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Intradomain traffic engineering aims to make more effi-
cient use of network resources within an autonomous
system. Interior Gateway Protocols such as OSPF (Open
Shortest Path First) and IS-IS (Intermediate System-
Intermediate System) are commonly used to select the
paths along which traffic is routed within an autonomous
system. These routing protocols direct traffic based on
link weights assigned by the network operator. Each
router in the autonomous system computes shortest
paths and creates destination tables used to direct each
packet to the next router on the path to its final desti-
nation. Given a set of traffic demands between origin-
destination pairs, the OSPF weight setting problem con-
sists of determining weights to be assigned to the links
so as to optimize a cost function, typically associated
with a network congestion measure. In this article, we
propose a genetic algorithm with a local improvement
procedure for the OSPF weight-setting problem. The
local improvement procedure makes use of an efficient
dynamic shortest path algorithm to recompute shortest
paths after the modification of link weights. We test the
algorithm on a set of real and synthetic test problems,
and show that it produces near-optimal solutions. We
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compare the hybrid algorithm with other algorithms for
this problem illustrating its efficiency and robustness.
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1. INTRODUCTION

The Internet is divided into many routing domains, called
autonomous systems (ASes). ASes are networks that consist
of routers and links connecting the routers. The number of
backbone and access routers in 10 Internet service providers
studied by Spring et al. [21] vary from as few as 11 to as
many as 862. There are 12 links in the smallest network stud-
ied and 5299 in the largest. When customer and peer routers
are considered, the networks can have thousands of routers
and links. These ASes interact to control and deliver IP traffic.
They typically fall under the administration of a single insti-
tution, such as a company, a university, or a service provider.
Neighboring ASes use the Border Gateway Protocol (BGP)
to route traffic [23].

The goal of intradomain traffic engineering [9] consists in
improving user performance and making more efficient use of
network resources within an AS. Interior Gateway Protocols
(IGPs) such as OSPF (Open Shortest Path First) and IS-IS
(Intermediate System-Intermediate System) are commonly
used to select the paths along which traffic is routed within
an AS.
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These routing protocols direct traffic based on link weights
assigned by the network operator. Each router in the AS
computes shortest paths and creates destination tables used
to direct each IP packet to the next router on the path to
its final destination. OSPF calculates routes as follows. To
each link is assigned an integer weight ranging from 1 to
65535(= 216 −1). The weight of a path is the sum of the link
weights on the path. OSPF mandates that each router com-
putes a graph of shortest paths with itself as the root [13].
This graph gives the least weight routes (including multiple
routes in case of ties) to all destinations in the AS. In the case
of multiple shortest paths originating at a router, OSPF is
usually implemented so that it will accomplish load balanc-
ing by splitting the traffic flow over all shortest paths leaving
from each router [16]. In this article, we consider that traf-
fic is split evenly between all outgoing links on the shortest
paths to the destination IP address. OSPF requires routers to
exchange routing information with all the other routers in the
AS. Complete network topology knowledge is required for
the computation of the shortest paths.

Given a set of traffic demands between origin-destination
pairs [8], the OSPF weight setting problem consists in deter-
mining weights to be assigned to the links so as to optimize a
cost function, typically associated with a network congestion
measure.

In reality, a global optimization involving all weights in
the network is impractical because it can cause major disrup-
tions in traffic. For the daily maintainance of a network, it is
much more attractive to adapt the weight setting with a few
weight changes at the time. Nevertheless, as a benchmark, it
is important for the network operator to know how well the
newtork could perform with a complete change of weights. A
complete change of weights could be considered an option if
the network performance has deteriorated too much. A com-
prehensive description of the reality of traffic engineering is
given in Fortz et al. [9].

The NP-hardness of the OSPF weight-setting problem
was established in [10]. Previous work on optimizing OSPF
weights have either chosen weights so as to avoid multiple
shortest paths from source to destination or applied a pro-
tocol for breaking ties, thus selecting a unique shortest path
for each source-destination pair [3, 14, 18]. Fortz and Tho-
rup [10] were the first to consider even traffic splitting in
OSPF weight setting. They proposed a local search heuris-
tic and tested it on a realistic AT&T backbone network and
on synthetic networks. Pióro et al. [17] propose heuristics
based on local search, simulated annealing, and Lagrangian
relaxation for several optimization problems related to setting
OSPF weights with even traffic splitting. The computational
results presented, however, were limited to small instances
with up to 12 routers, 18 links, and 66 demand pairs. Eric-
sson et al. [7] proposed a genetic algorithm and used the
set of test problems considered in [10]. Sridharan et al. [22]
developed another heuristic for a slightly different version
of the problem, in which flow is split among a subset of
the outgoing links on the shortest paths to the destination IP
address.

In this article, we propose a hybrid genetic algorithm
incorporating a local improvement procedure to the crossover
operator of the genetic algorithm proposed in [7]. The local
improvement procedure makes use of an efficient dynamic
shortest path algorithm to recompute shortest paths after the
modification of link weights. We compare the hybrid algo-
rithm with the genetic algorithm as well as with the local
search procedure in [10].

In the next section, we give the mathematical formula-
tion of the OSPF weight-setting problem. The hybrid genetic
algorithm is described in Section 3, and the local improve-
ment procedure in Section 4. Section 5 describes efficient
algorithms for solution update used in the local improvement
procedure. Computational results are reported in Section 6.
Concluding remarks are made in the last section.

2. PROBLEM FORMULATION

In a data communication network, nodes and arcs repre-
sent routers and transmission links, respectively. Let N and A
denote, respectively, the sets of nodes and arcs. Data packets
are routed along links, which have fixed capacities. Consider
a directed network graph G = (N , A) with a capacity ca

for each a ∈ A, and a demand matrix D that, for each pair
(s, t) ∈ N× N , gives the demand dst in traffic flow from node s
to node t. Then, the OSPF weight-setting problem consists in
assigning positive integer weights wa ∈ [1, wmax] to each arc
a ∈ A, such that a measure of routing cost is optimized when
the demands are routed according to the rules of the OSPF
protocol. The OSPF protocol allows for wmax ≤ 65535.

For each pair (s, t) and each arc a, let f (st)
a indicate how

much of the traffic flow from s to t goes over arc a. Let la be
the total load on arc a, that is, the sum of the flows going over
a, and let the trunk utilization rate ua = la/ca. The routing
cost in each arc a ∈ A is taken as the piecewise linear function
�a(la), proposed by Fortz and Thorup [10] and depicted in
Figure 1, which increasingly penalizes flows approaching or
violating the capacity limits:

�a(la) =




ua, ua ∈ [0, 1/3)

3 · ua − 2/3, ua ∈ [1/3, 2/3),
10 · ua − 16/3, ua ∈ [2/3, 9/10),
70 · ua − 178/3, ua ∈ [9/10, 1),
500 · ua − 1468/3, ua ∈ [1, 11/10),
5000 · ua − 16318/3, ua ∈ [11/10, ∞).

