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ABSTRACT 

The Vehicle Routing Problem with Time Windows (VRPTW) involves servicing a set of
customers, with earliest and latest time deadlines, with varying demands using capacitated
vehicles with limited travel times. The objective of the problem is to service all customers while
minimizing the number of vehicles and travel distance without violating the capacity and travel
time of the vehicles and customer time constraints. In this paper we describe a  λ-interchange
mechanism that moves customers between routes to generate neighborhood solutions for the
VRPTW. The λ-interchange neighborhood is searched using Simulated Annealing and Tabu
Search strategies. The initial solutions to the VRPTW are obtained using the Push-Forward
Insertion heuristic and a Genetic Algorithm based sectoring heuristic. The hybrid combination of
the implemented heuristics, collectively known as the GenSAT system, were used to solve 60
problems from the literature with customer sizes varying from 100 to 417 customers. The
computational results of GenSAT obtained new best solutions for 40 test problems. For the
remaining 20 test problems, 11 solutions obtained by the GenSAT system equal previously known
best solutions. The average performance of GenSAT is significantly better than known competing
heuristics. For known optimal solutions to the VRPTW problems, the GenSAT system obtained
the optimal number of vehicles.

Keywords: Vehicle routing with time windows, Local search, Simulated Annealing,
Tabu Search, Genetic Algorithms, Heuristics.
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1.  Introduction

The vehicle routing problem with time windows (VRPTW) is an extension of the vehicle routing

problem (VRP) with latest, earliest and service times for customers. The VRPTW routes a set of

vehicles to service customers having earliest, latest service times. The objective of the problem is

to minimize the number of vehicles and the distance travelled to service the customers. The

constraints of the problem are to service all the customers within the earliest and latest service

time of the customer without exceeding the route time of the vehicle and overloading the vehicle.

The route time of the vehicle is the sum total of the waiting time, the service time and distance

travelled by the vehicle. A vehicle that reaches a customer before the earliest service time incurs

waiting time. The service time is the time taken by a vehicle to service a customer. A vehicle is

said to be overloaded if the sum total of the customer demands exceed the total capacity of the

vehicle. 

Applications of routing and scheduling models arise in a wide range of practical decision making

problems. Efficient routing and scheduling of vehicles can save the public and private sectors

millions of dollars per year. The VRPTW arises in retail distribution, school bus routing, mail and

newspaper delivery, municipal waste collection, fuel oil delivery, dial-a-ride service and airline

and railway fleet routing and scheduling. Surveys on classifications and applications of VRP can

be found in Osman [Osman, 1993a], Laporte [Laporte, 1992], Fisher [Fisher, 1993] and Bodin,

Golden and Assad and Ball [Bodin et al. 1983].

Savelsbergh [Savelsbergh, 1985] has shown that finding a feasible solution to the traveling

salesman problem with time windows (TSPTW) is a NP-complete problem. Therefore VRPTW is

more complex as it involves servicing customers with time windows using multiple vehicles that

vary with respect to the problem. VRPTW has been the focus of intensive research and special

purpose surveys can be found in: Desrosier et al. [Desrosier, Dumas, Solomon, Soumis, 1993],

Desrochers, Desrosiers and Solomon [Desrochers, Desrosiers and Solomon, 1992], Desrochers et

al. [Desrochers, Lenstra, Savelsbergh and Soumis, 1988], Golden and Assad [Golden and Assad,

1988], Solomon and Desrosiers [Solomon and Desrosiers, 1988], Solomon [Solomon, 1987], and

Golden and Assad [Golden and Assad, 1986]. Though optimal solutions to VRPTW can be

obtained using exact methods, the computational time required to solve a VRPTW to optimality is

prohibitive [Desrochers, Desrosiers and Solomon, 1992; Fisher, Jornsten and Madsen, 1992].

Heuristic methods often produce optimal or near optimal solutions in a reasonable amount of

computer time. Thus, there is still a considerable interest in the design of new heuristics for

solving large-sized practical VRPTW.
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Heuristic approaches for the VRPTW use route construction, route improvement or methods that

integrate both route construction and route improvement. Solomon [Solomon, 1987] designed and

analyzed a number of route construction heuristics, namely: the savings, time-oriented nearest

neighbor insertion and a time oriented sweep heuristic for solving the VRPTW. In his study, the

time-oriented nearest neighbor insertion heuristic was found to be very successful. Other route

construction procedures that have been employed to solve VRPTW are the parallel insertion

method [Potvin and Rousseau, 1993], the greedy randomized adaptive procedure [Kontoravadis

and Bard, 1992] and the Generalized Assignment heuristic [Koskosidis, Powell and Solomon,

1992]. A number of route improvement heuristics have been implemented for the VRPTW,

namely branch exchange procedures [Solomon, Baker and Schaffer, 88; Baker and Schaffer,

1986] and cyclic-transfer algorithms [Thompson and Psaraftis, 1989]. Heuristic search strategies

based on Genetic Algorithms, Simulated Annealing and Tabu Search have also been explored for

solving the VRPTW.

Potvin and Bengio [Potvin and Bengio, 1993] implemented a genetic based algorithm to solve the

VRPTW, in which a population of solutions evolve from one generation to another by mating with

parent solutions resulting in offsprings that exhibit characteristics acquired from the parents. A

search strategy based on the Tabu Search [Potvin, Kervahut, Garcia and Rousseau, 1992] was

implemented that uses a branch exchange procedure to improve VRPTW solutions. Recently a

search method based on Simulated Annealing and Tabu Search [Chiang and Russell, 1993] was

used to solve the VRPTW.

A heuristic search strategy based on Genetic Algorithms was implemented by Thangiah

[Thangiah, 1993; Thangiah, Nygard and Juell, 1991]. This paradigm uses a cluster-first

route-second approach to solve the VRPTW. The Genetic Algorithm is used to find a set of

customer clusters that are routed using the cheapest insertion procedure and the routes are

improved using a post-optimization procedure which resulted in good feasible solutions. The

work of Osman [Osman, 1993b] in using Simulated Annealing and Tabu Search for VRP showed

that customer interchange methods guided by Simulated Annealing and Tabu Search obtained

solutions that were significantly better than solutions obtained by competing heuristic methods.

In this paper we investigate the use of a customer interchange method to improve solutions using

a descent algorithm, Simulated Annealing and Tabu Search. The initial solutions for the problem

are obtained using a Push-Forward Insertion Heuristic [Solomon, 1987] and the Genetic Sectoring

Heuristic [Thangiah, 1993]. The heuristics implemented will be collectively called as the GenSAT

system. The GenSAT system was used to solve 60 VRPTW problems obtained from the literature
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with customer sizes varying from 100 to 417. The GenSAT system obtained 40 new best known

solutions. In addition 11 solutions obtained by GenSAT equal previously known best solutions.

The average performance of the GenSAT system is better than other known competing heuristic

methods.

The paper is arranged as follows. Section 2 describes the structure of the local search methods. 

The λ-interchange generation mechanism is the core strategy for generating neighbors. The

Push-Forward Insertion heuristic to obtain an initial solution to the VRPTW and the

λ-interchange generation mechanism to further improve the solution is also described. Section 3

describes the Simulated Annealing and hybrid Simulated Annealing/Tabu Search

implementations that guides the descent algorithm using the λ-interchange generation

mechanism. The Genetic Sectoring heuristic that is used to obtain initial solutions for the

VRPTW is also described. Section 4 reports the computational experience on 60 VRPTW

problems obtained from the literature and the analysis of the results with other competing

methods and known optimal solutions. Section 5 gives the summary and concluding remarks.

2.  Structure of Local Search Methods

This section describes the various notations and features that are common to each of the

implemented local search strategies.    A λ-interchange local search descent method is used to

improve initial solutions from a route construction method. This section describes the route

construction heuristic for obtaining an initial solution to the VRPTW, the  λ-interchange

mechanism to generate neighboring solutions for improving the initial solution, the evaluation

method for computing cost of changes, and the two different strategies for selecting neighbors.

2. 1.  Notation

The following notations will help in the description of the methods used for solving VRPTW.

qk = total capacity of vehicle k, where k = 1,...,N

K = total number of vehicles.
N = total number of customers.
Ci = customer i, where i=1,...,N.
C0 = central depot.
dij  = Euclidean distance (proportional to the travel time) from customer i to j, 
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where i,j = 0,...,N. 0 is the central depot.
ei = earliest arrival time at customer i, where i = 1,...,N.
li = latest arrival time at customer i, where i = 1,...,N.
ti = total travel time to reach customer i, where i = 1,...,N.
uij = urgency of the customer j, i.e. uij  = lj - (ti + dij), where i, j = 1,...,N.
ai = service time for customer i, where i = 1,...,N.
bij = waiting time for customer j, i.e. bij  = Max [ej - (ti + dij), 0] where i, j = 1,...,N.
pi = polar coordinate angle of customer i, where i = 1,...,N.
Rk = vehicle route k, where k=1,...,K.
Ok = total overload for vehicle route k, where k=1,...,K.
Tk = total tardiness for vehicle route k, where k=1,...,K.
Dk = total distance for a vehicle route k, where k=1,...,K.
Wk = total travel time (total distance+total waiting time+total service time) for a vehicle

route k, where k=1,...,K.
C(Rk) = cost of the route Rk based on a cost function.
C(S) = sum total cost of individual routes C(Rk).
α = weight factor for the total distance travelled by a vehicle.
β = weight factor for the urgency of a customer.
γ = weight factor for the polar coordinate angle of a customer.
φ = weight factor for the travel total time of a vehicle.
η = penalty weight factor for an overloaded vehicle.
κ = penalty weight factor for the total tardy time in a vehicle route.

2. 2.  Push-Forward Insertion Heuristic (PFIH)

The Push-Forward Insertion method for inserting customers into a route for the VRPTW was

introduced by Solomon [Solomon, 1987]. It is an efficient method for computing the cost of

inserting a new customer into the current route. Let us assume a route Rp = {C1,...,Cm} where C1

is the first customer and Cm is the last customer with their earliest arrival and latest arrival time

defined as e1, l1 and em, lm respectively. The feasibility of inserting a customer into route Rp is

checked by inserting the customer between all the edges in the current route and selecting the

edge that has the lowest travel cost. For a customer Ci to be inserted between C0 and customer C1,

the insertion feasibility is checked by computing the amount of time that the arrival time of t1 is

pushed forward. A change in the arrival time of t1 could affect the arrival time of all the successor

customers of C1 in the current route. Therefore, the insertion feasibility for Ci needs to be

computed by sequentially checking the Push-Forward values of all the successor customers Cj of

Ci. The Push-Forward value for a customer Cj is 0 if the time propagated by the predecessor

customer of Cj, by the insertion of Ci into the route, does not affect the arrival time tj. The

sequential checking for feasibility is continued until the Push-Forward value of a customer is 0 or

a customer is pushed into being tardy. In the worst case, all customers are checked for feasibility. 
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The Push-Forward Insertion Heuristic (PFIH) starts a new route by selecting an initial customer

and then inserting customers into the current route until either the capacity of the vehicle is

exceeded or it is not time feasible to insert another customer into the current route. The cost

function for selecting the first customer Ci is calculated using the following formula:

 

Cost of Ci = -α d0i + β li + γ ((pi/360)d0i) (1)

The unrouted customer with the lowest cost is selected as the first customer to be visited. The

weights for the three criteria were derived empirically and were set to α = 0.7, β = 0.1 and γ = 0.2.

