing).

Additive manufacturing (AM)

Additive manufacturing (AM) involves joining materials to create objects from 3D printing, typically
layer-by-layer [44,45]. It helps to reduce waste while also streamlining mass customization and
manufacturing on demand. Increased supply chain adaptability is another benefit of producing goods
close to their eventual customers.

Augmented reality (AR)

Augmented reality (AR) is an exciting new method of bringing computer-generated imagery (CGI) into
the real environment [46]. Industrial augmented reality (AR) uses customized goggles, glasses, or
smartphone apps to superimpose digital data over a plant worker’s real-world view, enhancing
productivity, efficiency, and safety. The purpose of augmented reality is to enhance human performance
by giving task-specific information [46].

Modeling and simulation (MS)
A manufacturing system’s design, implementation, testing, and real-time control are all made more
accessible by modeling and simulation technology [47]. Modeling simulations can minimize expenses,
reduce development time, and enhance product quality.

Cyber-Physical Systems (CPS)

CPS are “systems of cooperating computational entities intimately connected to the real world and its
activities, simultaneously supplying and consuming internet-based data-access and data-processing
services”. CPS-enabled distributed manufacturing systems offer many advantages in effective and
flexible manufacturing [48].

Cybersecurity (CS)

Cybersecurity (CS) is a technology that detects, defends against, and responds to cyber-attacks [49]. CS
is a new concept for high information security that is broadened to include industrial Internet of Things
contexts with the addition of the word cyber. CS technologies include the identification and detection of
threats and the prevention of data loss.

Block-chain (BC)

BC is a transaction platform that aims to be decentralized and transparent for specific industries.
Robustness, openness, immutability, traceability, and process integrity set BC technology apart [50].
Transferring digital knowledge is possible with BC technology. Numerous applications have utilized BC,
including design, manufacturing, finance, supply chain, and social [50].

To increase the overall manufacturing performance, alignment between I4.0 tech-
nologies and long-term strategic goals is required in all of these areas [51]. To maintain
a competitive edge, many huge companies are implementing I4.0. BMW, Jaguar Land
Rover, Rolls-Royce, General Electric, and Philips are just a few corporations that have
already implemented I4.0. Nestlé has been very involved in Germany’s I4.0 agenda to boost
efficiency, reduce the environmental impact of packaging waste, and raise productivity
through digitalization [52]. The implementation of I4.0 should be transdisciplinary and
tightly interconnected amongst many critical domains. Several authors detailed the I4.0
technologies (also called the building blocks of manufacturing) [24–28]. Numerous research
studies have been conducted to clarify the significance of implementing I4.0 technologies
to enhance the manufacturing strategy’s outputs. Italy has implemented I4.0 technologies
(big data analytics, digital supply chain, Internet of Things (IoT), cloud computing, robotics,
3D printing, and automated guided) to increase cost, performance, and innovation [53].
May and Kiritsis [54] utilized I4.0 technologies to achieve zero faults in manufacturing
lines, reducing costs and increasing the quality, customer satisfaction, competitiveness,
and sustainability of manufacturing operations. Tortorella and Fettermann [55] utilized
I4.0 technologies such as 3D printing, virtual model simulation/analysis, big data, cloud
service, and IoT to enhance the quality and performance of Brazilian manufacturing firms.

Due to the increased complexity of the manufacturing process, manufacturers are
becoming increasingly concerned with decision-making effectiveness. Therefore, multi-
criteria decision making (MCDM) methods can significantly reduce the problem’s severity
in a fuzzy environment [56–58]. Based on expert estimates, the MCDM approaches are
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used to rate the importance of proposed alternative solutions based on a number of in-
terdependent criteria [59,60]. The evaluative measure may be qualitative or quantitative.
It is considered that criteria based on qualitative factors depend on experts and can be
subjective, whereas quantitative criteria are independent of experts. Several methods,
including ranking and scoring systems, can be utilized to convert qualitative to quantitative
variables that are consistent with MCDM procedures. In the literature, a large variety of
distinct problem-solving techniques using MCDM are reported [61].