(1)

Given a weight assignment w and the loads lOSPF(w)
a associ-

ated with each arc a ∈ A corresponding to the routes obtained
with OSPF, we denote its routing cost by �OSPF(w) =∑

a∈A �a

(
lOSPF(w)
a

)
. The OSPF weight-setting problem is

then equivalent to finding arc weights w∗ ∈ [1, wmax] such
that �OSPF(w) is minimized.

The general routing problem can be formulated as the fol-
lowing linear programming problem with a piecewise linear
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FIG. 1. Piecewise linear function �a(la).

objective function:

�OPT = min � =
∑
a∈A

�a(la) (2)

subject to
∑

u:(u,v)∈A

f (st)
(u,v) −

∑
u:(v,u)∈A

f (st)
(v,u)

=



−dst if v = s,
dst if v = t,
0 otherwise,

v, s, t ∈ N , (3)

la =
∑

(s,t)∈N×N

f (st)
a , a ∈ A, (4)

�a(la) ≥ la, a ∈ A, (5)

�a(la) ≥ 3la − 2/3ca, a ∈ A, (6)

�a(la) ≥ 10la − 16/3ca, a ∈ A, (7)

�a(la) ≥ 70la − 178/3ca, a ∈ A, (8)

�a(la) ≥ 500la − 1468/3ca, a ∈ A, (9)

�a(la) ≥ 5000la − 16318/3ca, a ∈ A, (10)

f (st)
a ≥ 0, a ∈ A; s, t ∈ N . (11)

Constraints (3) are flow conservation constraints that ensure
routing of the desired traffic. Constraints (4) define the load
on each arc a and constraints (5–10) define the cost on each
arc a according to the cost function �a(la).

The above is a relaxation of OSPF routing, as it allows for
arbitrary routing of traffic. Then, �OPT is a lower bound on
the optimal OSPF routing cost �OSPF(w∗). Also, if �OSPF(1)

denotes the optimal OSPF routing cost when unit weights are
used, then �OSPF(w∗) ≤ �OSPF(1).

Fortz and Thorup [10] proposed a normalizing scaling
factor for the routing cost that makes possible comparisons
across different network sizes and topologies:

�UNCAP =
∑

(s,t)∈N×N

dsthst ,

where hst is the minimum hop count between nodes s and t.
For any routing cost �, the scaled routing cost is defined as

�∗ = �/�UNCAP.

Using this notation, the following results hold:

• The optimal routing costs satisfy

1 ≤ �∗
OPT ≤ �∗

OSPF(w∗) ≤ �∗
OSPF(1) ≤ 5000.

• Given any solution to (2–11) with normalized routing cost
�∗, then �∗ = 1 if and only if all arc loads are below 1/3
of their capacities and all demands are routed on minimum
hop routes.

• Given any solution to (2–11) where all arcs are at their
maximum capacity, then the normalized routing cost �∗ =
10(2/3). We say that a routing congests a network if �∗ ≥
10(2/3).

3. HYBRID GENETIC ALGORITHM FOR OSPF
WEIGHT SETTING

In this section, we summarize the detailed description
of the genetic algorithm given in [7] and propose a hybrid
genetic algorithm by adding a local improvement procedure
after the crossover.
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A genetic algorithm is a population-based metaheuristic
for combinatorial optimization. In this context, a population is
simply a set of feasible solutions. Solutions in a population are
combined (through crossover) and perturbed (by mutation)
to produce a new generation of solutions. When solutions
are combined, attributes of higher quality solutions have a
greater probability to be passed down to the next generation.
This process is repeated over many generations as long as the
quality of the solutions in the new population improves over
time. We next show how this idea can be explored for weight
setting in OSPF routing.

Each solution is represented by an array of integer weights,
where each component corresponds to the weight of an arc of
the network. Each individual weight belongs to the interval
[1, wmax]. Each solution w is associated with a fitness value
defined by the OSPF routing cost �OSPF(w). The initial popu-
lation is randomly generated, with arc weights selected from
a uniform distribution in the interval [1, wmax/3]. The pop-
ulation is partitioned into three sets A, B, and C. The best
solutions are kept in A, while the worst ones are in C. All
solutions in A are promoted to the next generation. Solutions
in B are replaced by crossover of one parent from A with
another from B ∪ C using the random keys crossover scheme
of Bean [2]. All solutions in C are replaced by new randomly
generated solutions with arc weights selected in the interval
[1, wmax].

In the random keys scheme, crossover is carried out on
a selected pair of parent solutions to produce an offspring
solution. Each selected pair consists of an elite parent and a
non-elite parent. The elite parent is selected, at random, uni-
formly from solutions in set A, while the nonelite parent is
selected, at random, uniformly from solutions in set B ∪ C.
Each weight in the offspring solution is either inherited from
one of its parents or is reset by mutation. With mutation prob-
ability pm, the weight is reset to a value selected at random
in the interval [1, wmax]. If mutation does not occur, then the
child inherits the weight from its elite parent with a given
probability pA > 1/2. Otherwise, it inherits the weight from
its nonelite parent.

The hybrid genetic algorithm proposed in this article,
applies a local improvement procedure to each offspring
solution obtained by crossover. This local improvement
procedure is described in the next section.

4. LOCAL IMPROVEMENT PROCEDURE

In this section, we describe the local improvement proce-
dure. Starting from an initial solution, the local improvement
procedure analyzes solutions in the neighborhood of a cur-
rent solution w in the search for a solution having a smaller
routing cost. If such a solution exists, then it replaces the cur-
rent solution. Otherwise, the current solution is returned as a
local minimum.

The local improvement procedure is incorporated in the
genetic algorithm, described in Section 3, to enhance its

procedure LocalImprovement(q, w)

1 dontlooka ← 0, ∀a ∈ A;

2 i ← 1;

3 while i ≤ q do

4 Renumber the arc indices such that

�a(la) ≥ �a+1(la+1), ∀a = 1, . . . , |A| − 1;

5 a′ ← 0;

6 for a = 1, . . . , |A| while a′ = 0 do

7 if dontlooka = 1 then dontlooka ← 0;

8 else if wa < wmax then a′ ← a;

9 end for;

10 if a′ = 0 then return;

11 dontlooka′ ← 1;

12 for ŵ = wa′ + 1, . . . , wa′ + 
(wmax − wa′)/4� do

13 w′
a ← wa, ∀a ∈ A, a �= a′;

14 w′
a′ ← ŵ;

15 if �OSPF(w′) < �OSPF(w) then

16 w ← w′;
17 dontlooka′ ← 0;

18 i ← 0;

19 end if

20 end for

21 i ← i + 1;

22 end while

end LocalImprovement.

