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Abstract— In this article, we propose a novel partitioning method
for hardware-software codesign based on a genetic algorithm
that has been enhanced for this specific task. Given a high-level
program and an area constraint, our software considers different
granularities levels to discover the most interesting blocks to be
implemented in ad hoc functional units that can then be used
as new instructions in a Move processor. Various optimizations
are conducted to obtain a clean, very fast (in the order of a few
seconds) and efficient partitioning on programs ranging from a
few to several hundreds of lines of code.

I. INTRODUCTION AND MOTIVATION

The codesign of complex digital systems has been success-

fully used since the early 90s. This approach of designing

systems from the hardware and the software standpoints at the

same time is now widely accepted in the industry where cheap,

reliable and fast systems are needed.

Such systems are usually built around a core processor

containing hardware modules that can be tailored for a specific

application and can then exploit the synergism of hardware and

software. This ”tailoring” corresponds to the codesign of the

system and can be divided in several subtasks [1]: partitioning,

co-synthesis, co-verification and co-simulation.

In this article, we will focus on the partitioning task, which

can be stated as follows: starting from a program and a cer-

tain number of time and size constraints, the partitioning task

consists in determining which parts of the program are the best

candidates to be implemented in hardware in order to minimize

the execution time and match the constraints. Several different

methods to solve this task have been developed: Gupta and De

Micheli start with a full hardware implementation [2] whilst

Ernst et al. [3] use profiling results in their Cosyma environment

to determine with a simulated annealing algorithm which blocks

to move to hardware. Vahid et al. [4] use clustering together

with a binary-constraint search to minimize hardware size while

meeting constraints. Others have proposed approaches like fuzzy

logic [5], genetic algorithms [6], hierarchical clustering [7] or

tabu search [8] to resolve this task.

We chose to work with a genetic algorithm (GA) because of

the complex, NP-complete [9], nature of the partitioning task. In

fact, GAs are very good heuristics to find solutions to complex

optimization problems. Although some attempts to use genetic

algorithms have been shown to be less efficient than other search

methods for hardware-software codesign in [10], we propose

here an improved genetic algorithm that is able to solve this

difficult task in a very efficient manner.

Starting from the tree representation of a program, this

new algorithm builds a solution realizing the best compromise

between raw performance gain and hardware area increase. In

other words, we try to find the most interesting parts to be

implemented in hardware, given a limited amount of resources.

The novelty of our approach lies in the several optimizations

passes applied to the intermediary results of a standard GA,

which permits to avoid the most common pitfalls associated

with GAs, such as being trapped in local minima. Thus we will

show that our algorithm is robust and performs well on relatively

large programs by converging to nearly optimal solutions.

This paper is organized as follows: in the next section we

briefly present the TTA processor architecture that serves as

a target platform for our algorithm. The following section is

dedicated to the formulation of the problem in the context

of a genetic algorithm and section IV describes the specific

enhancements that are applied to the classical GA approach.

Afterwards, we present some experimental results that show the

efficiency of our approach. Finally, section VI concludes this

article and introduces future work.

II. THE TTA PARADIGM

We have developed our new partitioning method in the context

of the Move processor paradigm [11] [12], which will be briefly

introduced here. However, our approach remains general and

could be used for different processor architectures and various

reconfigurable systems with minor changes.

The Move architecture, which belongs to the class of transport

triggered architectures (TTA), presents some interesting charac-
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Fig. 1. General architecture of a TTA processor.

teristics and a soft-core processor based on this concept has

been previously developed in our group [13] to explore various

bio-inspired paradigms.

Rather than being structured, as is usual, around a more

or less serial pipeline, a Move processor (Fig. 1) relies on

a set of functional units (FUs) connected together by one

or more transport busses. All computation is carried out by

the functional units (examples of such units can be adders,

multipliers, register files, etc.) and the role of the instructions is

simply to move data to and from the FUs in the order required

to implement the desired operations. Since all the functional

units are uniformly accessed through input and output registers,

instruction decoding is reduced to its simplest expression, as

only one instruction is needed: move.

Several arguments in favor of TTAs have been proposed by

Corporaal [12] and Hoogerbrugge [14]:

• The register file traffic is reduced because the results can

be moved directly from one FU to another;

• Fine-grained instruction level parallelism (ILP) is achiev-

able through VLIW encoded instructions;

• Data moves are determined at compile time, which could

be used to reduce power consumption;

• New instructions, in the form of functional units (FU), can

be added easily.