Multi-criteria decision-making (MCDM) began in the 1970s, and at first, several
researchers thought it was an interesting area to study. More than seventy strategies
for multi-criteria decision-making have developed [62]. Decision analysis is an essential
tool in manufacturing because it helps solve problems with different goals, options, and
criteria [63]. MADM models are used to find the most suitable options or rank them
based on how well they satisfy the goals. It gives a basis for selecting, categorizing, and
prioritizing materials and aids the overall evaluation. MCDM is especially important
when the application is complex or sophisticated. MCDM is one of the most widely
used decision-making techniques in numerous industries [12–22]. MCDM analyzes the
criteria to assess whether or not each criterion is favorable or unfavorable for a specific
application. In addition, it compares this criterion, based on the selected criteria, to every
other possible alternative to aid the decision-maker in choosing the option with the least
amount of compromise and the most significant number of advantages. According to
previous studies [64–73], the advantages and disadvantages of the chosen MCDM methods
are shown in Figure 2.
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Figure 2. Advantages and disadvantages of existing MCDM methods.

The above literature study demonstrates that very few papers have clarified the
relevance of utilizing I4.0 strategies to enhance the manufacturing strategy’s outcomes.
Moreover, limited and planned resources, static routing, a lack of connectivity, autonomous
control, and isolated information are just a few reasons why the traditional production
system cannot keep the organization competitive in its current state. As a result of globaliza-
tion, organizations now face new challenges, such as a more competitive and sophisticated
marketplace, an unpredictable and risky trading environment, and changing customer
expectations. If organizations want to maintain their competitive edge, they must prioritize
I4.0 technologies that influence MSOs. However, I4.0 is comprised of a variety of technolo-
gies, and it is yet unknown how I4.0 technologies can influence manufacturing methods;
hence, the literature has received less attention. In addition, prior published articles on
the impact of I4.0 technologies on industrial strategy evaluated just one or two outputs.
Thus, this paper provides a method for evaluating I4.0 technologies based on the Analytic
Hierarchy Process (AHP) and the fuzzy Technique for Order of Preference by Similarity to
Ideal Solution (fuzzy-TOPSIS), filling a gap in the existing literature. The current study will
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investigate the influence of I4.0 technologies on the six MSOs to enhance the manufacturing
industries’ competitiveness. The main research contributions are listed below.
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This study identifies the right prioritizations of I4.0 technologies for industrial busi-
nesses to counter global competitiveness.

This research is structured as follows: Methods for selecting experts, gathering relevant
data and determining I4.0 and MSO technologies are outlined in Section 2. The results
are presented in Section 3. Sensitivity analysis results are presented in Section 4. The
findings are discussed in Section 5. The final section provides a conclusion, implications,
and recommendations for future research.

2. Research Methodology

Due to the increased complexity of the manufacturing process, manufacturers are
becoming increasingly concerned with decision-making effectiveness. Therefore, multi-
criteria decision making (MCDM) methods can significantly reduce the problem’s severity
in a fuzzy environment [56–58]. MCDM provides a basis for choosing, categorizing, and
prioritizing items and aids in the overall evaluation. MCDM is especially useful when the
application is complex or sophisticated. MCDM is one of the most widely used decision-
making techniques in numerous industries [74]. This study aims to build a powerful hybrid
MCDM method for ranking the influence of I4.0 technologies on MSOs. The proposed
evaluation approach for I4.0 technologies on MSOs is shown in Figure 3.

AHP is an effective multi-objective decision-making method that combines qualitative
and quantitative analysis and is frequently used for comprehensive evaluation. This
method supports the importance of qualitative indicators and the rationale underlying
subjective factors [75]. The AHP approach can be applied effectively to both qualitative
and quantitative data. It can convert a multi-criteria, complex problem into a hierarchical
framework [76]. The process necessitates little mathematical calculations [77]. The hierarchy
levels are constructed so that there is a set of choices at the lowest level, and at the highest
level, there is a broad objective. Criteria and sub-criteria are placed between the minimum
and maximum levels (i.e., at the middle level). The AHP determines the relative importance
of criteria and sub-criteria. The elements are compared pair-wise using an established scale,
as provided by Saaty [78].