FIG. 2. Pseudocode of procedure LocalImprovement.

ability to find better-quality solutions with less computational
effort. Local improvement is applied to each solution gener-
ated by the crossover operator. Besides being computation-
ally demanding, the use of large neighborhoods in a hybrid
genetic algorithm can lead to loss of population diversity,
and consequently premature convergence to low-quality local
minima. We next describe the local improvement procedure
using a reduced neighborhood.

As before, let la denote the total load on arc a ∈ A
in the solution defined by the current weight settings w.
We recall that �a(la) denotes the routing cost on this arc.
The local improvement procedure examines the effect of
increasing the weights of a subset of the arcs. These can-
didate arcs are selected among those with the highest routing
costs and whose weight is smaller than wmax. To reduce the
routing cost of a candidate arc, the procedure attempts to
increase its weight to induce a reduction on its load. If this
leads to a reduction in the overall routing cost, the change
is accepted and the procedure is restarted. The procedure
stops at a local minimum when no improvement results from
changing the weights of the candidate arcs. The pseudocode
in Figure 2 describes the local improvement procedure in
detail.
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The procedure LocalImprovement takes as input
parameters the current solution defined by the weights w
and a parameter q, which specifies the maximum number
of candidate arcs to be examined at each local improvement
iteration. To speed up the search, we disallow the weight
increase of arcs for which no weight increase leads to an
improvement in the routing cost in the previous iteration. To
implement this strategy, we make use of a don’t look bit for
each arc.

The don’t look bits are set unmarked in line 1, and the
counter of candidate arcs is initialized in line 2. The loop in
lines 3 to 22 investigates at most q selected candidate arcs
for weight increase in the current solution. The arc indices
are renumbered in line 4 such that the arcs are considered in
nonincreasing order of routing cost. The loop in lines 6 to 9
searches for an unmarked arc with weight less than wmax.
Marked arcs, which cannot be selected at the current iter-
ation, are unmarked in line 7 for future investigation. Arc
a′ is selected in line 8. If no arc satisfying these conditions
is found, the procedure stops in line 10 returning the cur-
rent weights w as the local minimum. In line 11, arc a′ is
temporarily marked to disallow its investigation in the next
iteration, unless a weight change in wa′ results in a better
solution.

The loop in lines 12 to 20 examines all possible weight
changes for arc a′ in the range [wa′ + 1, wa′ + 
(wmax −
wa′)/4�]. A neighbor solution w′, keeping all arc weights
unchanged except for arc a′, is built in lines 13 and 14. If the
new solution w′ has a smaller routing cost than the current
solution (test in line 15), then the current solution is updated
in line 16, arc a′ is unmarked in line 17, and the arc counter i
is reset in line 18. In line 21, we increment the candidate arc
counter i.

The routing cost �OSPF(w′) associated with the neighbor
solution w′ must be evaluated in line 15. Instead of com-
puting it from scratch, we use fast update procedures for
recomputing the shortest path graphs as well as the arc loads.
These procedures are considered in the next section of the
article. Once the new arc loads are known, the total routing
cost is computed as the sum of the individual arc routing
costs.

5. FAST UPDATES OF ARC LOADS AND
ROUTING COSTS

In this section, we describe the procedures used for fast
update of the cost (line 15 of procedure LocalImprove-
ment) and arc loads. We are in the situation where l are the
loads associated with the current weight settings w and the
weight of a unique arc a′ is increased by exactly a unit.

Let T be the set of destination nodes and denote by
gt = (N , At) the shortest path graph associated with each
destination node t ∈ T . One or more of these shortest path
graphs will be affected by the change of the weight of arc a′
from wa′ to wa′ + 1. Consequently, the loads of some of the
arcs in each graph will change.

procedure UpdateCost(a′, d, l)

1 forall a ∈ A do la ← 0;

2 forall t ∈ T do

3 UpdateShortestPaths(a′, w, t);

4 UpdateLoads(d, t);

5 forall a ∈ At do la ← la + lt
a;

6 end forall

7 �OSPF(w′) ← ∑
a∈A �a(la);

end UpdateCost.

FIG. 3. Pseudocode of procedure UpdateCost.

The procedures described in this section use a set of data
structures that work like a memory for the solution. With
a weight change, the shortest path graph and the loads can
change, and the memories are updated instead of recomputed
from scratch.

Each shortest path graph with node t as destination has an
|A|-vector At indicating the arcs in gt . If arc a is in the shortest
path graph, then At

a = 1. Otherwise, At
a = 0. Another |A|-

vector, lt , associated with the arcs, stores the partial loads
flowing to t traversing each arc a ∈ A. The total load from
each arc is represented in the |A|-vector la, which stores the
total load traversing each arc a ∈ A. The |N |-vectors π t and
δt are associated with the nodes. The distance from each node
to the destination t is stored in π t , while δt keeps the number
of arcs outgoing from each node in gt . All these structures are
populated in the beginning and set free at the end of procedure
LocalImprovement. For simplicity, they were omitted from
this procedure and from the parameter list of the procedures
described in this section.

The pseudocode in Figure 3 summarizes the main steps of
the update procedure. The new load la on each arc a ∈ A is
set to zero in line 1. The loop in lines 2 to 6 considers each
destination node t ∈ T . For each one of them, the shortest
path graph gt is updated in line 3 and the partial arc loads
are updated in line 4. The arc loads are updated in line 5.
Lines 1 and 5 are removed from this procedure in case the arc
loads be updated inside procedure UpdateLoads. Finally,
the cost �OSPF(w′) of the new solution is computed in line 7.
In the remainder of this section we describe the procedures
UpdateShortestPaths and UpdateLoads used in
lines 3 and 4.

5.1. Dynamic Reverse Shortest Path Algorithm

We denote by gt = (N , At) the shortest paths graph asso-
ciated with each destination node t ∈ T . Because the weight
of a unique arc a′ was changed, the graph gt does not have
to be recomputed from scratch. Instead, we update the part
of it which is affected by the weight change. Ramalingam
and Reps [19] and Frigioni et al. [12] proposed efficient
algorithms for these dynamic computations in Dijkstra’s
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procedure UpdateShortestPaths(a′ = (−→u, v), w, t)

1 if a′ /∈ At return;

2 At ← At \ {a′};
3 HeapInsertMax(H, u, π t(u));

4 δ+
u ← δ+

u − 1;

5 if δ+
u > 0 then return

6 Q = {u};
7 forall v ∈ Q do

8 π t(v) ← π t(v) + 1;

9 forall a = (u, v) ∈ IN(v) ∩ At do

10 At ← At \ {a};
11 HeapInsertMax(H, u, π t(u));

12 δ+(u) ← δ+(u) − 1;

13 if δ+(u) = 0 then Q ← Q ∪ {u};
14 end forall

15 end forall

16 forall u ∈ Q do

17 forall a = (u, v) ∈ OUT(u) do

18 if π t(u) = wa + π t(v) then

19 At ← At ∪ {a};
20 HeapInsertMax(H, u, π t(u));

21 δ+(u) ← δ+(u) + 1;

22 end if

23 end forall

24 end forall

end UpdateShortestPaths.