A consequence of the TTA structure is that the internal

architecture of the processor can be described as a memory

map which associates the different possible operations with

the address of the corresponding functional units. This feature

along with the partitioning algorithm allows us to introduce in

the system an interesting amount of flexibility by specializing

the instruction set (i.e., with ad-hoc functional units) to the

application while keeping the overall structure of the processor

(fetch and decode unit, bus structure, etc.) unchanged.

III. A BASIC GENETIC ALGORITHM FOR PARTITIONING

Because of the versatility of Move processors, automatic par-

titioning is interesting. In fact, the partitioning can automatically

determine which parts of the code of a given program are the

best candidate to be implemented as FUs.

We describe in this section the basic GA that serves as a

basis for our partitioning method and that will be enhanced in

section IV where we will describe the specific improvements we

have introduced. Fig. 2 depicts the flow diagram of this basic

algorithm, which works as follows: starting from a program

written in a specific language resembling C, a syntactic tree

is built and then analyzed by the GA which then produces a

valid, optimized partition.
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Fig. 2. General flow diagram of our genetic algorithm.

A. Programming language and profiling

We could have used assembly as an input for our algorithm

but the general structure of a Move assembly program is difficult

to capture because every instruction is considered only as a data

displacement, introducing a great deal of complexity in the rep-

resentation of the program’s functionality. Thus, the programs to

be evolved by the GA are written in a simplified programming

language which supports all the classical declarative language

constructs in a syntax resembling C. Several limitations have

however been imposed for this programming language: pointers

are not supported, recursion is forbidden and no typing exists

(all values are treated as 32 bits integers). As a result, only

fixed-point or integer calculations can be conducted.

These simplifications permitted us to focus on the codesign

partitioning problem without having to cope with unrelated

complications. However, these limitations could be lifted in a

future release of our partitioner.

Prior to being used as an input for the partitioner, the code

needs to be annotated with code coverage information. To

perform this task, we use standard profiling tools on a Java

equivalent version of the program. This step provides estimation

on how many times each line is executed for a large number of

realistic input vectors. This step serves as a good estimate of the

general program execution scheme and will permit the GA to

evaluate the most interesting kernels to be moved to hardware.

B. Genome encoding

Our algorithm starts by analyzing the syntax of the provided

source code. It then generates the corresponding program tree
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Fig. 3. Creation of groups according to the genome.

which will then constitute the main data structure it will work

with (Fig. 3). From this structure, it builds the genome of the

program which consists of an array of boolean values. It is con-

structed by associating to each node of the tree a boolean value

indicating if the subtree attached to this node is implemented in

hardware. Since we also want to regroup instructions together

to form new FUs, to each statement1 correspond two additional

boolean values that permit the creation of groups of adjacent

instructions. The first value indicates if a new group has to be

created and, in that case, the second value indicates if the whole

group has to be implemented in hardware (i.e. to create a new

FU). The complete genome of the program is then formed by

the concatenation of the genomes of the single nodes.

C. Genetic operators

1) Selection: The GA starts with a basic population com-

posed of random individuals. For each new generation, individ-

uals are chosen for reproduction using rank-based selection with

elitism. In order to ensure larger population diversity, part of the

new population is not obtained by reproduction but by random

generation, allowing a larger exploration of the search space.

2) Mutation: A mutation consists in inverting the binary

value of a gene. However, as a mutation can affect the partition-

ing differently depending on where it happens among the genes,

different mutation rates are defined for the following cases:

1) A new functional unit is created;

2) An existing functional unit is destroyed;

1Statements are assignments, for, while, if, function calls. . .

3) A new group of statements is created or two groups are

merged.

Using different mutation rates for the creation and the destruc-

tion of functional units is very useful. For example, increasing

the probability of destruction introduces a bias towards fewer

FUs.

3) Crossover: Crossover is applied by randomly choosing a

node in each parent’s tree and by exchanging the corresponding

subtrees. This corresponds to a double-point crossover and it is

used to enhance the genetic diversity of the population.

D. Determining hardware size and execution time

Computing hardware size and execution time is one of the key

aspects of the algorithm, as it defines the fitness of an individual.

Different techniques exist to determine these values, for example

[15] or [16]. The method we chose to use is based on a very fine

characterization of each hardware elementary building block of

the hardware platform targeted (in the current implementation,

a Virtexr II FPGA). These blocks correspond to simple logical

and arithmetical operations (AND, OR, +, . . . ), which can then

be arranged together to elaborate more complex operations that

form new FUs in the Move processor.