TOPSIS is a well-known method for solving the problem of ranking alternatives
from most significant to worst. The defining characteristic of TOPSIS is that the favored
option should be closest to the ideal positive solution and farthest from the ideal negative
solution. Therefore, the optimal resolution is the one that optimizes the benefit criteria while
minimizing the cost criteria. In other words, the ideal solution contains the most significant
possible values for each criterion, whereas the negative ideal solution has the worst possible
values [79]. One of the primary benefits of the TOPSIS method is that it provides influence
results for ranking alternatives with unlimited data for every indicator [80]. Dos Santos
et al. [81] propose that integrating TOPSIS with other MCDM techniques may result in
more efficient and adaptable issue resolution.
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The cost, quality, delivery, flexibility, performance, and inventiveness are all outputs
of MS that have been identified as competitive priorities in the literature [27]. MSOs
consist of numerous measures (basic elements) obtained from the various functions of
manufacturing systems. I4.0 comprises “new technologies that combine the physical,
digital, and biological worlds and influence all disciplines, economies, and businesses”.
These technologies can connect billions of additional people to the internet and signif-
icantly boost commercial and organizational productivity. According to the reported
studies [24–29], the I4.0 technologies are the loT, CM, BD, AR, AIR, AM, modeling and
simulation (MS), CPS, CS, and block-chain (BC). Our previous publication describes MSOs,
basic elements, and I4.0 technologies [82,83]. A phase’s methodology (Figure 3) is proposed
to rank the I4.0 technologies to achieve market competitiveness. To apply the hybrid
MCDM method in order to prioritize the MSOs, all MSOs and their basic measures are
initially organized into hierarchical levels (criteria and sub-criteria). Figure 4 shows the
decision-making hierarchy to rank I4.0 technologies.
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2.1. Expert’s Criteria

Experts were selected for this study based on their knowledge and experience [84].
According to [85], acceptable experts had at least ten years of professional experience
in academia, industry, or a combination of both. The majority of specialists chosen from
manufacturing companies were associated with I4.0 technologies. The target responders are
CEOs, general managers, department heads, specialist engineers, academics, and experts
with at least ten years of experience in manufacturing strategies related to industrial
organizations, emphasizing MSOs. Experts must have a thorough comprehension of
manufacturing, with a focus on manufacturing strategies.

Additionally, professionals should have theoretical or practical knowledge of I4.0
technologies [55]. They were in charge of market strategy or manufacturing and operations.
Therefore, they have a comprehensive understanding of manufacturing strategies. Since
these specialists have worked for manufacturing or consulting organizations, the informa-
tion acquired through questionnaires is quite reliable. Similarly, academic specialists were
selected from professors and doctorates who have published articles on manufacturing
strategies and Industry 4.0 in reputable journals. Therefore, the chosen academic experts
have a substantial impact on this field.

To explain the research, experts were interviewed individually, and those who were
geographically unable to participate in person were interviewed online. They were initially
sent an email describing the purpose of the study and confirming their participation. Most
experts responded favorably to the email. However, only fourteen professionals completed
the surveys.

2.2. Analytic Hierarchy Process (AHP)

The Analytical Hierarchical Process (AHP) was developed by Saaty [78]. It is an efficient
method for resolving complicated problems. AHP determines the relative significance of
factors in multi-criteria decision problems. It allows it to incorporate human judgment based



Machines 2023, 11, 310 9 of 20

on qualitative and quantitative factors [86]. AHP has been extensively utilized to handle
complex, multi-criteria decision-making issues. The AHP is based on the following steps:

Step 1: Construct an AHP structure. MCDM has a hierarchical structure. The MCDM
is disassembled into a hierarchy of interconnected decision factors. The AHP organizes
objectives, criteria, sub-criteria, and alternatives in a hierarchical structure. Typical hierar-
chy levels are shown in Figure 4: the problem’s overall goal on the left, several criteria and
sub-criteria in the center, and decision alternatives on the right.

Step 2: Establish a decision matrix for pair-wise comparisons. The pair-wise compari-
son of criteria is the second step in determining the relative weight of the criteria. Multiple,
multiple pair-wise comparisons in AHP are based on a standard comparison scale with
different levels, as illustrated in Table 2. Suppose that cij = 1, 2, . . . , n} is the set of criteria.
An evaluation matrix can be obtained in which every factor aij (i, j = 1, 2, . . . , n) represents
the relative weights of the criteria illustrated in Equation (1).

C =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 (1)

Table 2. Pair-wise comparison scale for AHP method.