The priority rule in (1) for the selection of the customer depends on the distance, polar coordinate

angle and latest time. The polar coordinate angle of the customer with respect to the depot in (1) is

normalized in terms of the distance. This normalization allows comparison of the distance, latest

deadline and angular value of the customer in terms of a common unit. 

Once the first customer is selected for the current route, the heuristic selects from the set of

unrouted customers the customer j*  which minimizes the total insertion cost between every edge

{ k, l} in the current route without violating the time and capacity constraints.    The customer j*  is

inserted in the least cost position between {k*, l*} in the current route and the selection process is

repeated until no further customers can be inserted.   At this stage, a new route is created and the

above is repeated until all customers are routed. It is assumed that there is an unlimited number of

vehicles, K, which is large and determined by the heuristic to route all the customers. The flow of

the PFIH is described below.

Step PFIH-1: Begin with an empty route starting from the depot.
Set r=1.

Step PFIH-2: If {all customers have been routed} then
go to step PFIH-8.

For all unrouted customers j: Compute the cost according to (1), and sort
them in ascending order of their costs.

Step PFIH-3: Select the first customer, j*, from the ordered list with the least cost and
feasible in terms of time and capacity constraints.

Step PFIH-4: Append j* to the current route r and update the capacity of
the route.

Step PFIH-5: For all unrouted customers j: For all edges {k, l} in the current route,
compute the cost of inserting each of the unrouted customers
between k and l.

Step PFIH-6: Select an unrouted customer j* at edge {k*, l*} that has the least cost.
If {insertion of customer j* between k* and l* is feasible in terms of time
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and capacity constraints} then
insert customer j* between k* and l*,
update the capacity of the current route r, and
go to Step PFIH-5,

else
go to Step PFIH-7.

Step PFIH-7: Begin a new route from the depot.
Set r = r + 1.
Go to Step PFIH-2.

Step PFIH-8: All Customers have been routed.
Stop with a PFIH solution.

2. 3.  λ−interchange Generation Mechanism

The effectiveness of any iterative local search method is determined by the efficiency of the

generation mechanism and the way the neighborhood is searched.    A   λ-interchange generation

mechanism was introduced by Osman & Christofides [1989, 1994] for the capacitated clustering

problem.    It is based on customer interchange between sets of vehicle routes and has been

successfully implemented with a special data structure to other problems in [Osman 1993b],

[Osman 1993c], [Osman & Salhi 1994] and [Thangiah, Osman, Vinayagamoorthy and Sun 1994].

The λ-interchange generation mechanism for the VRPTW is described as follows.

Given a solution for the VRPTW represented by S = { R1,...,Rp,...,Rq,...,Rk} where Rp is a set of

customers serviced by a vehicle route p, a λ−interchange between pair of routes Rp and Rq is a

replacement of subsets S1 ⊆ Rp of size |S1| λ by another subset S2 ⊆ Rq of size |S2|  λ, to get

two new route sets R′p= (Rp - S1) ∪ S2, R′q= (Rq - S2) ∪ S1 and a new neighboring solution S′ =
{ R1,...,R′p,...,R′q,...,Rk}. The neighborhood Nλ(S) of a given solution S is the set of all neighbors S′
generated by the λ−interchange method for a given integer λ.

The order in which the neighbors are searched is specified as follows. Let the permutation σ be

the order of vehicle indices in a given solution S = {R1,...,Rp,...,Rq,...,Rk} (say, σ(p) = p, ∀p ∈ K).

An ordered search selects all possible combination of pairs (Rp,Rq) according to (2) and σ without

repetition. A total number of different pair of routes (Rp, Rq) are examined to define a

cycle of search in the following order:

(Rσ(1), Rσ(2)),..., (Rσ(1), Rσ(k)), (Rσ(2), Rσ(k)),... (Rσ(k-1), Rσ(k)) (2)

For heuristics based on a descent algorithm and Tabu Search the same permutation σ is used after

each cycle of search is completed. Furthermore for a given pair (Rp, Rq) we must also define the

≤ ≤

K K 1−( )×
2
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search order for the customers to be exchanged. We consider the case of λ=1 and λ=2 for the

neighboring search. The λ-interchange method between two routes results in customers either

being shifted from one route to another, or customers being exchanged with other customers. The

operator (0,1) on routes (Rp, Rq) indicates a shift of one customer from route q to route p. The

operators (1,0), (2,0) and (0,2) indicate shifting of customers between two routes. The operator

(1,1) on routes (Rp, Rq) indicates an exchange of one customer between route p and q. The

operators (1,2), (2,1) and (2,2) indicate exchange of customers between vehicle routes.

The customers in a given pair of routes are searched sequentially and systematically for improved

solutions by the shift and exchange process. The order of search we implemented uses the

following order of operators (0,1), (1,0), (1,1), (0,2), (2,0), (2,1), (1,2) and (2,2) on any given pairs

to generate neighbors. After a solution is generated a criterion is required for accepting or

rejecting a move. An acceptance criterion may consider many solutions as potential candidates.

Two selection strategies are proposed to select between candidate solutions.

(i) The First-Best (FB) strategy will select the first solution in S′ in Nλ(S) in the neighborhood of S

that results in a decrease in cost with respect to a cost function.

(ii) The Global-Best (BG) strategy will search all solutions S′ in Nλ(S) in the neighborhood of S

and select the one which will result in the maximum decrease in cost with respect to a given cost

function.

2. 4.  Evaluation of a Cost Move

A move which is a transition from one solution to another in its neighborhood may cause a change   

in the objective function values measured by ∆ = C(S′) - C(S). As the λ-interchange move involves 

insertion of customers into routes, the following cost function is used to compute the cost of 

inserting customer Ci into route Rk:

insertion cost of Ci = Dk + φWk +η Ok + κ Tk      (3)

The insertion cost function (3) will accept infeasible solutions if the reduction in total distance is

high enough to allow either a vehicle to be overloaded or be tardy. Overloading and tardiness in a

vehicle route are penalized in the insertion cost function (3). The weight factor for total travel

time φ was set to one percent of the total distance Dk. When calculating the penalty weight factors

η and  κ in (3),  η was set to ten percent of Dk and  κ to one percent of Dk. The penalty values

were chosen in this manner to allow penalization relative to the total distance travelled by the
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vehicle. This cost function (3) can be similarly generalized for other cases and values of λ.

2. 5.  A λ-Interchange Local Search Descent Method(LSD)

In this section, we describe the λ-interchange local search descent method (LSD) that starts from

an initial feasible solution obtained by the Push-Forward Insertion Heuristic. The PFIH is further

improved using the λ-interchange mechanism. The steps of the λ-interchange LSD are as follows:

Step LSD-1: Obtain a feasible solution S for the VRPTW using the PFIH.
Step LSD-2: Select a solution S′ ∈ Nλ(S) in the order indicated by (2).
Step LSD-3: If {C(S′) < C(S)}, then

accept S′ and go to Step LSD-2,
else go to Step LSD-4.

Step LSD-4: If {neighborhood of Nλ(S) has been completely searched (there are no moves
that will result in a lower cost} then

go to Step LSD-5
else go to Step LSD-2.

Step LSD-5: Stop with the LSD solution.

The LSD solution is dependent upon the initial feasible solution. The LSD uses two different

selection strategies for selection of neighbors. The two strategies are First-Best(FB) and Global-

Best(GB). The LSD with the GB search strategy (LSD-GB) is computationally more expensive

than the LSD with FB strategy (LSD-FB), as LSD-GB has to keep track of all the improving

moves while the LSD-FB is a blind search that accepts the first improving move.

As the LSD-FB and LSD-GB strategies accept only improving moves, the disadvantage of using

such methods is that they could get stuck in a local optima and never have the means to get out of

it. Simulated Annealing is a search strategy that allows non-improving moves to be accepted with

a probability in order to escape the local optima while improving moves are always accepted as in

the local search descent method.

3.  Meta-heuristic Methods

The past decade saw the rise of several general heuristic search schemes that can be adopted with

a variable degree of effort to a wide range of combinatorial optimization problems. These search

schemes are often referred to as “meta-heuristics”, “meta-strategies”, or “modern heuristics”. We

refer for further details to the recent bibliography on these techniques by Reeves [Reeves, 1993]
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and Osman and Laporte [Osman and Laporte, 1994]. The following sections describe the

meta-heuristic search strategies that were implemented to solve the VRPTW. The structure of

each search strategy and its parametric values are described individually.

3. 1.  Simulated Annealing

Simulated Annealing (SA) is a stochastic relaxation technique which has its origin in statistical

mechanics [Metropolis et al., 1953; Kirkpatrick, Gelatt and Vecchi, 1983]. The Simulated

Annealing methodology draws its analogy from the annealing process of solids. In the annealing

process, a solid is heated to a high temperature and gradually cooled in order for it to crystallize.

As the heating process allows the atoms to move randomly, if the cooling is done too rapidly it

prevents the atoms from reaching thermal equilibrium. If the solid is cooled slowly, it gives the

atoms enough time to align themselves in order to reach a minimum energy state. This analogy

can be used in combinatorial optimizations with the states of the solid corresponding to the

feasible solution, the energy at each state corresponding to the improvement in objective function

and the minimum energy being the optimal solution.

The interest in SA to solve combinatorial optimization problems began with the work of

Kirkpatrick et al. [1983]. Simulated Annealing (SA) uses a stochastic approach to direct the search.

It allows the search to proceed to a neighboring state even if the move causes the value of the

objective function to become worse. Simulated annealing guides the original local search method

in the following way. If a move to a neighbor S′ in the neighborhood Nλ(S) decreases the objective

function value, or leaves it unchanged then the move always accepted. More precisely, the solution

S′ is accepted as the new current solution if ∆  0, where ∆ = C(S′) - C(S). To allow the search to

escape a local optimum, moves that increases the objective function value are accepted with a

probability e(-∆/ T) if ∆ > 0, where T is a parameter called the “temperature”.    The value of T varies

from a relatively large value to a small value close to zero. These values are controlled by a cooling

schedule which specifies the initial and temperature values at each stage of the algorithm. 