FIG. 4. Pseudocode of procedure UpdateShortestPaths.

algorithm. These two algorithms are compared experimen-
tally in [11]. Although the algorithm of Frigioni et al. is
theoretically better, the algorithm of Ramalingam and Reps
usually runs faster in practice. Due to the nature of the
OSPF weight setting problem, we use the reversed version of
Dijkstra’s shortest path algorithm.

The pseudocode of the specialized dynamic shortest path
algorithm for unit weight increases is given in Figure 4. Buriol
et al. [4] showed empirically that this algorithm is faster than
the general dynamic reverse shortest path algorithm of Rama-
lingam and Reps [19]. First, it identifies the set Q of nodes
whose distance labels change due to the increased weight.
Next, the shortest paths graph is updated by deleting and
adding arcs for which at least one of its extremities belongs
to Q.

Algorithm UpdateShortestPaths takes as parame-
ters the arc a′ = (−→u, v), whose weight changed, the current
setting of weights w, and a destination node t ∈ T . The

procedure UpdateLoads(H, d, t)

1 while HeapSize(H) > 0 do

2 u ← HeapExtractMax(H);

3 load ← (dut + ∑
a=(v,u)∈At lt

a)/δ
+(u);

4 forall a = (u, v) ∈ At : lt
a �= load do

5 lt
a ← load;

6 HeapInsertMax(H, v, π(v));

7 end forall

8 end while

end UpdateLoads.

FIG. 5. Pseudocode of procedure UpdateLoads.

algorithm checks in line 1 if arc a′ does not belong to the
shortest paths graph gt , in which case the weight change
does not affect the latter and the procedure returns. Arc a′
is eliminated from the shortest paths graph gt in line 2. In
line 3 the tail node of arc a′ is inserted in a heap contain-
ing all nodes for which the load of its outgoing links might
change. This heap will be used later by the load update pro-
cedure. The distances to the destination node t are used as
priority keys and the root contains the node with maximum
distance. The outdegree δ+

u of the tail node of arc a′ is updated
in line 4. In line 5, we check if there is an alternative path to
the destination starting from u. If this is the case, the proce-
dure returns in line 5, because no further change is needed.
The set Q of nodes affected by the weight change in arc a′
is initialized with node u in line 6. The loop in lines 7 to 15
builds the set Q. For each node identified in this set (line 7),
its distance π t(v) to the destination node is increased by 1 in
line 8. The loop in lines 16 to 24 updates the shortest paths.
Each node u in set Q is investigated one-by-one in line 16 and
each outgoing arc a is scanned in line 17. We check in line 18
if arc a belongs to the new shortest path to the destination.
If so, arc a is inserted in the shortest paths graph in line 19,
its tail u is inserted in the heap in line 20, and its outdegree
δ+(u) is updated in line 21.

5.2. Dynamic Load Update

We first recall that procedureUpdateShortestPaths
built a heap H containing all nodes for which the set of
outgoing arcs was modified in the shortest paths graph.

The pseudocode in Figure 5 summarizes the main steps of
the load update procedure. We denote by lt

a the load on arc
a ∈ A associated with the destination node t ∈ T . Procedure
UpdateLoads takes as parameters the demands d and a
destination node t. The loop in lines 1 to 9 removes nodes
from the heap until the heap becomes empty. The node u
with maximum distance to the destination node is removed
in line 2. The total load flowing through node u is equal
dut + ∑

a=(v,u)∈At la. The load in each arc leaving node u is
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computed in line 3. The loop in lines 4 to 7 scans all arcs
leaving node u in the current shortest paths graph for which
the partial load lt

a has to be updated. The new partial load lt
a

is set in line 5 and the head v of arc a is inserted in the heap
H in line 6.

6. COMPUTATIONAL RESULTS

In this section, we describe the experimental results using
the hybrid genetic algorithm introduced in this article. We
describe the computer environment, list the values of the algo-
rithm parameters, present the test problems, and outline the
experimental setup.

In the experiments, we compare the hybrid genetic algo-
rithm with the lower bound associated with the linear program
(2–11) and other heuristics.

6.1. The Setup

The experiments were done on an SGI Challenge com-
puter (28 196-MHz MIPS R10000 processors) with 7.6 Gb
of memory. Each run used a single processor.

The algorithms were implemented in C and compiled
with the MIPSpro cc compiler, version 7.30, using flag
-O3. Running times were measured with the getrusage
function. Random numbers were generated in the hybrid
genetic algorithm as well as in the pure genetic algo-
rithm using Matsumoto and Nishimura’s Mersenne Twister
[15].

The following parameters were set in both the pure and
the hybrid genetic algorithms:

• Population size: 50.
• Weight range: [1, wmax = 20].
• Population partitioning placed the top 25% of the solutions

(rounded up to 13) in set A, the bottom 5% of the solutions
(rounded up to 3) in set C, and the remaining solutions in
set B.

• Probability that mutation occurs: pm = 0.01.

• Probability that an offspring inherits the weight from the
elite parent during crossover: pA = 0.7.

• The number of generations varied according to the type of
experiment.

In addition, the maximum number of candidate arcs is set
to q = 5 in the local improvement procedure in the hybrid
genetic algorithm.

The experiments were done on 13 networks from four
classes proposed by Fortz and Thorup [10] and also used
in [7]. The networks are summarized in Table 1. The AT&T
Worldnet backbone is a proposed real-world network of 90
routers and 274 links. The 2-level hierarchical networks are
generated using the GT-ITM generator [26], based on a model
of Calvert et al. [5] and Zegura et al. [27]. This model uses two
types of arcs: local access arcs have capacities equal to 200,
while long distance arcs have capacities equal to 1000. For
the class of random networks, the probability of having an arc
between two nodes is given by a parameter that controls the
density of the network. All arc capacities are set to 1000. In
Waxman networks, the nodes are points uniformly distributed
in the unit square. The probability of having an arc between
nodes u and v is ηe−�(u,v)/(2θ), where η is a parameter used to
control the density of the network, �(u, v) is the Euclidean
distance between u and v, and θ is the maximum distance
between any two nodes in the network [25]. All arc capaci-
ties are set to 1000. Fortz and Thorup generated the demands
to force some nodes to be more active senders or receivers
than others, thus modeling hot spots on the network. Their
generation assigns higher demands to closely located nodes
pairs.

For each instance, 12 distinct demand matrices
D1, D2, . . . , D12 are generated. Starting from demand matrix
D1, the other demand matrices are generated by repeatedly
multiplying D1 by a scaling factor: Dk = ρk−1D1, ∀ k =
1, . . . , 12. Table 1 summarizes the test problems. For each
problem, the table lists its class, name, number of nodes,
number of arcs, number of destination nodes, number of
origin-destination pairs, the total demand of D1, and the
scaling factor.