Scale Relative Importance

1 Very low (VL)
3 Low (L)
5 Medium (M)
7 High (H)
9 Very high (VH)

Step 3: Calculating the criteria weight. The weight can be calculated by Equation (2).

AW = λmaxW (2)

The λmax can be acquired. A is consistent if the λmax equals n and the rank of the
matrix A is n. In this instance, the relative criteria are discussed. The weight of each
criterion will be computed by normalizing any of matrix A’s rows or columns.

Step 4: Calculate the consistency using the following equations to determine its
consistency index (CI) and consistency ratio (CR). The CR must be less than 0.1 to claim
that the comparison matrix is consistent and identify RI as the random index. The matrix
size is applied to RI determine the amount of randomness created. RI equals 0.90 when n is
equal to four, 1.12 when n is equal to five, and 1.24 when n is equal to six [87]

CI =
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n− 1

(3)

CR =
CI
RI

(4)

where
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2.3. Fuzzy TOPSIS Method

Chen [88] created the fuzzy TOPSIS method for resolving uncertain MCDM issues.
Decision-makers Dr(r = 1, . . . , k) use linguistic variables to estimate the weights of criteria
and the ratings of alternatives. Thus, Wr

j represents the importance of the jth criterion, Cj

(j = 1, . . . , m), outlined by the rth decision-maker. Similarly, Wr
j represents the score of the

ith I4.0 technology (alternatives), Ai (i = 1, . . . , n), regarding criterion j, as indicated by the
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rth decider. The fuzzy triangular numbers required by Fuzzy TOPSIS are shown in Table 3.
Given these conditions, the method comprises the subsequent steps [89–92].

Table 3. Fuzzy TOPSIS Linguistic Scale.

Code Linguistic Scale Corresponding Triangular Fuzzy Numbers

VH Very high influence 0.80→1.00→1.00
H High influence 0.60→0.80→1.00
M Medium influence 0.20→0.40→0.60
L Low influence 0.00→0.20→0.40

VL Very Low influence 0.00→0.00→0.20

Step 1. Collect the weights and ratings of options supplied by k decision-makers, as
illustrated by Equations (5) and (6).

Wj =
1
k

[
W1

j + W2
j + . . . + Wk

j

]
(5)

xj =
1
k

[
x1

j + x2
j + . . . + xk

j

]
(6)

Step 2. Combining the fuzzy decision matrix of criteria (W) and alternatives (D) using
Equations (7) and (8)

D =


. . . . . .

x11 x12 . . . x1m
...

...
...

...
xn1 xn2 · · · xnm

 (7)

Wj = [W1 + W2 + . . . + Wm] (8)

Step 3. Normalize the fuzzy choice matrix of the alternatives using a linear scale
transformation (D). Equations (9)–(11) generate the normalized fuzzy decision matrix R.

R =
[
rij
]

m×n (9)

rij =

(
lij
u+

j
,

mij

u+
j

,
uij

u+
j

)
and u+

j = maxi uij(benefit criteria) (10)

rij =

(
l−j
uij

,
l−j
mij

,
l−j
lij

)
and l−j = maxi lij(cos t criteria) (11)

Step 4. Multiply the weights of the evaluation criterion, Wj, by the normalized fuzzy
decision matrix elements, rij, to obtain the weighted normalized decision matrix, V, by
Equation (12)

V =
[
vij
]

m×n (12)

where vij is given by Equation (13)

vij = xij × wij (13)

Step 5. Determine the fuzzy positive ideal solution (FPIS, A+) and fuzzy negative
ideal solution (FNIS, A−) using Equations(14) and (15)

A+ =
{

v+1 , v+j , . . . , v+m
}

(14)

A− =
{

v−1 , v−j , . . . , v−m
}

(15)
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Step 6. Calculate the distances dj
+ and dj

− for each alternative based on Equations (16) and (17)

dj
+ = ∑n

j=1 dv

(
vij, v+j

)
(16)

dj
− = ∑n

j=1 dv

(
vij, v−j

)
(17)

where d represents the vertex-based distance between two fuzzy numbers. This can be
demonstrated for TFNs via Equation (18)

d(x, z) =

√
1
3

[
(lx − lz)

2 + (m−mz)
2 + (ux − uz)

2
]

(18)

Step 7. Determine the proximity coefficient, CCi, using Equation (19)

CCi =
dj

+

dj
+ + dj

− (19)

Step 8. Based on the closeness coefficient, CCi, compute the decreasing order of possibilities.
The optimal option is the one that is closest to the FPIS and farthest from the FNIS.