We use a non-monotonic cooling schedule similar to that outlined in [Osman 1993b, Osman and

Christofides, 1994]. The non-monotonic reduction scheme reduces the temperature after each

generated move (one iteration) with occasional temperature increases (or higher temperature

resets) after the occurrence of a special neighborhood without accepting any moves. The design of

the non-monotonic cooling schedule in Osman [1993b] to induce an oscillation behavior in the

temperature consequently in the objective function is a kind of strategic oscillation concept

borrowed from tabu search [Glover 1986; Glover 1993]. The first hybrid combination of the

non-monotonic search with simulated annealing concept was pioneered by Osman [Osman 1991;

≤
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Osman 1993b]. This combination has been shown to yield better and improved performance over

other standard SA approaches on a number of problems [Osman, 1993c; Osman and Christofides,

1994; Hasan nad Osman 1994].

The SA implementation starts from an initial solution which is generated by the Push-Forward

Insertion Heuristic. It searches systematically the 2-interchange generation mechanism and allows

infeasible moves to be to be accepted/rejected according to a SA criterion using the cost function

(3) for move evaluations. The following notation will help in the explanation of the SA algorithm.

Ts = Starting temperature of the SA method.
Tf = Final temperature of the SA method.
Tb = Temperature at which the best current solution was found.
Tr = Reset temperature of the SA method.
S = Current solution.
Sb = Best current route found so far in the search.
R = Number of resets to be done.
τ = a decrement constant in the range of 0 < τ < 1.

The flow of the Simulated Annealing method can be described as follows:

Step SA-1: Obtain a feasible solutions for the VRPTW using the PFIH heuristic.
Step SA-2: Improve S using the 2-interchange local search descent method with the

First-Best selection strategy.
Step SA-3: Set the cooling parameters.
Step SA-4: Generate systematically a S′ ∈ Nλ(S) and compute ∆ = C(S′) − C(S).
Step SA-5: If {(∆  0) or (∆ >0 and e (- ∆/Tk)  θ), where θ is a random number

 between [0,1]} then
set S = S′.
if {C(S′) < C(Sb)} then 

improve S′ using the local search procedure in Step-SA2,
update Sb= S′ and Tb = Tk.

Step SA-6: Set k = k +1.
Update the temperature using: 

If {N2(S) is searched without any accepted move} then
set Tr = maximum {Tr / 2,Tb}, and set Tk = Tr,

Step SA-7: If {R resets were made since the last Sb was found} then 
go to Step SA-8,

else go to Step SA4.
Step SA-8: Terminate the SA algorithm and print the Sb routes.

The above hybrid procedure combines the SA acceptance criteria with the local search descent

algorithm and the strategic oscillation approach embedded in the cooling schedule. In our

≤ ≥

Tk 1+

Tk

1 τ Tk+( )
=
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implementation, and after experimentation, the initial parameters for the cooling schedule is set at

Ts=50, Tf =0, Tr=Ts, R=3, Sb= S and k =1. After each iteration k, the temperature is decreased

according to a parameter τ which was set to 0.5. Initial experiments using only feasible moves

resulted in solutions that were not competitive with solutions obtained from competing heuristics.

The LSD-FB selection strategy was used by the SA method to select candidate moves. The

Simulated Annealing method, at times, could get caught in a succession of moves that could result

in a move being made in state S that is reversed in state S′. In order to avoid moves that result in

cycles and also force the search to explore other regions a hybrid combination of the Tabu Search

and Simulated Annealing method was implemented.

3. 2.  Tabu Search

Tabu search (TS) is a memory based search strategy to guide the local search descent method to

continue its search beyond local optimality [Glover, 1989; Glover 1990]. When a local optimum

is encountered, a move to the best neighbor is made to explore the solution space, even though

this may cause a deterioration in the objective function value. The TS seeks the best available

move that can be determined in a reasonable amount of time. If the neighborhood is large or its

elements are expensive to evaluate, candidate list strategies are used to help restrict the number of

solutions examined on a given iteration. 

Tabu search uses memory structures to record attributes of the recent moves when going from one

solution to another in a Tabu List. Attributes of recently visited neighborhood moves are

designated as Tabu and such moves are not permitted by the search strategy for the duration that it

is considered to be Tabu. The duration that an attribute remains on a tabu list is determined by the

Tabu List Size (TLS). A special degree of freedom is introduced by means of an aspiration

concept and the tabu status of a move can be overruled if certain aspiration conditions are met.

Since TS is a heuristic method the rule for execution is generally expressed as a pre-specified limit

on the number of iterations or on the number of iterations since the last improvement was found.

More details on the recent developments and applications can be found in Glover, Taillard and De

Werra (1993).

A new modification to the TS was implemented to solve the VRPTW. The TS algorithm was

combined with the SA acceptance criterion to decide which moves to be accepted from the

candidate list. The combined algorithm uses a special data structure which identifies the exact

candidate list of moves rather than using a sampling approach of the neighborhood. The hybrid

algorithm using the TS elements was implemented as follows. Given a solution S = { R1,...,Rk}
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with K vehicles, there are  pairs of {Rp,Rq} routes considered by the 2-interchange

mechanism to generate the whole neighborhood N2(S). The best solution in terms of the objective

function value generated from each {Rp,Rq} is recorded. The set of all these best solutions form

the candidate list of solutions. Two matrices are used to record the  best solutions.

BestCost and BClist are matrices with dimensions , and . The top triangular

part of the matrix BestCost (p, q), 1  p < q  K, stores the objective value ∆pq associated the

best move between (Rp,Rq). 

The lower triangular part of BestCost(q,p) stores an index l indicating the row in BClist where the

information (customers exchanged, route indices, etc.) associated with BestCost(q,p) are recorded

for faster retrieval. The minimum attributes associated with a move are the indices of the

maximum number of customers to be interchanged and of the two routes leading to six column

entries in BClist. However, more information can be stored in BClist by adding more columns if

necessary. The importance of BestCost and BClist is that they can be updated by evaluating only

moves in the  pairs of routes rather than looking at  pairs in N2(S). After a move

involving {Rp,Rq} is done, the pairs of routes N2(S) which do not involve either Rp or Rq remain

intact. The pairs of routes which need evaluations are {Rp,Rt},{ Rt,Rq}  ∀t in K.

The tabu list structure is represented by a matrix TabuList with dimension . Each TabuList

(p,i) records the iteration number at which a customer i is removed from route Rp plus the value of

the tabu list size TSL. As the neighborhood size generated by the 2-interchange mechanism is

large, a value for TSL was set to 10 and found to be sufficient. When a move is done that involves

four customers exchanged between routes, the appropriate elements are added to the TabuList.

The above structure can easily be checked to identify the tabu status of the current move. For

example, at iteration m, if TabuList (p, i) is greater than m, then a move which returns customer i

to route Rp is considered Tabu. A tabu status of a move S′ is overruled if its objective function

value C(S′)is smaller than the objective value of the best solution C(Sb) found so far.

The hybrid Tabu Search and Simulated Annealing (TSSA) algorithm steps can be described as

follows:

Step TSSA-1: Obtain an initial PFIH solution S.
Step TSSA-2: Improve S using the 2-interchange local search descent algorithm with the

First-Best selection strategy.
Step TSSA-3: Initialize TabuList to zeros, set Sb = S and set the iteration counter m=0.
Step TSSA-4: Set the Simulated Annealing cooling schedule parameters.
Step TSSA-5: If (m = 0) then 

K K 1−( )×
2

K K 1−( )×
2

K K× K K 1−( )×
2

8×

≤ ≤

2 K× K K 1−( )×
2

K N×
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update the BestCost and BClist matrices from information in Step TSSA
else 

update the matrices of the candidate list as necessary to reflect the changes
due to the performed move.

Step TSSA-6: Select S′∈ N2(S) with the largest improvement or least non-improvement from
the candidate list of moves in BestCost.

Step TSSA-7: If {S′ is tabu} then
if {C(S′) < C(Sb)} then 

go to Step TSSA-9,
               else 

go to Step TSSA-6 to select the next best solution S′∈ BestCost.
             else if {S′ is not tabu} then 

go to Step TSSA-8.
Step TSSA-8   Accept or Reject S′ according to the Simulated Annealing criterion.
              If {S′ is accepted} then 

go to Step TSSA-9.
              else 

go to Step TSSA-6 to select the next best solution S′∈ BestCost.
Step TSSA-9: Update S = S′, and TabuList and other SA parameters.
              If {C(S) < C(Sb)} then 

set Sb = S, 
set m= m + 1, and 
go to Step TSSA-10.

Step TSSA-10: If {m is greater than a given number of iterations } then
 go to Step TSSA-11.

else go to Step TSSA-5.
Step TSSA-11: Terminate the hybrid TSSA algorithm and print the Sb routes.

Instead of using the PFIH for obtaining an initial solution, the Genetic Sectoring Heuristic, a 

clustering algorithm based on Genetic Algorithms, can be used for obtaining customer clusters. 

The next section explains the structure of the Genetic Sectoring heuristic.

3. 3.  Genetic Algorithms

The Genetic Algorithm (GA) is an adaptive heuristic search method based on population genetics.

The basic concepts of a GA were primarily developed by Holland [Holland, 1975].   Holland’s

study produced the beginning of the theory of genetic adaptive search [DeJong, 1980;

Grefenstette, 1986; Goldberg, 1989]. 

The GA is an iterative procedure that maintains a population of P candidate members over many

simulated generations. The population members are string entities of artificial chromosomes. The

K N×
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chromosomes are fixed length strings with binary values (or alleles) at each position (or locus).

Allele is the 0 or 1 value in the bit string, and the Locus is the position at which the 0 or 1 value is

present in each location of the chromosome. Each chromosome has a fitness value associated with

it. The chromosomes from one generation are selected for the next generation based on their

fitness value. The fitness value of a chromosome is the payoff value that is associated with a

chromosome. For searching other points in the search space, variation is introduced into the

population chromosomes by using crossover and mutation genetic operators.   Crossover is the

most important genetic recombination operator.   After the selection process, a randomly selected

proportion of the chromosomes undergo a two point crossover operation and produce offsprings

for the next generation. 

Selection and crossover effectively search the problem space exploring and exploiting

information present in the chromosome population by selecting and recombining primarily the

offsprings that have high fitness values.   These two genetic operations generally produce a

population of chromosomes with high performance characteristics.   Mutation is a secondary

operator that prevents premature loss of important information by randomly mutating alleles

within a chromosome. The adaptations in a GA are achieved by exploiting similarities present in

the coding of the chromosomes. The termination criteria of a GA are convergence within a given

tolerance or realization of the maximum number of generations to be simulated. 