TABLE 1. Network characteristics: Class name, instance name, number of nodes (|N |), number of arcs (|A|), number of destination nodes (|T |), number
of demand pairs (o-d pairs), total demand (

∑
duv), and demand scaling factor (ρ).

Class Name |N | |A| |T | o-d pairs
∑

duv ρ

AT&T backbone att 90 274 17 272 18465 0.2036885
2-level hierarchical hier100 100 280 100 9900 921 0.41670955

hier100a 100 360 100 9900 1033 1.0008225
hier50a 50 148 50 2450 276 1.4855075
hier50b 50 212 50 2450 266 1.0534975

Random rand100 100 403 100 9900 994 5.8109135
rand100b 100 503 100 9900 1026 8.1702935

rand50 50 228 50 2450 249 14.139605
rand50a 50 245 50 2450 236 18.941735

Waxman wax100 100 391 100 9900 1143 3.5349025
wax100a 100 476 100 9900 858 6.1694055

wax50 50 169 50 2450 277 7.6458185
wax50a 50 230 50 2450 264 12.454005

42 NETWORKS—2005



6.2. Fixed Time Comparison

In this subsection, we compare the hybrid genetic algo-
rithm with three heuristics:

• InvCap: weights are set proportional to the inverse of the
link capacity, that is, wa = 
cmax/ca�, where cmax is the
maximum link capacity;

• GA: the basic genetic algorithm without the local search
used by the hybrid genetic algorithm;

• LS: the local search algorithm of Fortz and Thorup [10];

as well as with LPLB, the linear programming lower bound
�OPT. InvCap is used in Cisco IOS 10.3 and later by default
[6, 24]. GA is derived from the genetic algorithm in [7],
which will be also compared with the hybrid genetic algo-
rithm later in Section 6.4. LS is the implementation used
in [10].

For each of the 13 networks, 12 increasingly loaded traf-
fic demand matrices are considered. InvCap and LPLB were
run a single time. Ten 1-hour runs were done with GA,
HGA, and LS on each instance and average routing costs
computed.

TABLE 2. Routing costs for att with scaled projected demands.

Demand InvCap GA HGA LS LPLB

3761.179 1.013 1.000 1.000 1.000 1.00
7522.358 1.013 1.000 1.000 1.000 1.00

11,283.536 1.052 1.010 1.008 1.008 1.01
15,044.715 1.152 1.057 1.050 1.050 1.05
18,805.894 1.356 1.173 1.168 1.168 1.15
22,567.073 1.663 1.340 1.332 1.331 1.31
26,328.252 2.940 1.520 1.504 1.506 1.48
30,089.431 21.051 1.731 1.689 1.691 1.65
33,850.609 60.827 2.089 2.007 2.004 1.93
37,611.788 116.690 2.663 2.520 2.520 2.40
41,372.967 185.671 5.194 4.382 4.377 3.97
45,134.146 258.263 20.983 16.433 16.667 15.62

Total 652.691 40.760 35.093 35.322 33.57

Solutions are averaged over 10 1-hour runs.

TABLE 3. Routing costs for hier50a with scaled projected demands.

Demand InvCap GA HGA LS LPLB

410.641 1.016 1.000 1.000 1.000 1.00
821.281 1.028 1.000 1.000 1.000 1.00

1231.922 1.056 1.011 1.010 1.010 1.01
1642.563 1.150 1.049 1.044 1.043 1.04
2053.204 2.345 1.116 1.107 1.106 1.10
2463.844 21.890 1.209 1.194 1.193 1.17
2874.485 37.726 1.328 1.302 1.307 1.27
3285.126 56.177 1.490 1.434 1.443 1.39
3695.766 75.968 1.771 1.603 1.644 1.53
4106.407 106.904 2.243 2.013 2.129 1.89
4517.048 140.516 5.273 3.674 3.975 3.44
4927.689 180.299 20.968 15.123 16.837 14.40

Total 626.075 39.458 31.504 33.687 30.24

Solutions are averaged over 10 1-hour runs.

Tables 2 to 14 and Figures 6 to 18 summarize these results.
For each demand level, the tables list the normalized costs for
InvCap and LPLB as well as the average normalized costs
over 10 1-hour runs for GA, HGA, and LS. The last row in
each table lists the sum of the normalized average costs for

TABLE 4. Routing costs for hier50b with scaled projected demands.

Demand InvCap GA HGA LS LPLB

280.224 1.005 1.000 1.000 1.000 1.00
560.449 1.012 1.001 1.001 1.001 1.00
840.673 1.039 1.018 1.017 1.017 1.01

1120.898 1.110 1.058 1.054 1.054 1.03
1401.122 1.268 1.098 1.092 1.092 1.06
1681.346 6.281 1.146 1.137 1.137 1.11
1961.571 27.661 1.227 1.208 1.206 1.16
2241.795 44.140 1.352 1.319 1.316 1.24
2522.020 63.905 1.520 1.453 1.452 1.35
2802.244 95.131 1.875 1.718 1.691 1.47
3082.468 128.351 3.153 2.264 2.205 1.61
3362.693 159.848 12.318 4.221 4.166 1.83

Total 530.751 27.766 18.484 18.337 14.87

Solutions are averaged over 10 1-hour runs.

TABLE 5. Routing costs for hier100 with scaled projected demands.

Demand InvCap GA HGA LS LPLB

383.767 1.020 1.000 1.000 1.000 1.00
767.535 1.020 1.000 1.001 1.000 1.00

1151.303 1.030 1.006 1.007 1.005 1.01
1535.070 1.090 1.036 1.037 1.033 1.03
1918.838 1.170 1.083 1.078 1.076 1.06
2302.605 1.590 1.143 1.135 1.132 1.11
2686.373 8.870 1.234 1.220 1.217 1.20
3070.140 17.500 1.337 1.313 1.311 1.28
3453.908 24.930 1.602 1.557 1.558 1.52
3837.675 38.540 3.343 3.244 3.258 3.18
4221.443 70.250 11.976 11.812 11.823 11.71
4605.210 114.550 19.730 19.214 19.245 19.06

Total 281.560 45.490 44.618 44.658 44.16

Solutions are averaged over 10 1-hour runs.

TABLE 6. Routing costs for hier100a with scaled projected demands.

Demand InvCap GA HGA LS LPLB

1033.879 1.170 1.001 1.006 1.000 1.00
2067.757 1.170 1.002 1.008 1.000 1.00
3101.636 1.190 1.012 1.018 1.005 1.00
4135.515 1.270 1.043 1.048 1.028 1.02
5169.394 1.390 1.098 1.091 1.069 1.06
6203.272 1.530 1.160 1.142 1.128 1.10
7237.151 2.390 1.279 1.221 1.208 1.16
8271.030 10.660 1.441 1.331 1.312 1.25
9304.909 24.770 1.696 1.518 1.483 1.38

10,338.788 53.240 2.536 2.063 2.077 1.76
11,372.667 112.110 8.123 5.846 5.568 4.48
12,406.545 181.100 23.401 15.169 18.547 13.32

Total 391.990 44.792 33.461 36.425 29.53

Solutions are averaged over 10 1-hour runs.
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TABLE 7. Routing costs for rand50 with scaled projected demands.