To estimate the size and timing of the FUs, we used the

Synplify Pror synthesis solution coupled, in some cases, with

the Xilinxr place-and-route tools, to determine different perfor-

mance and area metrics for each basic block2.

This very detailed characterization permitted us to take into

account a wide range of timings, from sub-cycle estimates for

combinational operators to multi-cycle, high latency, pipelined

dividers. Area estimators were built using the same principles.

Using these parameters, determining size and time of each

subtree is then relatively straightforward because only two

different cases have to be considered:

1) For software subtrees, the estimation is done recursively

over the nodes of the program tree, adding at each step the

appropriate execution time and potential hardware unit3.

2) For hardware subtrees, the computation is a bit more com-

plex because it depends on the position of the considered

subtree: if it is located at the root of a group, it constitutes

a new FU and more computation is needed.

Of course, for each functional unit that has to be created, the

costs of the instructions and registers required for moving and

storing the variables used in this new units have to be added.

Moreover, if this unit is used several times, its hardware size

has to be counted only once.

2Of course, this characterization would have to be redone for each different
hardware platform targeted.

3e.g. the first time an add instruction is encountered, an add FU must be
added to compose the minimal processor to execute this program.



E. Fitness evaluation

The objective of the GA is to get the partitioning with the

smallest execution time whilst remaining smaller than a given

area constraint. To achieve this, the fitness function used to

estimate each individual needs to have high values for the

candidates that balance well the compromise between hardware

area and execution speed. Because we made the assumption that

the basic solution for the partitioning problem relies on a whole

software implementation (that is, using only a simple processor

that contains the minimum of hardware required to execute the

program to be partitioned), we use a relative fitness function.

This means that this simple processor, whose hardware size is

β, has a fitness of 1 and the fitness of the discovered solutions

are expressed in terms of this trivial solution. We also define α,

the time to execute the given program on this trivial processor.

For an individual having a size s and requiring a time t to be

executed, the following fitness function can then be defined:

f(s, t) =

{

α
t
· β

s
If s ≤ hwLimit

(log (s − hwLimit) + 1)−1 otherwise

where hwLimit is the maximum hardware size allowed to

implement the processor with the new FUs defined by the

partitioning algorithm.

Therefore, the following behaviour can be achieved: when

the speed increase obtained during one step of the evolution is

relatively bigger than the hardware increase needed to obtain

this new performance, the fitness increases.

IV. AN IMPROVED, HYBRID GENETIC ALGORITHM

All the approaches described in the introductory section work

at a specific granularity level4 that does not change during the

codesign process, that is, these partitioners work well only for

certain types of inputs (task graphs for example) but can not

be used in other contexts. However, more recent work [17] has

introduced techniques that can cope with different granularities

during the partitioning. Because of the enormous search space

that a real-world application generates, it is difficult for a generic

GA such as the one we just presented to be competitive against

state-of-the-art partitioning algorithms. However, we will show

in the rest of this section that it is possible to adapt the GA to

considerably improve its performance.

A. Levelling the representation via hierarchical clustering

One problem of the basic GA described above lies in the

fact that it implicitly favours the implementation in hardware

of nodes close to the root. In fact, when a node is changed

to hardware its whole subtree is also changed and the genes

corresponding to the sub-nodes are no longer affected by the

4Function level, control level, dataflow level, instruction level. . .
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Fig. 4. Levels definition.

evolutionary process. If this occurs for an individual that has a

good fitness, the evolution may stay trapped in a local maximum,

because it will never explore the possibility of using smaller

functional units within that hardware subtree.

The solution we propose resides in the decomposition of the

program tree into different levels that correspond to blocks in

the program5, as depicted on Fig. 4. Function calls have the

level of the called function’s block and a block has level n + 1
if the highest level of the block or function calls it contains

is n, the deepest blocks being at level 0 by definition. These

blocks represent interesting points of separation because they

often correspond to the most computationally intensive parts of

the programs (e.g. loops) that are good candidates for being

implemented in new FUs.

The GA is recursively applied to each level, starting with

the deepest ones (n = 0). To pass information between each

level, the genome of the best individual evolved at each level is

stored. A mutated version of this genome is then used for each

new individual created at the next level.

This approach permits to construct the solution progressively

by trying to find the optimal solution of each level. It gives

priority to nodes close to the leaves to express themselves, and

thus good solutions will not be hidden by higher level nodes.