A clustering method using the GA has been highly successful in solving vehicle routing problems

with time constraints, multiple depots and multiple commodities [Thangiah, 1993; Thangiah,

Vinayagamoorthy and Gubbi, 1993; Thangiah and Nygard, 1993; Thangiah and Nygard,

1992a,1992b; Thangiah, Nygard and Juell, 1991]. We investigate the use of the genetic clustering

method and show how it can be combined with other meta-heuristics for solving VRPTW for a

large number of customers. 

The GA clustering method is based on the cluster-first route-second approach. That is, given a set 

of customers and a central depot, the heuristic clusters the customers using the GA, and the 

customers within each sector are routed using the cheapest insertion method [Golden and Stewart, 

1985]. The GA solution can be improved using the LSD-FB, LSD-GB, SA, or TSSA heuristics. 

The clustering of customers using a GA is referred to as Genetic Sectoring. The Genetic Sectoring 

Heuristic (GSH) allows exploration and exploitation of the search space to find good feasible 

solutions with the exploration being done by the GA and the exploitation by local search 

meta-heuristics. The following notations will help in the description of the Genetic Sectoring 

heuristic.
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si = pseudo polar coordinate angle of customer i, where i = 1,...,N.
F = fixed angle for Genetic Sectoring, Max[si,...,sn]/2K, where n = 1,...,N.
M = maximum offset of a sector in Genetic Sectoring, M= 3F.
B = length of the bit string in a chromosome representing an offset, B=5.
P = population size of the Genetic Algorithm, P=50.
G = number of generations the Genetic Algorithm is simulated, G=1000.
Ek  = offset of the kth sector, i.e, decimal value of the kth bit string of size B,

where k=1,...,K-1.
Sk = seed angle for sector k, where k=1,...,K-1.
S0 = initial seed angle for Genetic Sectoring, S0=0.

The GENESIS [Grefenstette, 1987] genetic algorithm software was used in the implementation of 

the GSH. The chromosomes in GENESIS are represented as bit strings. The sectors(clusters) for 

the VRPTW are obtained from a chromosome by subdividing it into K divisions of size B bits. 

Each subdivision is used to compute the size of a sector. The fitness value for the chromosome is 

the total cost of serving all the customers computed with respect to the sector divisions derived 

from it. The GSH is an extension of the clustering method of Fisher and Jaikumar [Fisher and 

Jaikumar, 1981] and Gillett and Miller [Gillett and Miller, 1974].

In a N customers problem with the origin at the depot, the GSH replaces the customer angles 

p1,...,pN with pseudo polar coordinate angles. The pseudo polar coordinate angles are obtained by 

normalizing the angles between the customers so that the angular difference between any two 

adjacent customers is equal. This allows sector boundaries to fall freely between any pair of 

customers that have adjacent angles, whether the separation is small or large. The customers are 

divided into K sectors, where K is the number of vehicles, by planting a set of “seed” angles, 

S0,...,SK, in the search space and drawing a ray from the origin to each seed angle. The initial 

number of vehicles, K, required to service the customers is obtained using the PFIH.   The initial 

seed angle S0 is assumed to be 0o. The first sector will lie between seed angles S0 and S1, the 

second sector will lie between seed angles S1 and S2, and so on.   The Genetic Sectoring process 

assigns a customer, Ci, to a sector or vehicle route, Rk, based on the following equation:

Ci is assigned to Rk   if Sk < si  Sk+1, where k= 0,...,K-1.

Customer Ci is assigned to vehicle Rk if the pseudo polar coordinate angle si is greater than seed 

angle Sk but is less than or equal to seed angle Sk+1. Each seed angle is computed using a fixed 

angle and an offset from the fixed angle. The fixed angle, F, is the minimum angular value for a 

sector and assures that each sector gets represented in the Genetic Sectoring process. The fixed 

≤
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angle is computed by taking the maximum polar coordinate angle within the set of customers and 

dividing it by 2K. The offset is the extra region from the fixed angle that allows the sector to 

encompass a larger or a smaller sector area.

The GA is used to search for the set of offsets that will result in the minimization of the total cost 

of routing the vehicles. The maximum offset, M, was set to three times the fixed angle to allow for 

large variations in the size of the sectors during the genetic search. If a fixed angle and its offset 

exceeds 360o, then that seed angle is set to 360o thereby allowing the Genetic Sectoring process to 

consider vehicles less than K to service all its customers. Therefore K, the initial number of 

vehicles with which the GSH is invoked, is the upper bound on the number of vehicles that can be 

used for servicing all the customers.

The bit size representation of an offset in a chromosome, B, was derived empirically and was set 

at 5 bits. The decimal conversion of 5 bits results in a range of integer values between 0 and 31. 

The offsets are derived proportionately from the decimal conversion of the bit values using the 

decimal value 0 as a 0o offset and the bit value 31 as the maximum offset. Figure 1 describes the 

chromosome mapping used to obtain the offsets.

Figure 1: Representation of the offsets using a chromosome. Each offset is represented by 
five bits in the chromosome. The fitness value of the chromosome is the total route cost 
obtained using the offsets obtained from the chromosome.

The seed angles are derived from the chromosome using the following equation:

(5)
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The fitness value of a chromosome is the total cost of routing K vehicles for servicing N 

customers using the sectors formed from the set of seed angles derived from the chromosome. 

The seed angles are derived using the fixed angle and the offsets from the chromosomes. The cost 

function (5) for calculating the seed angles uses an exponential function. The exponential function 

allows for large fluctuations in the seed angles with respect to the offsets derived from the 

chromosomes during the Genetic Sectoring process. The customers within the sectors, obtained 

from the chromosomes, are routed using the cheapest insertion method described in Section 2.4. 

In the GSH a chromosome represents a set of offsets for the VRPTW. Therefore, a population of P

chromosomes usually has P different solutions for a VRPTW. That is, there may be some

chromosomes in the population that are not unique. At each generation P chromosomes are

evaluated for fitness. The chromosomes that have the least cost will have a high probability of

surviving into the next generation through the selection process. As the crossover operator

exchanges a randomly selected portion of the bit string between the chromosomes, partial

information about sector divisions for the VRPTW is exchanged between the chromosomes. New

information is generated within the chromosomes by the mutation operator. The GSH uses

selection, crossover and mutation to adaptively explore the search space for the set of sectors that

will minimize the total cost of the routes over the simulated generations for the VRPTD. The GSH

would utilize more computer time than the PFIH for obtaining a solution because it has to

evaluate  vehicle routes, where P is the population size and G is the number of generations

to be simulated.

The parameter values for the number of generations, population size, crossover and mutation rates

for the Genetic Sectoring process were derived empirically and were set at 1000, 50, 0.6 and

0.001. During the simulation of the generations, the GSH keeps track of the set of sectors

obtained from the genetic search that has the lowest total route cost. The genetic search terminates

either when it reaches the number of generations to be simulated or if all the chromosomes have

the same fitness value. The best set of sectors obtained after the termination of the genetic search

does not always result in a feasible solution. The infeasibility in a solution arises because of

overloading or tardiness in a vehicle route. The solution obtained from the GA is improved using

the LSD-FG, LSD-GB, SA and TSSA methods. The GSH method can be described as follows.

Step GSH-1: Set the bit string size for the offset: Bsize=5.
Set the variable, NumVeh, to the number of vehicles required by the PFIH
to obtain a feasible solution.

Step GSH-2: Sort the customers in order of their polar coordinate angles,
 and assign pseudo polar coordinate angles to the customers.

P G×
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Set the lowest global route cost to infinity: g=∞.
Set the lowest local route cost to infinity: l=∞.

Step GSH-3: For each chromosome in the population:
For each bit string of size BSize,

calculate the seed angle,
sector the customers, and 
route the customers within the sectors using the cheapest
insertion method.
If {cost of the current set of sectors is lower than l} then

set l to the current route cost, and
save the set of sectors in lr.

If {cost of the current set of sectors is lower than g} then
set g to the current route cost, and
save the set of sectors in gr.

If {all the chromosomes have not been processed} then
go to Step GSH-3.

else go to Step GSH-4.
Step GSH-4: Do Selection, Crossover and Mutation on the chromosomes.

Go to Step GSH-3.
Step GSH-5: Improve the routes using LSD-FB, LSD-GB, SA and TSSA methods.
Step GSH-6: Terminate the GSH and print the best solution found.

4.  Computational Results

The heuristic methods LSD-FB, LSD-GB, SA and TSSA are collectively referred to as the

GenSAT system. The heuristics in the GenSAT system were applied to the six data VRPTW sets

R1, C1, RC1, R2, C2, and RC2 generated by Solomon [Solomon, 1987] consisting of 100

customers with Euclidean distance. In these problems, the travel time between the customers are

equal to the corresponding Euclidean distances. The data consist of geographical and temporal

differences in addition to differences in demands for the customers. Each of the problems in these

data sets has 100 customers. The fleet size to service them varied between 2 and 21 vehicles.The

VRPTW problems generated by Solomon incorporate many distinguishing features of vehicle

routing with two-sided time windows. The problems vary in fleet size, vehicle capacity, travel

time of vehicles, spatial and temporal distribution of customers, time window density (the number

of demands with time windows), time window width, percentage of time constrained customers

and customer service times.Problem sets R1, C1 and RC1 have narrow scheduling horizon.

Hence, only a few customers can be served by the same vehicle. Conversely, problem sets R2, C2

and RC2 have large scheduling horizon, and more customers can be served by the same vehicle.

In addition to the problem sets generated by Solomon, the heuristics were applied to four real
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world problems consisting of 249 and 417 customers. The first problem consisting of 249

customers is reported by Baker and Schaffer [Baker and Schaffer, 1986]. Two problems, D249

and E249, are generated from this problem by setting the capacity of the vehicles to 50 and 100.

The second problem consisting of 417 customers is based on a route for a fast food industry

located in southeastern United States. The two problems, D417 and E417, consisting of 417

customers differ in that E417 has a larger number of tight time windows than D417.

Comparison of heuristics within the GenSAT system

Table 1 lists the average number of vehicles and distance travelled for the VRPTW problems

using the PFIH and GSH to obtain initial solutions and the LSD-FB, LSD-GB, SA and TSSA

methods to improve the solutions. 

A detailed listing of the initial solutions obtained using the PFIH and GSH and improved using

the LSD-FB, LSD-GB, SA and TSSA methods are listed in Appendices A and B. For problems in

which the customers are clustered and have long time windows, that is data sets C1 and C2, the

PFIH+TSSA obtains better average solutions in comparison to the other heuristics. The

GS+LSD-FB obtains the best average solutions for problems that have uniformly distributed

customers with vehicles that have large capacity and routing time. The GS+TSSA heuristic does

well for problems in which the customers are uniformly distributed and have tight time windows.