Demand InvCap GA HGA LS LPLB

3523.431 1.000 1.000 1.000 1.000 1.00
7046.861 1.000 1.000 1.000 1.000 1.00

10,570.292 1.043 1.002 1.001 1.001 1.00
14,093.723 1.136 1.056 1.036 1.036 1.03
17,617.154 1.296 1.179 1.151 1.144 1.13
21,140.585 1.568 1.327 1.292 1.286 1.27
24,664.015 3.647 1.525 1.455 1.447 1.42
28,187.446 27.352 1.780 1.672 1.672 1.61
31,710.877 66.667 2.173 1.977 1.976 1.90
35,234.308 122.869 3.201 2.556 2.569 2.43
38,757.739 188.778 7.738 4.607 4.683 4.26
42,281.169 264.611 27.375 15.041 15.585 13.75

Total 680.967 50.356 33.788 34.399 31.8

Solutions are averaged over 10 1-hour runs.

TABLE 8. Routing costs for rand50a with scaled projected demands.

Demand InvCap GA HGA LS LPLB

4463.462 1.000 1.000 1.000 1.000 1.00
8926.923 1.011 1.000 1.000 1.000 1.00

13,390.385 1.074 1.014 1.008 1.008 1.01
17,853.847 1.217 1.110 1.071 1.069 1.05
22,317.308 2.133 1.258 1.221 1.214 1.19
26,780.770 16.601 1.479 1.398 1.391 1.35
31,244.232 42.653 1.770 1.637 1.628 1.57
35,707.693 81.279 2.323 1.970 1.982 1.87
40,171.155 131.857 3.590 2.519 2.529 2.29
44,634.617 203.556 8.355 3.919 3.891 3.02
49,098.079 278.997 55.041 10.239 10.374 5.98
53,561.540 357.045 123.604 50.631 53.301 19.65

Total 1118.420 201.544 77.613 80.387 40.98

Solutions are averaged over 10 1-hour runs.

TABLE 9. Routing costs for rand100 with scaled projected demands.

Demand InvCap GA HGA LS LPLB

5774.737 1.000 1.005 1.006 1.000 1.00
11549.474 1.000 1.008 1.006 1.000 1.00
17,324.211 1.040 1.034 1.013 1.001 1.00
23,098.948 1.130 1.119 1.061 1.036 1.03
28,873.685 1.310 1.299 1.217 1.156 1.14
34,648.422 1.680 1.546 1.394 1.312 1.29
40,423.159 9.250 1.932 1.601 1.507 1.47
46,197.896 37.220 2.849 1.882 1.757 1.71
51,972.633 71.520 4.375 2.320 2.112 2.02
57,747.370 115.260 13.822 3.131 2.703 2.46
63,522.107 173.790 41.105 6.729 4.175 3.27
69,296.844 238.560 108.485 25.283 10.942 5.79

Total 652.760 179.579 47.643 29.701 23.18

Solutions are averaged over 10 1-hour runs.

TABLE 10. Routing costs for rand100b with scaled projected demands.

Demand InvCap GA HGA LS LPLB

8382.862 1.000 1.015 1.011 1.000 1.00
16,765.725 1.000 1.023 1.011 1.000 1.00
25,148.587 1.020 1.063 1.013 1.000 1.00
33,531.449 1.090 1.172 1.041 1.011 1.01
41,914.312 1.220 1.385 1.186 1.093 1.07
50,297.174 1.400 1.698 1.358 1.236 1.20
58,680.037 1.960 2.665 1.540 1.407 1.36
67,062.899 8.130 4.890 1.773 1.605 1.54
75,445.761 20.510 12.206 2.170 1.851 1.76
83,828.624 48.850 30.794 2.788 2.286 2.10
92,211.486 94.050 77.555 5.179 3.151 2.78

100,594.349 155.680 154.880 14.857 7.029 5.87
Total 335.910 290.346 34.927 23.669 21.69

Solutions are averaged over 10 1-hour runs.

TABLE 11. Routing costs for wax50 with scaled projected demands.

Demand InvCap GA HGA LS LPLB

2117.622 1.000 1.000 1.000 1.000 1.00
4235.244 1.000 1.000 1.000 1.000 1.00
6352.865 1.015 1.000 1.000 1.000 1.00
8470.487 1.080 1.023 1.018 1.017 1.02

10,588.109 1.171 1.100 1.088 1.086 1.08
12,705.731 1.316 1.205 1.188 1.183 1.18
14,823.353 1.605 1.339 1.315 1.309 1.29
16,940.975 3.899 1.531 1.483 1.475 1.45
19,058.596 20.630 1.798 1.756 1.754 1.72
21,176.218 45.769 2.498 2.373 2.361 2.31
23,293.840 84.409 6.280 5.988 5.998 3.27
25,411.462 139.521 13.633 12.849 12.883 4.36

Total 302.415 33.407 32.058 32.066 20.68

Solutions are averaged over 10 1-hour runs.

TABLE 12. Routing costs for wax50a with scaled projected demands.

Demand InvCap GA HGA LS LPLB

3287.217 1.000 1.000 1.000 1.000 1.00
6574.434 1.000 1.000 1.000 1.000 1.00
9861.651 1.002 1.000 1.000 1.000 1.00

13,148.868 1.049 1.010 1.009 1.009 1.01
16,436.085 1.129 1.050 1.031 1.028 1.03
19,723.302 1.230 1.137 1.108 1.103 1.09
23,010.519 1.393 1.250 1.218 1.210 1.19
26,297.735 1.634 1.398 1.357 1.349 1.32
29,584.952 2.706 1.593 1.514 1.510 1.48
32,872.169 12.816 1.980 1.885 1.875 1.83
36,159.386 38.708 4.042 3.874 3.870 2.84
39,446.603 78.084 11.588 11.288 11.281 4.30

Total 141.751 28.048 27.284 27.235 19.09

Solutions are averaged over 10 1-hour runs.
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TABLE 13. Routing costs for wax100 with scaled projected demands.