3. Results
3.1. AHP Calculations

A questionnaire in the form of pair-wise comparison, utilizing the previously men-
tioned hierarchical structure, is developed. Respondents were then asked to use the five
linguistic scores listed in Table 2 to evaluate how each criterion related to the others. The
AHP initial direct relation matrix was obtained from all experts, as shown in Table 4.
Criteria weights and corresponding parameter values are shown in Table 5.

Table 4. Pair-wise comparison matrix for all experts.

C Q D F P I

C 1.00 4.43 2.14 2.43 5.86 3.57
Q 0.24 1.00 2.00 1.14 2.86 1.00
D 0.62 0.67 1.00 1.14 1.43 0.33
F 0.52 0.95 0.95 1.00 2.86 1.57
P 0.18 0.42 0.90 0.42 1.00 1.00
I 0.45 1.00 1.10 0.81 1.00 1.00

Table 5. Criteria weights and related parameter values.

Weight
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2.3. Fuzzy TOPSIS Method 

max CI RI CR

C 0.3889 6.585 0.117 1.240 0.094
Q 0.1495
D 0.1083
F 0.1576
P 0.0764
I 0.1193

Then, the consistency ratios (CR) were computed to confirm the accuracy of the data.
Since CR values do not exceed 10%, estimated weights can be utilized to establish the MSOs’
priority ranking. Participants were neither inconsistent nor random when comparing the
criteria and sub-criteria. The consistency ratios (CR) (%) for other factors, cost measures,
quality measures, delivery measures, flexibility measures, performance measures, and
innovativeness measures are (8.9, 8.3, 5.1, 8.2, 6.4, and 6.0). Thus, the evaluation technique
can be regarded as satisfactory, and the AHP scale and survey format can be made available
for replication in real-world settings.
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Table 6 shows the summary of weights obtained from the AHP method. The table
displays the final weights assigned to the factors that affect MSOs adopting I4.0 technologies
(smart manufacturing). The highest weighed sub-factor for MSOs is the operating cost
(C2) with 0.1006. The next most crucial sub-factor was cost per unit produced (C1), given
a weight of 0.0980. In this perspective, other measures appear to be moderately or less
significant to MSOs when adopting I4 technologies (Table 6).

Table 6. Summary of weights obtained from the AHP method.

Criteria Criteria Weights Sub-Criteria Local Weights Overall Weights

Cost 0.3889

C1 0.2520 0.0980
C2 0.2587 0.1006
C3 0.2104 0.0818
C4 0.1744 0.0678
C5 0.1044 0.0406

Quality 0.1495

C6 0.1573 0.0235
C7 0.2390 0.0357
C8 0.1814 0.0271
C9 0.2931 0.0438

C10 0.1292 0.0193

Delivery 0.1083

C11 0.2858 0.0309
C12 0.3265 0.0354
C13 0.1891 0.0205
C14 0.0913 0.0099
C15 0.1074 0.0116

Flexibility 0.1576

C16 0.2658 0.0419
C17 0.3552 0.0560
C18 0.0209 0.0026
C19 0.3580 0.0438

Performance 0.0764

C20 0.2609 0.0199
C21 0.3178 0.0243
C22 0.1484 0.0113
C23 0.2059 0.0157
C24 0.0670 0.0051

Innovativeness 0.1193

C25 0.3102 0.0370
C26 0.1294 0.0154
C27 0.1785 0.0213
C28 0.2018 0.0241
C29 0.1801 0.0215

3.2. Fuzzy TOPSIS Method

This section describes the implementation of the TOPSIS method, which ranks I4.0
technologies. In addition, the sub-criteria that contribute the most to the overall separation
of each technology can be identified, allowing for the effective creation and implementation
of improvement plans. The experts are asked to evaluate the expected performance of each
I4.0 technology concerning each sub-criteria using a questionnaire. Ten technologies are
reviewed, and fourteen experts, k1–k14, are asked to complete the questionnaire. Due to
space constraints in this research, this article only provides an example of the collected data
from one of the experts for the alternatives evaluation, as illustrated in Table 7. Therefore,
the distances dj

+ and dj
− for each alternative and closeness coefficient, CCi I4.0 technologies

are shown in Table 8 and Figure 5. Figure 5 shows the closeness coefficients CCi and final
ranking of I4.0 technologies.
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Table 7. An example of the collected data from one of the experts for the alternatives evaluation.