The best average solutions in terms of the number of vehicles and total distances are obtained by

the heuristics with respect to the data sets are highlighted in bold. The highlighted entries

compare the combined average of the minimum number of vehicles followed by the total distance

travelled obtained by the heuristics for the data sets. The comparison is done in this manner as it is

possible to reduce the total distance travelled by increasing the number of vehicles. For example

in Table 1 when comparing only the distance the PFIH+SA heuristic obtains a average value of

1249 for the total distance travelled for the RC2 data set. The GSH+LSD-FB has an average total

distance of 1254 leading to the conclusion that the PFIH-SA does better than GSH+LSD-FB. This

is misleading because the average number of vehicles required by the PFIH+SA is 3.8 while

GSH+LSD-FB requires 3.4.
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Legend:

Prob.: VRPTW data set. LSD-FB: Local descent with First-Best strategy.
LSD-GB::Local descent with Global-Best search strategy. SA: Simulated Annealing+ local descent with First Best Strategy.
TSSA: Tabu Search Simulated Annealing with Global Best.

Comparison of the GenSAT system with Competing Heuristics

Table 2 compares the average number of vehicle and distance obtained by eight different

heuristics and the GenSAT system. The eight different heuristics are diverse in their approach to

solving VRPTW. The GenSAT system obtains the best average solutions for data sets R1, C1,

RC1 and RC2 in comparison to the eight competing heuristics. The Chiang-Russell heuristic

obtains the best average solution for data set R2 and the PTABU heuristic for data set C2. The

GenSAT system obtains the best average number of vehicles and total distance travelled for data

sets R1, C1, RC1 and R2. For data set R2 the Chiang-Russell algorithm, in comparison to the

GenSAT system, obtains better average number of vehicles but has a larger average total distance.

For data set C2, the GENEROUS algorithm obtains the best average number of vehicles and total

distance in comparison to all the competing algorithms.

Table 1: Average number of vehicles and distance obtained for the six data sets using two 
heuristics, Push-Forward Insertion and Genetic Algorithm, for obtaining initial solutions 

and four heuristics LSD-FB, LSD-GB, SA and TSSA for improving the solution.

Prob. Push-Forward Insertion Heuristic Genetic Sectoring Heuristic

LSD-FB LSD-GB SA TSSA LSD-FB LSD-GB SA TSSA

R1 14.8
1326

14.0
1307

13.7
1252

13.3
1242

12.4
1289

12.5
1289

12.4
1287

12.4
1242

C1 10.0
850

10.0
847

10.0
883

10.0
831

10.0
969

10.0
993

10.0
937

10.0
874

RC1 13.8
1459

13.8
1483

13.4
1454

13
1413

12.3.0
1511

12.2
1499

12.1
1471

12.0
1447

R2 3.4
1233

3.6
1178

3.2
1169

3.2
1113

3.0
1023

3.1
1056

3.2
1052

3.2
1031

C2 3.1
708

3.4
703

3.0
687

3.0
663

3.0
673

3.0
709

3.0
684

3.0
676

RC2 4.0
1323

3.9
1262

3.8
1249

3.9
1257

3.4
1254

3.4
1255

3.4
1307

3.4
1261
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Legend:

Prob.: VRPTW data set.
Solomon: Solomon, 1987. CTA: Thompson and Psaraftis, 1993.
PARIS: Potvin and Rousseau, 1993. GIDEON: Thangiah, 1993.
GRASP: Kontoravdis and Bard, 1992. PTABU: Potvin et al., 1993.
GENEROUS: Potvin and Bengio, 1994. Chiang/Russell: Chiang and Russell, 1994.

Table 3 compares each of the solutions obtained by the GenSAT system against six competing 

heuristics that have reported individual solutions obtained for the 60 problems. In Table 3 “NV” 

indicates the total number of vehicles and “TD” the total distance required to obtain a feasible 

solution. The column “Best Known” lists the previously best known solution from six different 

heuristics that have reported individual solutions for each of the problems. The “GenSAT” column 

contains the best solution obtained by using two different heuristics to obtain an initial solution, 

Push-Forward Insertion and Genetic Sectoring, and four different local heuristics LSD-FB, 

LSD-GB, SA, TAAS for improving the solution. The solutions obtained by GenSAT are better 

than previously known best solutions, in terms of the number of vehicles and total distance, are 

highlighted in bold. 

Table 2: Average number of vehicles and distance obtained for the six data sets by the 
GenSAT system and six other competing heuristics.

Prob. Solomon CTA PARIS GIDEON GRASP PTABU GENEROUS
Chiang/
Russell

GenSAT

R1 13.6
1437

13.0
1357

13.3
1696

12.8
1300

13.1
1427

12.6
1378

12.6
1297

12.4
1290

12.3
1238

C1 10.0
952

10.0
917

10.7
1610

10.0
892

10.6
1401

10.0
861

10.0
838

10.0
886

10.0
832

RC1 13.5
1722

13.0
1514

13.4
1877

12.5
1474

12.8
1603

12.6
1473

12.1
1446

12.5
1446

12.0
1284

R2 3.3
1402

3.2
1276

3.1
1513

3.2
1125

3.2
1539

3.1
1171

3.0
1118

2.9
1144

3.0
1005

C2 3.1
693

3.0
645

3.4
1478

3.0
749

3.4
858

3.0
604

3.0
590

3.0
659

3.0
650

RC2 3.9
1682

3.7
1634

3.6
1807

3.4
1411

3.6
1782

3.4
1470

3.4
1368

3.4
1361

3.4
1229
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Table 3: Comparison of the best known solutions with the GenSAT solutions for data sets 
R1, C1, RC1, R2, C2, RC2 and problems D249, E249, D417 and E417.

Legend:

Prob.: VRPTW data set. Best Known: Best known solution among competing heuristics.
NV: Number of vehicles GenSAT: Best solution obtained using the GenSAT system.
TD: Total Distance
a: CTA [Thompson and Psaraftis, 1993] b: GIDEON [Thangiah, 1993.]
c: TABU [Potvin et al., 1993]. d: GENEROUS [Potvin and Bengio, 1994].
e: Chiang/Russell [Chiang and Russell, 1994].

Prob. Best Known  GenSAT Prob. Best Known  GenSAT Prob. Best Known  GenSAT

NV TD NV TD NV TD NV TD NV TD NV TD

R101 19 1704e 18 1644 RC101 15 1676d 14 1669 C201 3 590a 3 591

R102 17 1549b 17 1493 RC102 14 1569b 13 1557 C202 3 591c 3 707

R103 13 1319b 13 1207 RC103 11 1138b 11 1110 C203 3 592d 3 791

R104 10 1065d 10 1048 RC104 10 1204d 10 1226 C204 3 591d 3 685

R105 14 1421d 14 1442 RC105 14 1612b 14 1602 C205 3 589c 3 589

R106 12 1353c 12 1350 RC106 12 1486e 13 1420 C206 3 588c 3 588

R107 11 1185c 11 1146 RC107 11 1275d 11 1264 C207 3 588c 3 588

R108 10 1033e 10 898 RC108 11 1187d 10 1281 C208 3 588c 3 588

R109 12 1205d 12 1226

R110 11 1136c 11 1105

R111 11 1184c 10 1151

R112 10 1003f 10 992

C101 10 829a 10 829 R201 4 1478b 4 1354 RC201 4 1734e 4 1294

C102 10 829d 10 829 R202 4 1279b 4 1176 RC202 4 1459e 4 1291

C103 10 873b 10 835 R203 3 1167b 3 1126 RC203 3 1253d 3 1203

C104 10 865d 10 835 R204 2 904d 3 803 RC204 3 1002d 3 897

C105 10 829a 10 829 R205 3 1159d 3 1128 RC205 4 1594d 4 1389

C106 10 829d 10 829 R206 3 1066d 3 8338 RC206 3 1298e 3 1213

C107 10 829d 10 829 R207 3 954d 3 904 RC207 3 1194e 3 1181

C108 10 829d 10 829 R208 2 759d 2 823 RC208 3 1038b 3 919

C109 10 829d 10 829 R209 3 1108d 2 855

R210 3 1146d 3 1052

R211 3 898b 3 816

D249 4 477e 4 457

E249 5 506e 5 495

D417 55 4235e 54 4866

E417 55 4397e 55 4149
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The GenSAT system obtained 40 new best known solutions for the VRPTW problems. In addition

it attained previously known best solutions for 11 problems and failed in the other 9 problems.The

average performance of GenSAT system is better than other known competing methods. A

detailed comparison of solutions obtained by GenSAT with the competing heuristics for each of

the VRPTW problems are listed in Appendix C.

Comparison of GenSAT with optimal solutions

In Table 4 the optimal solutions for some of the VRPTW problems reported in [Desrochers,

Desrosiers and Solomon, 1992] are compared with the best known solutions and those obtained

by the GenSAT system. 

Legend:

Prob.: VRPTW data set. Best Known: Best known among competing heuristics.
NV: Number of vehicles GenSAT: Best solution obtained using the GenSAT system.
TD: Total Distance a: CTA [Thompson and Psaraftis, 1993.]
b: GIDEON [Thangiah, 1993.] c: GENEROUS [Potvin and Bengio, 1994].
d: Chiang/Russell [Chiang and Russell, 1994].

For problems C1, C2, C6, and C8 the best known solutions and the GenSAT solutions are near

optimal. It is worth noting that the optimal solutions were obtained by truncating the total distance

to the first decimal place as reported by [Desrochers, Desrosiers and Solomon, 1992]. For the

Table 4: Comparison of the best known, GenSAT and optimal 
solution for problems R101, R102, C101, C102, C106 and C108.

Prob. Optimal Best Known GenSAT

% over 
optimal for 
best known 
solution. 

% over 
optimal for 
GenSAT 
solution

R101 18
1608

19d

1704
18
1677

6%
6%

0%
4%

R102 17
1434

17b

1549
17
1505

0%
8%

0%
5%

C101 10
827

10a

829
10
829

0%
0.2%

0%
0.2%

C102 10
827

10c

829
10
829

0%
0.2%

0%
0.2%

C106 10
827

10c

829
10
829

0%
0.2%

0%
0.2%

C108 10
827

10c

829
10
829

0%
0.2%

0%
0.2%



25

R101 problem the best known solution is 6% over the optimal solution in terms of the number of

vehicles and the total distance travelled, and GenSAT obtains the optimal number of vehicles and

is 4% away from the optimal distance travelled. For R102 problem both of the best known

solution and the GenSAT system obtain the optimal number of vehicles required for the

customers, but the best known solution is 8% over the optimal distance travelled while the

GenSAT solution is only 5% away from the optimal distance.