Demand InvCap GA HGA LS LPLB

4039.477 1.000 1.005 1.006 1.000 1.00
8078.954 1.000 1.006 1.005 1.000 1.00

12,118.431 1.010 1.010 1.007 1.002 1.00
16,157.908 1.030 1.029 1.014 1.006 1.01
20,197.385 1.090 1.065 1.029 1.012 1.01
24,236.863 1.240 1.136 1.075 1.048 1.04
28,276.340 4.660 1.268 1.186 1.130 1.11
32,315.817 12.370 1.435 1.324 1.247 1.23
36,355.294 23.020 1.835 1.698 1.599 1.57
40,394.771 32.230 4.807 4.501 4.391 4.36
44,434.248 40.640 8.953 8.317 8.191 8.14
48,473.725 54.560 12.647 11.575 11.409 11.35

Total 173.850 37.196 34.737 34.035 33.82

Solutions are averaged over 10 1-hour runs.

TABLE 14. Routing costs for wax100a with scaled projected demands.

Demand InvCap GA HGA LS LPLB

5291.092 1.000 1.011 1.011 1.000 1.00
10,582.185 1.000 1.012 1.011 1.000 1.00
15,873.277 1.010 1.022 1.011 1.001 1.00
21,164.370 1.060 1.064 1.031 1.015 1.02
26,455.462 1.130 1.138 1.064 1.036 1.03
31,746.555 1.250 1.259 1.169 1.105 1.09
37,037.647 1.490 1.458 1.313 1.218 1.19
42,328.740 3.380 1.679 1.468 1.354 1.32
47,619.832 18.080 2.224 1.732 1.596 1.54
52,910.925 38.940 3.832 2.682 2.530 2.41
58,202.017 69.400 12.132 9.998 10.436 9.62
63,493.110 103.430 26.675 20.213 19.775 19.49

Total 241.170 54.506 43.703 43.066 41.71

Solutions are averaged over 10 1-hour runs.

FIG. 6. InvCap, GA, HGA, LS, and LP lower bound on att.

each algorithm. Normalized cost values less than 10(2/3)

(i.e., recall that when the routing cost exceeds 10(2/3) we say
that the routing congests the network; see Section 2) are sepa-
rated from those for which the network is congested by a line
segment in the tables. The distribution of the costs can be seen
in the figures, where all 10 cost values for each algorithm and
each demand point are plotted together with the average costs.

We make the following remarks about the computa-
tional results. The pure genetic algorithm (GA) consistently
found better solutions than InvCap. Solution differences
increased with traffic intensity. The relative differences
|�∗

InvCap − �∗
GA|/�∗

InvCap between the solution values
obtained by GA and InvCap varied from 13.6% on
rand100b to 94.8% on hier50b.

HGA found solutions at least as good as GA on all
networks and for all demand levels. Solution differences
increased with traffic intensity. The relative differences
|�∗

GA − �∗
HGA|/�∗

GA varied from as little as 1.9% on
hier100 to as large as 88.0% on rand100b. HGA not
only found better-quality solutions, but did so in less CPU
time (see Figs. 19 and 20, which compare one run of HGA and
GA each on the att network with demand D = 45134.146).
Figure 19 shows the value of the best-quality solution in
the population as a function of CPU time, while Figure 20
shows the value of the best-quality solution in the popula-
tion as a function of the generation of the algorithm. These
figures illustrate how close to the LP lower bound the HGA
comes and how much faster HGA is to converge compared
to GA.

Of the 13 network classes, HGA found the best average
solutions in seven classes, while LS found the best in the
remaining six. On classes rand100 and rand100b, solu-
tion values found by LS were 37.7 and 32.2% smaller with
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FIG. 7. InvCap, GA, HGA, LS, and LP lower bound on hier50a.

FIG. 8. InvCap, GA, HGA, LS, and LP lower bound on hier50b.

respect to those found by HGA. On the other hand, on classes
hier50a and hier100a, solution values found by HGA
were 6.5 and 8.1% smaller with respect to those found by LS.
On the remaining nine network instances, the relative differ-
ence between average solution values found by HGA and LS
was small, varying from 0.09 to 3.5%.

HGA and LS on average found solution values that varied
from 0.6 to 105.5% of the linear programming lower bound.
HGA found solution values with a relative gap of less than

5% for five of the 13 network classes, while LS did so for
three classes. Both HGA and LS found solution values with
less than 10% relative gap on six classes.

6.3. Distribution of Time-to-Target-Solution-Value

To study and compare the computation times, we used the
methodology proposed by Aiex et al. [1] and further explored
by Resende and Ribeiro, for example, in [20].
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FIG. 9. InvCap, GA, HGA, LS, and LP lower bound on hier100.

FIG. 10. InvCap, GA, HGA, LS, and LP lower bound on hier100a.

Without loss of generality, we considered networks att
with the demand equal to 37,611.788, hier50a with
the demand equal to 41,06.407, and rand50 with the
demand equal to 35,234.308 to illustrate the general behavior
observed for most instances. For each of them, we performed
100 independent runs with different seeds of each algorithm
GA, HGA, and LS, considering a given parameter value
look4. Each execution was terminated when a solution of
value less than or equal to the target value look4 was found
or when the time limit of one hour was reached. Three dif-
ferent values (corresponding to easy, medium, and difficult

cases) of look4 were investigated for each network: 2.89,
2.77, and 2.64 for network att, 2.32, 2.21, and 2.11 for
network hier50a, and 2.93, 2.81, and 2.68 for network
rand50. Different target values were used because the net-
works and demands were different. Empirical probability
distributions for the time-to-target solution value are plotted
in Figures 21 to 24. Runs that failed to find a solution of value
less than or equal to the target valuelook4within the 1-hour
time limit were discarded in these plots. To plot the empir-
ical distribution for each algorithm and each instance, we
associate with the i-th smallest running time ti a probability
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FIG. 11. InvCap, GA, HGA, LS, and LP lower bound on rand50.

FIG. 12. InvCap, GA, HGA, LS, and LP lower bound on rand50a.

pi = (i − (1/2))/100, and plot the points zi = (ti, pi), for
i = 1, . . . , nr , where nr ≤ 100 is the number of runs which
found a solution of value less than or equal to the target value
look4 within the 1-hour time limit.

HGA and LS found solutions with value less than or equal
to the target in all runs associated with network att (Figs.
21 and 22). GA failed to find solutions at least as good as the
target value on eight runs with the easiest target, 19 runs with
the medium target, and 59 runs with the hardest target. HGA
is not only much faster than GA, but also the computation
times of the former are more predictable than those of the

latter. As we can see from Figure 21, in many runs of GA
the computation times are several orders of magnitude larger
than those of HGA. Considering Figure 22, we notice that the
computation times of HGA are more predictable than those
of LS. The latter are several times larger than the former
in many runs. In more than 30% of the runs LS encounters
difficulties to converge and requires very long computation
times. The figure seems to suggest that this is related to the
fact that LS frequently gets stuck at a local minimum and the
escape mechanism often needs to be applied repeatedly to
succeed.
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FIG. 13. InvCap, GA, HGA, LS, and LP lower bound on rand100.

FIG. 14. InvCap, GA, HGA, LS, and LP lower bound on rand100b.