MSOs IoT CM BD AIR AM AR MS CPS CS BC

C1 M M L M VH M VL VL L M
C2 L M M H H L L L L H
C3 L L L M L VL VL L VL L
C4 H H L H H VL M L VL H
C5 M VL VL L L VL VL VL VL M
C6 M M L M H M L H M VL
C7 M L VL M VL VL L M VL VL
C8 L L M M M L L L M L
C9 H M VL H H H H M M VL

C10 L VL L M L VL VL VL L L
C11 VH M L H M M M H M H
C12 H L L H M M L H L H
C13 M VL L L L VL L VL VL VL
C14 L L VL VL L L H M L VL
C15 M VL M VL VL VL M L VL L
C16 H L M H VH L H M L H
C17 H L M H H M L M M L
C18 M M L M H VL L L L VL
C19 M L L M M H M VL M M
C20 H M M H M L H M L M
C21 H H H M H M L M L H
C22 M M L VL L M L M L M
C23 M VL VL VL M VL M VL M VL
C24 L L VL VL VL L VL L VL VL
C25 M L M M VH L L M M L
C26 M M M L M M M L L M
C27 H M M L L M L M L M
C28 M M VL L H VL L M VL L
C29 M L L VL H VL VL L L L

Table 8. Fuzzy TOPSIS result (distances and closeness coefficient).

I4.0 T. Distance from FPIS (di
+) Distance from FNIS (di

−) Closeness Coefficients (CCi) Rank

IoT 0.071 0.230 0.7629 2
CM 0.145 0.166 0.5337 5
BD 0.202 0.101 0.3337 8
AIR 0.140 0.166 0.5410 4
AM 0.024 0.267 0.9175 1
AR 0.178 0.132 0.4265 6
MS 0.220 0.090 0.2911 9
CPS 0.088 0.211 0.7044 3
CS 0.253 0.049 0.1623 10
BC 0.187 0.125 0.4003 7
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4. Sensitivity Analysis

The sensitivity analysis aims to demonstrate the impact of varying criterion weights
on ranking I4.0 technologies. It was conducted to illustrate the implications of modifying
the weights on the final TOPSIS results and alternative rankings. The sensitivity analysis
is carried out in this study to investigate the robustness and consistency of the ranking
in terms of criterion weight. In addition, it focuses on qualitatively and quantitatively
enhancing the output of this model, given the sensitivity involved in decision making due
to uncertain input values. To do this, the primary purpose of this research is to reduce or
minimize cost measures and improve or maximize outputs (quality, delivery, flexibility,
performance, and innovativeness). The configuration of sensitivity analysis is shown in
Table 9.

Table 9. The configuration of sensitivity analysis.

Scenarios

Main Objectives

To Decrease the Cost
(Min) To Improve or Maximize the Outputs (Max)

Cost Quality Delivery Flexibility Performance Innovativeness

Scenario #1 All weights are equal: This one can be achieved by 1/n (n is the number of criteria)

Scenario #2 15% of the total weight is
assigned to cost

85% of the total weight is assigned to (quality, delivery, flexibility, performance,
and innovativeness)

Scenario #3 20% of the total weight is
assigned to cost

80% of the total weight is assigned to (quality, flexibility, delivery, performance,
and innovativeness)

Scenario #4 25% of the total weight is
assigned to cost

75% of the total weight is assigned to (quality, delivery, flexibility, performance,
and innovativeness)

Scenario #5 30% of the total weight is
assigned to cost

70% of the total weight is assigned to (quality, delivery, flexibility, performance,
and innovativeness)

Consequently, the weights of the decision criteria were changed across five different
scenarios. In the first scenario, all weights are equal; in the second scenario, Max%85
Min%15; in the third scenario, Max%80 Min%20; in the fourth scenario, Max%75 Min%25;
and in the fifth scenario, Max%70 Min%30. Using the TOPSIS approach, the closeness
co-efficients (CCi) were then determined. Table 10 shows the findings of the sensitivity
analysis. It should be noted that the first row of the table (Main) represents the model’s
obtained results. Figure 6 displays the graphical representation of the sensitivity analysis.
As demonstrated in Table 10, changing the criteria weights has no significant effect on the
model’s output and ranking. However, additive manufacturing (AM) achieved the greatest
CCi value under all evaluated scenarios. As a result, AM was chosen as the most suitable
I4.0 technology for achieving market competitiveness.