Computational Time for the GenSAT system

The algorithms in the GenSAT system were written in the C language and implemented on a

NeXT 68040 (25Mhz) computer system. The average CPU time required to solve the VRPTW

varied with the problems. Table 5 gives the average CPU time taken to solve the problems for the

data sets. For problems that have a large number of customers, such as D249, E249, D417 and

D417, it took an average CPU time of 26 minutes to solve the problems.

Legend:

Prob.: VRPTW data set. LSD-FB: Local Descent with First-Best strategy.
LSD-GB: Local Descent with Global-Best search strategy. SA: Simulated Annealing+ Local Descent with First Best Strategy.
TSSA: Tabu Search Simulated Annealing with Global Best.

It is very difficult to compare the CPU times for the GenSAT system with those of the competing

methods due to differences in the language of implementation, the architecture of the system and

the amount of memory available in the system. The Chiang/Russell algorithm was implemented

on a 486DX/66 machine and required an average of 2 minutes of CPU time for the 100 customer

problems. The GENEROUS system was implemented on a Silicon Graphics workstation and

Table 5: Average CPU time for obtaining feasible solutions to the VRPTW problems 
in min:sec on a Next 68040 (25Mhz) machine.

Prob. Push-Forward Insertion Heuristic Genetic Sectoring Heuristic

LSD-FB LSD-GB SA TSSA LSD-FB LSD-GB SA TSSA

R1 0:3 0:4 1:6 9.9 0:2 0:2 0:9 16:6

C1 0:2 0:2 0:4 4:8 0:9 0:1 1:2 0:7

RC1 0:4 0:31 1:8 8:5 0:4 0:2 0:6 8:6

R2 3:3 2:5 20:9 10.7 3:3 1:9 10:5 13:2

C2 0:3 0:3 11.9 4.7 1:2 1:4 2:2 1:8

RC2 3:1 0:6 8:5 17:8 1:2 1:3 7:7 3.4
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required an average of 15 minutes of CPU time. The GIDEON system was implemented on a

SOLBOURNE 5/802 and the PTABU on a SPARC 10 workstation. 

5.  Summary and Conclusion

In this paper, we have developed a number of meta-heuristics to successfully solve the vehicle

routing problem with time windows (VRPTW). These algorithms are based on a two-phase

approach. In the first phase, an initial construction solution is obtained by either the

Push-Forward-Insertion or a sectoring heuristic based on Genetic Algorithms. The second phase

applies one the following local search procedures which use the λ-interchange mechanism: a local

search descent procedure using either a first-best or a global best strategy to select candidate

solutions; a hybrid Simulated Annealing algorithm with non-monotonic cooling schedule and a

local search descent procedure after each improved solution; a hybrid Simulated Annealing and

Tabu Search with a special data structure for fast update of the candidate list of solutions. The

main feature of the local search procedures is that infeasible solutions with penalties are allowed

if considered attractive.

An extensive computational study on a set of 60 test problems with size varying from 100 to 417

customers is conducted comparing the above procedures with the best known competing

procedures from the literature. The GenSAT system obtained new best know solutions for 40 test

problems, and were equal in 11 other problems and a very close in the other 9 cases. For example,

the GenSAT system obtained different combinations of best solutions using a total of 13 vehicles

with 1420 for distance and 3 vehicles with 803 for distance for problems R204, RC106,

respectively. However, the best known solutions for the two problems are 12 vehicles with 1486

for distance and 2 vehicles with 914 for distance respectively. It was found that the Genetic based

algorithms uses more computational time as compared to the PFIH methods. 

Finally, our results indicate that hybrid combinations of the best features of Simulated Annealing,

Tabu Search and Genetic Algorithm provided a good algorithm for the solution of the VRPTW.

Further research, along this direction to derive a unified hybrid algorithm should be encouraged.



27

Acknowledgments

The authors wish to thank R. Russell for providing the 200 and 400 customer problem sets. This

material is based upon work partly supported by the Slippery Rock University Faculty

Development Grant No. FD2E-030, State System of Higher Education Faculty Development

Grant No. FD3I-051-1810 and the National Science Foundation Grant No. USE-9250435. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of

the authors and not necessarily reflect the views of Slippery Rock University, State System of

Higher Education or the National Science Foundation.

References

[1] Baker, Edward K. and Joanne R. Schaffer(1986). Solution Improvement Heuristics 
for the Vehicle Routing Problem with Time Window Constraints. American Journal of 
Mathematical and Management Sciences (Special Issue) 6, 261-300.
 
[2] Bodin, L., B. Golden, A. Assad and M. Ball (1983). The State of the Art in the 
Routing and Scheduling of Vehicles and Crews. Computers and Operations Research 10 (2), 
63-211.
 
[3] Chiang, Wen-Chyuan and R. Russell (1993). Simulated Annealing Metaheuristics 
for the Vehicle Routing Problem with Time Windows, Working Paper, Department of Quantitative 
Methods, University of Tulsa, Tulsa, OK 74104.

[4] Davis, Lawrence (1991). Handbook of Genetic Algorithms, Van Nostrand 
Reinhold, New York.
 
[5] DeJong, Kenneth(1980). Adaptive System Design: A Genetic Approach. IEEE 
Transactions on Systems, Man and Cybernetics 10 (9), 566-574.

[6] Desrochers, M., J. Desrosiers and Marius Solomon (1992). A New Optimization 
Algorithm for the Vehicle Routing Problem with Time Windows, Operations Research 40(2).

[7] Desrochers, M., J. K. Lenstra, M. W. P. Savelsbergh and F. Soumis (1988). Vehicle 
Routing with Time Windows: Optimization and Approximation. Vehicle Routing: Methods and 
Studies, B. Golden and A. Assad (eds.), North Holland.

[8] Desrosier J., Y. Dumas, M. Solomon, F. Soumis (1993). Time Constrained Routing
and Scheduling. Forthcoming in Handbooks on Operations Research and Management Science.
Volume on Networks, North-Holland, Amsterdam.

[9] Fisher M. (1993). Vehicle Routing.   Forthcoming as a chapter in Handbooks on



28

Operations Research and Management Science. Volume on Networks, North-Holland,
Amsterdam.

[10] Fisher, Marshall, K. O. Jornsten and O. B. G. Madsen (1992). Vehicle Routing with 
Time Windows, Research Report, The Institute of Mathematical Statistics and Operations 
Research, The Technical University of Denmark, DK-2800, Lyngby.

[11] Fisher, M and R. Jaikumar (1981). A Generalized Assignment Heuristic for the 
Vehicle Routing Problem. Networks, 11, 109-124.

[12] Gillett, B. and L. Miller (1974). A Heuristic Algorithm for the Vehicle Dispatching 
Problem. Operations Research 22, 340-349.

[13] Glover, F., E. Taillard and D. de Werra (1993). A User’s Guide to Tabu Search, 
Annals of Operations Research, 41, 3-28.

[14] Glover, Fred (1993). Tabu Thresholding: Improved Search by Non-monotonic 
Trajectories, Working Paper, Graduate School of Business, University of Colorado, Boulder, 
Colorado 80309-0419.

[15] Glover, Fred (1989). Tabu Search-Part I, ORSA Journal on Computing, 1(3), 
190-206.

[16] Glover, Fred (1990). Tabu Search-Part II, ORSA Journal on Computing, 2(1), 4-32.

[17] Glover, Fred (1986). Future Paths for Integer Programming and Link to Artificial 
Intelligence. Computers and Operations Research, 13, 533-554.

[18] Goldberg D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine 
Learning. Addison-Wesley Publishing Company, Inc.
 
[19] Golden B. and A. Assad (eds.) (1988). Vehicle Routing: Methods and Studies. 
North Holland, Amsterdam.

[20] Golden, B and A. Assad (eds.) (1986). Vehicle Routing with Time Window 
Constraints: Algorithmic Solutions. American Journal of Mathematical and Management Sciences 
15, American Sciences Press, Columbus, Ohio.
 
[21] Golden B. and W. Stewart (1985). Empirical Analysis of Heuristics. In The 
Traveling Salesman Problem, E. Lawler, J. Lenstra, A. Rinnooy Kan and D. Shmoys (Eds.), 
Wiley-Interscience, New York.
 
[22] Grefenstette, John J. (1987). A Users Guide to GENESIS. Navy Center for Applied 
Research in Artificial Intelligence, Naval Research Laboratory, Washington D.C. 20375-5000.
 
[23] Grefenstette, John J. (1986). Optimization of Control Parameters for Genetic



29

Algorithms. IEEE Transactions on Systems, Man and Cybernetics, 16(1), 122-128. 

[24] Hasan, Merza and I. H. Osman (1994). Local Search Strategies for the Maximal 
Planar Layout Problem. International Transactions in Operations Research, 1(4).

[25] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of 
Michigan Press, Ann Arbor. 

[26] Kirkpatrick, S., Gelatt, C. D. and Vecchi, P. M.(1983), Optimization by Simulated 
Annealing. Science 220, 671-680.

[27] Koskosidis, Yiannis, Warren B. Powell and Marius M. Solomon (1992). An 
Optimization Based Heuristic for Vehicle Routing and Scheduling with Time Window 
Constraints. Transportation Science 26 (2), 69-85.

[28] Kontoravadis, G. and J. F. Bard (1992). Improved Heuristics for the Vehicle 
Routing Problem with Time Windows, Working Paper, Operations Research Group, Department 
of Mechanical Engineering, The University of Texas, Austin, TX 78712-1063.
 
[29] Laporte, G. (1992). The Vehicle Routing Problem: An Overview of Exact and 
Approximate Algorithms. European Journal of Operational Research, 59, 345-358.

[30] Lin, S and B. W. Kernighan (1973). An Effective Heuristic Algorithm for the 
Travelling Salesman Problem. Operations Research, 21, 2245-2269.

[31] Lundy, M and A. Mees (1986). Convergence of an Annealing Algorithm, 
Mathematical Programming, 34, 111-124.

[32] Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller 
(1953). Equation of State Calculation by Fast Computing Machines. Journal of Physical Chemistry 
21, 1087-1092.

[33] Osman, I. H. and G. Laporte (1994). Modern Heuristics for Combinatorial 
Optimization Problems: An Annotated Bibliography. Forthcoming in the Annals of Operations 
Research on Metaheuristics.

[34] Osman, I. H. & S. Salhi (1994). Heuristics for the Mix Fleet Vehicle Routing
Problem. Report no UKC/IMS/OR94/2b, University of Kent, U.K. Forthcoming    in Proceedings
of the TRISTAN II conference, CAPRI, Italy June 1994.