In the case of network hier50a (Figs. 23 and 24),
HGA performed much better than GA, as we can see from
Figure 23. HGA found solutions at least as good as the tar-
get within the 1-hour time limit in all runs for the easy and
medium target values, and in 94 out of the 100 runs for the
more difficult target. Contrarily, GA rarely found solutions at
least as good as the target: 44 times for the easy target, 14 for
the medium target, and only once in the hardest case (which
cannot be plotted in the figure). HGA also did better than LS
for this network, as shown in Figure 24. LS found solutions

at least as good as the target in all runs for the easier target
value. However, it failed in two runs with the medium target.
For the harder target value, it missed the target in 48 runs.

The instances associated with random graphs are among
the hardest ones for the genetic algorithms. Networkrand50
is particularly difficult for GA, which failed to find a solution
at least as good as the target within the 1-hour time limit in all
300 runs. Contrarily, HGA found solutions at least as good
as the target in all runs. Although HGA performs better than
LS for many classes of instances (as illustrated in Figs. 22
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FIG. 15. InvCap, GA, HGA, LS, and LP lower bound on wax50.

FIG. 16. InvCap, GA, HGA, LS, and LP lower bound on wax50a.

and 24), LS did better in this case. Both algorithms are robust
and found solutions at least as good as the target in all runs,
but LS was usually faster.

6.4. Comparison with the Original GA

We conclude the experimental results section by compar-
ing the GA used in the experiments described above with
the GA presented in [7] to show that both implementations
produce comparable results. Consequently, the conclusions

we make regarding the comparison of HGA and GA should
carry over to the GA of [7], which we refer to as GA0.

Although GA and GA0 are based on the same C code, they
differ in some aspects:

• GA uses a population of size 50, while GA0 uses one of
size 200. Note that the size 200 population was used in [7]
for the instances in this experiment. For larger instances,
the experiments in [7] used a population of size 100.

• GA randomly generates an initial population with weights
in the interval [1, 7], while GA0 randomly generates all but
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FIG. 17. InvCap, GA, HGA, LS, and LP lower bound on wax100.

FIG. 18. InvCap, GA, HGA, LS, and LP lower bound on wax100a.

one element of the initial population with weights in the
interval [1, 20] and completes the remaining element of the
population with the weights corresponding to the heuristic
InvCap.

• Define the population parameters α = |A|/|A ∪ B ∪ C|
and β = |C|/|A ∪ B ∪ C|. GA uses population parameters
(α, β) = (.25, .05) while GA0 uses population parameters
(α, β) = (−.20, −.10).

We ran both genetic algorithm implementations for
10 independent 1-hour trials on three networks, att,

hier50a, and rand50, with two demand matrices each.
We used the matrices with the two largest demands in the
experiments described earlier in this section. For network
att, we use demands 41,372.967 and 45,134.146. For net-
work hier50a, we use demands 45,17.048 and 49,27.689.
For network rand50, we use demands 38,757.739 and
42,281.169.

For GA, we used the parameter setting described ear-
lier in this section. For GA0, we used the parameter setting
described in [7].
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FIG. 19. Cost as a function of time on 1-hour run: HGA versus GA on att with demand 45,134.146.

FIG. 20. Cost as a function of generations on 1-hour run: HGA versus GA on att with demand 45,134.146.

Table 15 shows minimum, average, and maximum final
solution values for 10 1-hour runs for HGA, GA, and GA0.
The last row of the table lists the sums of each column.

The experimental results clearly show that HGA finds bet-
ter minimum, average, and maximum solution values than
GA and GA0 for all networks and demand levels. Overall,
GA does better than GA0, finding on average solutions that
are 48% smaller than those found by GA0. This big differ-
ence is mainly due to GA0’s poor performance on network
rand50. Discarding GA0’s results on network rand50,

GA and GA0 are comparable, with GA finding solution that
are on average 3.5% larger than those found by GA0. On the
other hand, with the exception of network att with demand
41,372.968, the minimum solution value found by GA was
always smaller than the one found by GA0.

7. CONCLUDING REMARKS

We presented a new hybrid genetic algorithm (HGA) for
solving the OSPF weight-setting problem, combining the
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FIG. 21. Time-to-target solution value: HGA versus GA on network att with demand 37,611.788.

FIG. 22. Time-to-target solution value: HGA versus LS on network att with demand 37,611.788.

traditional genetic algorithm (GA) strategy with a local search
procedure to improve the solutions obtained by crossover.

The local search procedure uses small neighborhoods, and
is based on the fast computation of dynamic shortest paths.
Because it considers only unit weight increments with respect
to the weights in the current solution, our implementation of

algorithm UpdateShortestPaths is two to three times
faster than its original implementation. This specialization
accounts significantly to speed up the implementation of the
hybrid genetic algorithm.

The new heuristic performs systematically better than
the genetic algorithm without local search (GA and GA0).
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FIG. 23. Time-to-target solution value: HGA versus GA on network rand50 with demand 35,234.308.

FIG. 24. Time to target solution value: HGA versus LS on network hier50a with demand 4106.407.

HGA finds better solutions in substantially less computa-
tion times. The experimental results also showed that it is
also more robust, in the sense that it rarely gets stuck in
suboptimal local minima, while the genetic algorithm often
does so.

We also compared the new algorithm with a local search
heuristic (LS). Once again, HGA is more robust than LS.

Algorithms HGA and LS are competitive in terms of solution
quality and time. HGA is better than LS for some classes
of test problems, while LS is better for others. Moreover,
the implementation of LS is based on limited-size hashing
tables that limits the number of iterations it can perform and,
consequently, the solution quality that can be obtained for
larger problems.
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TABLE 15. Experiments comparing GA and HGA with the genetic algorithm GA0 from [7].

HGA GA GA0

Network Demand min avg max min avg max min avg max

att 41, 372.967 4.227 4.382 6.604 4.624 5.194 5.833 4.469 5.034 7.517
att 45, 134.146 16.043 16.433 17.622 17.210 20.983 26.802 17.551 20.017 24.244
hier50a 4517.048 3.616 3.674 3.978 4.501 5.273 6.235 4.672 5.045 6.206
hier50a 4927.689 14.695 15.123 17.184 17.347 20.968 25.252 18.489 20.461 23.309
rand50 38, 757.739 4.503 4.607 4.669 6.259 7.738 10.073 22.599 25.623 30.404
rand50 42, 281.169 14.852 15.041 15.331 20.165 27.375 33.994 80.535 93.876 98.750

Sum 55.936 59.260 65.388 70.106 87.531 109.189 148.315 170.056 190.430

Ten 1-hour runs were done for each algorithm and minimum, average, and maximum final solution values found are listed for each algorithm on each
instance.

We are currently working on a parallel implementation of
HGA for clusters using the Message Passing Interface (MPI).
Encouraging preliminary computational results have shown
significant reductions in elapsed times in the time-to-target
solution value.
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