Table 10. Results of the sensitivity analysis.

I4.0 Tech.
MAIN Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5

MAIN Rank (CCi) Rank (CCi) Rank (CCi) Rank (CCi) Rank (CCi) Rank

IoT 0.7629 2 0.7325 2 0.7279 2 0.7381 2 0.7487 2 0.7596 0.7204
CM 0.5337 5 0.5250 4 0.5220 4 0.5289 4 0.5360 4 0.5434 0.5028
BD 0.3337 8 0.3582 8 0.3573 8 0.3592 8 0.3612 8 0.3632 0.3360
AIR 0.5410 4 0.5036 5 0.5016 5 0.5060 5 0.5105 5 0.5151 0.5033
AM 0.9175 1 0.8928 1 0.8918 1 0.8941 1 0.8964 1 0.8988 0.9115
AR 0.4265 6 0.4089 6 0.4070 6 0.4112 6 0.4155 6 0.4200 0.3995
MS 0.2911 9 0.2862 9 0.2862 9 0.2861 9 0.2859 9 0.2857 0.2831
CPS 0.7044 3 0.6919 3 0.6887 3 0.6959 3 0.7032 3 0.7108 0.6750
CS 0.1623 10 0.1916 10 0.1904 10 0.1930 10 0.1956 10 0.1983 0.1504
BC 0.4003 7 0.3860 7 0.3834 7 0.3893 7 0.3954 7 0.4016 0.3591
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5. Discussion

In recent years, researchers have significantly emphasized I4.0 technologies concerning
MSOs. However, a well-structured approach is still lacking to assist a company in assessing
and selecting the appropriate I4.0 technologies. Consequently, this study aims to evaluate the
potential and influence of I4.0 technologies on MSO and to rank these technologies using a
hybrid fuzzy MCDM methodology. In addition, a sensitivity analysis was conducted to examine
the sensitivity of the results to changes in the weights of the criterion. Thus, the objective of this
study was to seek an improved ranking and selection of I4.0 technologies. This study prioritizes
and ranks the ten I4.0 technologies using the AHP and fuzzy TOPSIS methods.

According to the overall weights, the most crucial factor for MSOs to become com-
petitive in the market is operating cost (C2). The operating cost is expenses related to the
operation of a business or the operation of a machine, component, piece of equipment, or
facilities to prepare the product. As a result of the implementation of integrated automated
systems and data management, manufacturing facilities will experience a remarkable re-
duction in production costs. I4.0 technologies have enhanced production line efficiencies,
resulting in greater material consumption and decreased waste as well as new ways to
reuse and recycle trash to bring it back into production processes and smaller package sizes,
which reduces production costs [93].

Cost per unit produced (C1) is the second critical enabler for MSOs to achieve market
competitiveness. The cost per unit produced refers to how much a business pays to
manufacture each unit of a product it sells. The manufacturing firms should offer reduced
total costs at market-competitive prices [94]. The most effective methods for organizations
to maintain their competitive advantage are low-cost strategies and differentiation. The
low-cost corporation may engage in several activities to maintain or improve its market
competitiveness. Frequently, I4.0-driven manufacturing provides operational gains by
reducing unit production costs. As shown in Table 8, various enablers tend to have a
moderate to minor impact on MSOs’ adoption of I4 technology.

Figure 5 illustrates the ranking of I4.0 technologies and the closeness coefficients CCi.
Equation (19) was used to calculate these values. According to the findings, AM obtained
the first technology in order to gain market competitiveness with 0.9175 CCi. Additive
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manufacturing is often considered the most critical pillar of the I4.0 transition. Value
and earlier studies support this finding. The capabilities of traditional manufacturing
technologies constrain the physical component of intelligent factories. As a result, additive
manufacturing is one of the most critical components of Industry 4.0. Because of the need
for mass customization in I4.0, non-traditional production methods must be developed [95].
Thus, AM became a crucial technology for the fabrication of customized items due to its
capacity to produce complex things with enhanced properties (new materials, shapes). AM
is utilized in several industries, including aerospace, biomedical, and manufacturing, due
to its higher product quality [96].