[35] Osman, I. H. and N. Christofides (1994). Capacitated Clustering Problems by 
Hybrid Simulated Annealing and Tabu Search. International Transactions in Operational 
Research,1 (3).

[36] Osman, I. H. (1993a). Vehicle Routing and Scheduling: Applications, Algorithms 
and Developments. Proceedings of the International Conference on Industrial Logistics, Rennes, 



30

France.

[37] Osman, I. H. (1993b). Metastrategy Simulated Annealing and Tabu Search 
Algorithms for the Vehicle Routing Problems. Annals of Operations Research, 41, 421-451.

[38] Osman I. H.(1993c). Heuristics for the Generalized Assignment Problem:
Simulated Annealing and Tabu Search. Report no. UKC/IMS/OR93/10b, University of Kent,
Canterbury, Submitted to OR Spektrum.

[39] Osman, I. H. and N. Christofides (1989). Simulated Annealing and Descent
Algorithms for Capacitated Clustering Problem.   Research Report, Imperial   College, University
of London, Presented at EURO-X Conference, Beograd,   Yugoslavia, 1989.

[40] Potvin, Jean-Yves and S. Bengio (1993). A Genetic Approach to the Vehicle 
Routing Problem with Time Windows, Technical Report, CRT-953, Centre de Recherche sur les 
Transports, Universite de Montreal, C.P. 6128, Succ. A, Montreal, Canada H3C 3J7.

[41] Potvin, Jean-Yves, Tanguy Kervahut, Bruno-Laurent Garcia and Jean-Marc 
Rousseau (1992). A Tabu Search Heuristic for the Vehicle Routing Problem with Time Windows. 
Technical Report, CRT-855, Centre de Recherche sur les Transports, Universite de Montreal, C.P. 
6128, Succ. A, Montreal, Canada H3C 3J7.

[42] Potvin, Jean-Yves and Jean-Marc Rousseau (1993). A Parallel Route Building 
Algorithm for the Vehicle Routing and Scheduling Problem with Time Windows. European 
Journal of Operational Research, 66, 331-340.

[43] Savelsbergh M. W. P. (1985). Local Search for Routing Problems with Time 
Windows. Annals of Operations Research, 4, 285-305.
 
[44] Solomon, Marius M., Edward K. Baker, and Joanne R. Schaffer (1988). Vehicle 
Routing and Scheduling Problems with Time Window Constraints: Efficient Implementations of 
Solution Improvement Procedures. In Vehicle Routing: Methods and Studies, B. L. Golden and A. 
Assad (Eds.), Elsiver Science Publishers B. V. (North-Holland), 85-90.
 
[45] Solomon, Marius M. and Jacques Desrosiers (1986). Time Window Constrained 
Routing and Scheduling Problems: A Survey. Transportation Science 22 (1), 1-11.
 
[46] Solomon, Marius M. (1987). Algorithms for the Vehicle Routing and Scheduling 
Problems with Time Window Constraints. Operations Research 35 (2), 254-265.

[47] Thangiah, Sam R., Ibrahim H. Osman, Rajini Vinayagamoorthy and Tong Sun 
(1994). Algorithms for Vehicle Routing Problems with Time Deadlines. American Journal of 
Mathematical and Management Sciences, 13 (3&4).

[48] Thangiah, Sam R. (1993). Vehicle Routing with Time Windows using Genetic 
Algorithms. Submitted to the International Journal on Computers and Operations Research.



31

[49] Thangiah, Sam R., Rajini Vinayagamoorthy and Ananda Gubbi (1993). Vehicle 
Routing with Time Deadlines using Genetic and Local Algorithms. Proceedings of the Fifth 
International Conference on Genetic Algorithms, 506-513, Morgan Kaufman, New York.

[50] Thangiah, Sam R. and Kendall E. Nygard (1993). Dynamic Trajectory Routing 
using an Adaptive Search Strategy. Proceedings of Association for Computing Machinery’s 
Symposium on Applied Computing, Indianapolis, 1993.

[51] Thangiah, Sam R. and Kendall Nygard (1992). School Bus Routing using Genetic 
Algorithms. Proceedings of the Applications of Artificial Intelligence X: Knowledge Based 
Systems, Orlando.

[52] Thangiah, Sam R. and Kendall Nygard (1992). MICAH: A Genetic Algorithm 
System for Multi-Commodity Networks. Proceedings of the Eight IEEE Conference on 
Applications of Artificial Intelligence, Monterey.

[53] Thangiah, Sam R., Kendall E. Nygard and Paul L. Juell (1991). GIDEON: A 
Genetic Algorithm System for Vehicle Routing Problems with Time Windows. Proceedings of the 
Seventh IEEE Conference on Artificial Intelligence Applications, Miami, Florida.
 
[54] Thompson, Paul M. and H. Psaraftis (1989). Cyclic Transfer Algorithms for 
Multi-Vehicle Routing and Scheduling Problems. Operations Research, 41, 935-946.

 



32

Appendix A

Table 6: Comparison of solutions obtained by LSD-FB, LSD-BG, SA and TSSA with initial 
solutions obtained from the PFIH on data sets R1, C1, and RC1.

Legend:
Prob.: VRPTW problems from the literature. NV: Number of vehicles.
TD: Total Distance travelled. CPU: CPU time on a NeXT machine in min:sec.
LSD-FB: Local Descent Method with First-Best strategy. LSD-GB: Local Descent Method with Global-Best strategy.
SA: Simulated Annealing + First Best strategy.
TSSA Tabu Search+ Simulated Annealing+ LSD with Global Best Strategy.

Prob. LSD-FB LSD-GB  SA  TSSA

NV TD CPU NV TD CPU NV TD CPU NV TD CPU

R101 20 1600 0:3 20 1666 0:03 19 1665 0:36 19 1648 4:01

R102 19 1549 0:3 18 1522 0:3 18 1499 0:47 18 1496 3:45

R103 17 1418 0:3 16 1403 0:3 15 1371 2:17 15 1300 9:39

R104 13 1116 0:4 12 1147 0:4 11 1032 5:57 11 1053 17:49

R105 16 1552 0:3 16 1446 0.3 15 1407 0:32 15 1451 6:20

R106 15 1437 1:4 14 1330 0:4 14 1326 1:0 14 1336 10:08

R107 13 1166 1:5 13 1297 0:4 12 1140 1:10 12 1147 10:59

R108 12 1081 0:4 11 1047 0:6 10 1001 3:16 10 989 15:30

R109 14 1371 0:4 13 1303 0:3 13 1226 0:59 12 1218 8:20

R110 13 1334 0:3 13 1206 0:4 13 1187 1:06 12 1158 11:49

R111 14 1220 0:3 13 1257 0:4 13 1158 2:26 12 1120 12:49

R112 11 1063 0:3 11 1064 0:4 11 1016 1:55 10 993 10:15

C101 10 829 0:2 10 829 0:1 10 829 0:19 10 829 0:31

C102 10 829 0:3 10 832 0.:1 10 930 0:30 10 832 3:59

C103 10 890 0:3 10 861 0:2 10 890 0:22 10 835 11:31

C104 10 964 0:3 10 956 0:2 10 961 1:12 10 840 11:32

C105 10 829 0:2 10 829 0:1 10 880 0:10 10 829 1:29

C106 10 829 0:2 10 829 0:1 10 870 0:22 10 829 0:31

C107 10 829 0:2 10 829 0:1 10 829 0:16 10 829 2:14

C108 10 829 0:3 10 829 0:2 10 907 0:28 10 829 5:15

C109 10 829 0:3 10 829 0:3 10 854 1:30 10 829 7:48

RC101 16 1778 0:3 16 1741 0:4 16 1695 0:49 16 1670 8:18

RC102 15 1458 0:4 15 1618 0:3 14 1532 2:01 14 1536 7:07

RC103 13 1350 0:5 13 1383 0:3 12 1441 2:41 12 1409 7:17

RC104 11 1213 0:3 11 1216 0:3 11 1213 2:08 11 1222 11:07

RC105 15 1645 0:6 16 1690 0:3 14 1731 2:09 14 1602 7:30

RC106 14 1577 0:3 13 1506 0:3 14 1510 0:48 14 1430 6:39

RC107 13 1377 0:3 13 1356 0:3 14 1294 3:37 12 1264 9:50

RC108 13 1277 0:9 13 1357 0:3 12 1218 1:13 11 1169 11:32
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Appendix A (cont.)

Table 7: Comparison of solutions obtained by LSD-FB, LSD-GB, SA and TSSA with initial 
solutions obtained by PFIH on data sets R2, C2, RC2 and problems D249, E249, D417 and 

E417.

Legend:
Prob.: VRPTW problems from the literature. NV: Number of vehicles.
TD: Total Distance travelled. CPU: CPU time on a NeXT machine in min:sec.
LSD-FB: Local Descent Method with First-Best strategy. LSD-GB: Local Descent Method with Global-Best strategy.
SA: Simulated Annealing + First Best strategy.
TSSA Tabu Search+ Simulated Annealing+ LSD with Global Best Strategy.