By examining the problem at different levels we obtain different

granularities for the partitioning. With a single algorithm, we

cover levels ranging from instruction level to process level (c.f.

[17] for a definition of these terms). This optimization also

dramatically reduces the search space of the algorithm as it

only has to work on small trees representing different levels

of complexity in the program. By doing so, the search time

is greatly reduced while preserving the global quality of the

solution.

5Series of instructions delimited by brackets



B. Pattern-matching optimization
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A very hard challenge for evolution is to find reusable

functional units that can be employed at different locations in a

program. Two different reasons explain this difficulty, the first

being that even if a block could be used elsewhere within the

tree, the GA has to find it only by random mutations. The second

reason is that it is possible that, while one FU might not be

interesting when used once, it would become so when reused

several times because the hardware investment has to be made

only once.
To help the evolution to find such blocks, a pattern matching

step has been added: every time a piece of code is transformed

in hardware, similar pieces are searched in the whole program

tree and mutated to become hardware as well. This situation is

depicted on Fig. 5. Reusability is then greatly improved because

only one occurrence of a block has to be found, the others being

given by this new step.

C. Non-optimal block pruning

Another help is given to the algorithm by cleaning the

best individual of each generation. This is done by removing

all the non-optimal hardware blocks from the genome. These

blocks are detected by computing, for each block or group of

similar blocks, the fitness of the individual when that part is

implemented in software. If the latter is bigger or equal than

the original fitness, it means that the considered block does

not increase or could even decrease the fitness and is therefore

useless. The genome is thus changed so that the part in question

is no longer implemented as a functional unit. This step was

added to remove blocks that were discovered during evolution

but that were not useful for the partition.

V. EXPERIMENTAL RESULTS

To show the efficiency of our partitioning method we tested

it on two benchmark programs and several randomly-generated

Fig. 6. Exploration during the evolution.

ones. The size of the applications tested lies between 60 lines for

the DCT program, which is an integer direct cosine transform,

and 300 lines of code for the FACT program, which factorizes

large integer in prime numbers. The last kinds of programs

tested are random generated programs with different genome

sizes. The quality of our results can be quantified by means of

the estimated speedup and hardware increase. The speedup is

computed by comparing the software-only solution to the final

partition and the hardware increase represents the number of

slices in the VIRTEXr II 3000 that have to be added to the

software-only solution to obtain the final partition. Fig. 6 depicts

Fig. 7. Best individual trace along with the explored fitness landscape.

the evolution, using 40 iterations per level, of 25 individuals

for the FACT program. Fig. 7 shows the coverage of the

fitness landscape during evolution along with the best individual
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trace for the same program. We can see that the exploration

space is well covered during evolution. Fig. 8 sums up the

experiments that have been conducted to test our algorithm.

Each figure in the table represents the mean of 500 runs. The

performance differences between randomly generated programs

and real programs can be explained by the lack of structure

of random programs. Moreover, it is particularly interesting to

note that all the results were obtained in the order of seconds

and not minutes or hours as it is usually the case when GAs

are involved and that the algorithm converged to very efficient

solutions during that time.

Unfortunately, even if the domain is the source of a rich liter-

ature, a direct comparison of our approach to others seems very

difficult. Indeed, the large differences that exist in the various

design environments and the lack of common benchmarking

techniques (which can be explained by the different inputs of

HW/SW partitioners that may exist) have already been identified

in [18] to be a major difficulty in direct comparisons.

VI. CONCLUSIONS AND FUTURE WORK

In this article we described an implementation of a new

partitioning method using an hybrid GA that is able to solve

relatively large, constrained problems in a very limited amount

of time. By using several techniques, we reduced the search

space and made it manageable by a GA. Our method, albeit

tailored for a specific kind of processor architecture, remains

general and could be used for almost every embedded systems

architecture.

This work was done in the context of the development of

an automatic software suite for bio-inspired systems generation.

The results presented in this paper, as well as those of others

groups, who have shown that HW/SW partitioning can be

successfully used for FPGA soft-cores [19], encourage us to

pursue our research in order to address the unresolved issues

of our system: for example, while the language in which the

problem has to be specified remains simple, we are currently

working on an automatic converter for C which would give

us the opportunity to directly test our method on well-known

benchmarking suites. We are also exploring the possibility of

automatically generating HDL code for the extracted hardware

blocks, a tool that would allow us to verify our approach on a

larger set of problems and on real hardware.
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