The Internet of Things (IoT) is listed as the second technology in market competitive-
ness for MSOs with a value of 0.7629 CCi. The Internet of Things enables physical objects
to communicate with one another, share data, and coordinate actions [40]. In the context
of I4.0, the IoT is commonly referred to as the industrial Internet of Things (IIoT), which
focuses on the IoT’s industrial applications [97]. The IoT is utilized extensively, for instance,
in transportation, healthcare, and construction [98]. Consequently, mobile devices can
facilitate more intelligent control of homes and towns. It increases safety and provides
personal protection. By automating tasks, we save a great deal of time. Even when we are
far from our actual location, information is readily available and constantly updated in real
time. With a ranking of 0.7044 CCi, the cyber-physical system (CPS) is the third-ranked I4.0
technology. The fourth-ranked I4.0 technology is automation and industrial robotics (AIR),
which has a score of 0.5410 CCi. As indicated in Figure 5, other I4.0 technologies tend to be
of moderate or less relevance to MSOs when implementing I4.0 technologies.

6. Conclusions, Implications, Limitations, and Future Work

This study aims to rank the I4.0 technologies in order to achieve market competi-
tiveness. The implications of this research are both practical and theoretically significant.
Theoretically, this study has presented arguments for empirically analyzing the relationship
between MSOs and Industry 4.0 in order to achieve market competitiveness. It started
with identifying I4.0 technologies and MSOs with their measures. The influence of I4.0
technologies on MSOs was quantitatively examined, consolidating the understanding of
the relationship between I4.0 technologies and MSOs. This made it simpler to comprehend
their impact on smart manufacturing. In order to improve MSOs’ competitiveness in
the market, this study also offered theoretical justifications for empirically assessing the
factors that influence their adoption of I4.0 technologies. In order to compete against global
competition, manufacturing firms should prioritize the right I4.0 technologies, according
to the research findings. Moreover, the results indicate that organizations and businesses
seeking to implement higher Industry 4.0 must properly align I4.0 technologies with MSOs.

From a managerial implications perspective, this research provides managers with
key insights for boosting the adoption of I4.0 technologies on MSO. To achieve market
competitiveness and obtain pertinent feedback from this study’s findings, managers should
prioritize the proper I4.0 technologies concerning production plans. The I4.0 technologies
ranking helps the organization’s managers obtain the full benefits of implementing these
technologies into well-designed and established processes (either strategic or operational).
In addition, this research facilitates the transition from conventional to smart manufacturing
by highlighting the crucial impact these technologies may play in driving a company to
gain a competitive edge. This finding illustrates that adopting I4.0 technologies is becoming
a new “must” in manufacturing enterprises, emphasizing the need for businesses to begin
using I4.0 technologies in order to maintain or perhaps increase their competitiveness.

According to the findings, the most critical sub-criterion is the operating cost (C2),
which is followed by the cost per unit produced (C1). Other measures are usually of
moderate or less importance to MSOs when implementing I4 technologies. According to
the ranking of I4.0 technologies, additive manufacturing (AM) is the most appropriate
I4.0 technology to counter global competition. Following that are the Internet of Things
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(IoT) and the cyber-physical system (CPS). Other I4.0 technologies are of moderate or less
relevance to MSOs when I4 technologies are implemented.

This paper has several limitations and shortcomings. Firstly, as I4.0 technology adop-
tion is still in its infancy in most industries, no case study or empirical study has been
undertaken to determine the influences of I4.0 technologies on MSOs. Consequently, future
research should conduct empirical research in manufacturing areas. Secondly, future work
and studies may employ various approaches, such as FANP or PROMETHEE, and combine
them with additional surveys to acquire a larger perspective on the problem. Thirdly,
I4.0 is being developed yearly with discoveries and advancements in industry 4.0-related
technology. Thus, other technologies, such as ”Digital Twins”, should be considered in
future studies to study the influence of these technologies on MSOs.
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