Prob LSD-FB LSD-GB SA TSSA

NV TD CPU NV TD CPU NV TD CPU NV TD CPU 

R201 5 1466 2:02 5 1466 0:45 4 1431 10:40 4 1363 11:20
R202 4 1433 3:01 4 1456 1:19 4 1372 13:57 4 1285 8:34
R203 4 1212 2:04 4 1245 2:31 3 1147 16:12 3 1126 22:03
R204 3 1158 4:13 4 897 3:31 3 998 34:12 3 959 17:05

R205 3 1477 5:17 4 1255 1:31 3 1319 30:41 3 1468 8:0

R206 3 1322 2:07 4 1434 0:36 3 1247 27:50 3 833 16:22
R207 3 1234 3:05 3 1099 5:22 3 1099 20:31 3 1099 8:03
R208 3 980 6:06 3 926 8:12 3 979 31:42 3 926 12:03
R209 3 1015 1:47 3 1089 1:49 3 997 18:22 3 1022 4:05

R210 3 1243 1:12 4 1152 1:27 3 1211 17:26 3 1237 3:02

R211 3 936 4:21 3 939 2:40 3 1059 11.37 3 927 8:12

C201 3 591 0:04 3 591 0:5 3 591 0:10 3 591 0:12
C202 3 708 0:32 4 849 0:29 3 708 1:07 3 707 1:0
C203 4 829 0:23 4 840 0:26 3 796 3:04 3 791 5:0
C204 3 787 0:37 4 853 0:33 3 685 7:07 3 772 11:05

C205 3 589 0:30 3 589 0:29 3 588 30:75 3 589 1:37

C206 3 670 0:26 3 665 0:24 3 651 32:23 3 608 6:03
C207 3 665 0:26 3 651 0:28 3 665 12:07 3 647 8:13
C208 3 836 0:43 3 588 0:44 3 815 8:9 8 601 5:17

RC201 5 1707 1:59 5 1505 0:21 4 1294 3:10 5 1589 3:06

RC202 4 1581 1:27 4 1478 0:27 4 1382 62:49 4 1338 17:28
RC203 4 1220 1:37 4 1219 1:10 4 1220 25:32 4 1205 13:07
RC204 3 994 1:22 3 994 1:40 4 948 11:42 3 971 11:04

RC205 5 1642 4:37 4 1540 0:32 4 1542 21:42 4 1431 32:38
RC206 4 1227 3:43 4 1213 0:34 4 1249 1:30 4 1412 5:06

RC207 4 1249 7:01 4 1200 0:53 3 1231 12:20 4 1187 16:08

RC208 3 965 3:53 3 944 1:33 3 1125 11:06 3 919 44:05

D249 4 703 1:01 4 703 1:03 4 703 2:00 4 703 2:00
E249 5 550 12:29 5 495 11:08 5 555 17:50 5 495 23:02
D417 56 4447 2:36 56 3968 2:40 55 4053 32:07 55 4100 12:59

E417 56 4785 2:33 56 4730 3:04 56 4608 22:07 56 4660 12:07
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Table 8: Comparison of solutions obtained by hybrid LSD-FB, LSD-GBD, SA, and TSSA 
with initial solutions obtained from the GSH method on data sets R1, C1, and RC1.

Legend:
Prob.: VRPTW problems from the literature. NV: Number of vehicles.
TD: Total Distance travelled. CPU: CPU time on a NeXT machine in min:sec.
LSD-FB: Local Descent Method with First-Best strategy. LSD-GB: Local Descent Method with Global-Best strategy.
SA: Simulated Annealing + First Best strategy.
TSSA Tabu Search+ Simulated Annealing+ LSD with Global Best Strategy.

Prob. LSD-FB LSD-GB SA  TSSA

NV TD CPU NV TD CPU NV TD CPU NV TD CPU

R101 18 1725 0:9 19 1644 0:14 18 1750 0:46 18 1677 9:53

R102 17 1528 0:11 17 1547 0:14 17 1493 1:02 17 1505 12:09

R103 13 1321 0:09 13 1297 0:12 13 1275 0:59 13 1207 16:22

R104 10 1081 0:09 10 1097 0:10 10 1048 5:07 10 1056 14:31

R105 14 1484 0:09 14 1491 0:15 14 1442 0:36 14 1477 10:52

R106 13 1306 0:11 13 1376 0:15 12 1412 0:22 12 1350 17:59

R107 11 1273 0:10 11 1204 0:27 11 1233 0:32 11 1146 20:29

R108 10 1074 0:10 10 1204 0:10 10 1069 1:09 10 1013 26:38

R109 12 1304 0:31 12 1304 0:31 12 1280 0:32 12 1228 16:05

R110 11 1165 0:40 11 1105 0:40 11 1148 0:24 11 1118 19:58

R111 10 1151 0:44 10 1151 0:44 11 1175 0:32 10 1223 23:28

R112 10 1049 0:25 10 1049 0:25 10 1114 1:09 10 992 14:46

C101 10 884 0:54 10 829 0:19 10 829 0:28 10 829 0:58

C102 10 1001 0:38 10 829 0:16 10 991 2:06 10 829 1:09

C103 10 1014 0:17 10 1020 0:10 10 886 1:09 10 968 1:20

C104 10 943 0:12 10 960 0:09 10 908 1:56 10 926 0:57

C105 10 829 0:09 10 829 0:09 10 955 1:45 10 862 0:40

C106 10 829 0:10 10 829 0:12 10 1008 1:34 10 829 0:36

C107 10 1005 0:12 10 1063 0:11 10 1060 1:29 10 965 0:37

C108 10 1123 0:17 10 1060 0:13 10 939 0:45 10 829 0:57

C109 10 992 0:19 10 980 0:16 10 858 1:14 10 829 0:56

RC101 15 1725 0:12 15 1782 0:13 15 1731 0:24 14 1669 3:04

RC102 13 1713 0:8 13 1580 0:13 13 1656 0:17 13 1557 9:34

RC103 11 1356 0:10 11 1388 0:14 11 1110 2:34 11 1310 12:36

RC104 10 1313 0:9 10 1314 0:15 10 1295 0:50 10 1226 14:38

RC105 14 1697 0:10 14 1712 0:14 14 1698 0:34 14 1670 13:21

RC106 13 1459 0:8 14 1482 0:11 13 1491 0:32 13 1420 13:29

RC107 12 1547 0:11 11 1415 0:19 11 1500 0:21 11 1410 2:25

RC108 10 1281 0:10 10 1324 0;15 10 1290 1:01 10 1310 1:06
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Table 9: Comparison of solutions obtained by hybrid LSD-FB, LSD-GB, SA, and TSSA with 
initial solutions obtained from GSH on data sets R2, C2, RC2, and problems D249, E249, 

D417 and E417. 

Legend:
Prob.: VRPTW problems from the literature. NV: Number of vehicles.
TD: Total Distance travelled. CPU: CPU time on a NeXT machine in min:sec.
LSD-FB: Local Descent Method with First-Best strategy. LSD-GB: Local Descent Method with Global-Best strategy.
SA: Simulated Annealing + First Best strategy.
TSSA Tabu Search+ Simulated Annealing+ LSD with Global Best Strategy.

Prob LSD-FB LSD-GB LSD-SA TSSA

NV TD CPU NV TD CPU NV TD CPU NV TD CPU 

R201 4 1354 0:58 4 1431 0:48 4 1404 3:33 4 1358 1:47

R202 4 1187 2:12 4 1180 1:02 4 1222 10:00 4 1176 1:17
R203 3 1170 1:57 3 1171 2:07 3 1181 9:58 3 1195 6:45

R204 3 812 2:40 3 812 2:18 3 820 4.32 3 803 4:38
R205 3 1128 1:03 3 1228 1:14 3 1167 3:59 3 1176 1:41

R206 3 1018 2:19 3 1019 2:10 3 1029 10:03 3 1018 2:09
R207 3 938 3:04 3 937 2:53 3 932 10:05 3 904 6:32
R208 2 823 5:45 2 823 6:14 3 851 5:43 2 826 4:15

R209 2 855 14:40 3 1057 1:10 3 1061 9:45 3 993 2:19

R210 3 1112 1:10 3 1112 0:56 3 1052 8:26 3 1071 2:49

R211 3 851 2:02 3 850 2:08 3 851 10:50 3 816 3:51

C201 3 592 1:37 3 592 0:41 3 592 4:31 3 592 1:04
C202 3 784 1:50 3 784 3:05 3 794 3:42 3 781 1:59
C203 3 831 0:59 3 831 1:53 3 870 1:49 3 836 1:45

C204 3 818 1:41 3 851 1:41 3 847 1:14 3 817 1:03
C205 3 589 1:20 3 851 1:04 3 589 2:02 3 589 3:05
C206 3 588 1:40 3 588 1:22 3 588 1:53 3 618 1:46

C207 3 592 1:49 3 591 1:25 3 592 2:26 3 588 3:35
C208 3 588 0:59 3 588 1:04 3 588 1:42 3 588 1:29

RC201 4 1605 0:56 4 1633 1:02 4 1631 2:12 4 1638 3:21

RC202 4 1394 0:51 4 1394 0:49 4 1291 10:40 4 1368 1:13

RC203 3 1226 1:42 3 1225 1:06 3 1203 9:41 3 1211 5:04

RC204 3 903 1:06 3 903 1:04: 3 917 8:53 3 897 2:03
RC205 4 1389 1:26 4 1403 1:18 4 1413 4:28 4 1418 1:43

RC206 3 1349 1:18 3 1349 2:20 3 1351 9:41 3 1348 4:32
RC207 3 1209 1:12 3 1181 1:31 3 1223 8:55 3 1181 1:40
RC208 3 957 2:48 3 958 2:34 3 1431 9:49 3 1027 6:28

D249 4 516 20.5 4 518 19.7 4 457 26.5 4 457 23.5
E249 6 500 21.2 6 503 18.3 6 516 34.56 6 514 33.23

D417 55 6352 31.4 54 4866 30.8 55 4726 29.8 55 4783 33.3

E417 55 7267 33.654 55 4560 37.3 55 4149 27.4 55 4730 35.7
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Appendix C

Legend:

Prob.: VRPTW problems from the literature. NV: Number of vehicles
TD: Total distance travelled. Solomon: Solomon, 1987.
CTA: Thompson and Psaraftis, 1993. GIDEON: Thangiah, 1993.
PTABU: Potvin et al., 1993. GENEROUS: Potvin and Bengio, 1994.
Chia/Russ: Chiang and Russell, 1994.

Table 10: Best known solutions for data sets R1, C1 and RC1 using seven different heuristics.

Prob. Solomon CTA GIDEON PTABU GENEROUS Chia/Russ GenSAT

NV TD NV TD NV TD NV TD NV TD NV TD NV TD

R101 21 1873 19 1734 20 1700 19 1753 19 1784 19 170418 1677

R102 19 1843 17 1881 17 1549 17 1736 17 17777 17 161017 1493

R103 14 1484 15 1530 13 1319 14 1410 14 1433 13 146713 1207

R104 11 1188 10 1101 10 1090 10 1094 10 1065 10 107910 1048

R105 15 1673 15 1535 15 1448 14 1432 14 1421 15 1465 14 1442

R106 14 1475 13 1392 13 1363 12 1353 12 1353 12 135312 1350

R107 12 1425 11 1250 11 1187 11 1185 11 1191 10 121511 1140

R108 10 1137 10 1035 10 1048 10 1020 10 993 10 100310 898

R109 13 1412 12 1249 12 1345 12 1222 12 1205 12 1239 12 1226

R110 12 1393 12 1258 11 1234 11 1136 11 1136 11 115211 1105

R111 12 1231 12 1215 11 1238 11 1184 11 1184 10 118810 1151

R112 10 1106 10 1103 10 1082 10 2016 10 1020 10 100310 992

C101 10 853 10 829 10 833 10 829 10 829 10 829 10 829

C102 10 968 10 934 10 832 10 846 10 829 10 1082 10 829

C103 10 1059 10 956 10 873 10 951 10 875 10 982 10 835

C104 10 1282 10 1130 10 904 10 978 10 865 10 936 10 840

C105 10 861 10 829 10 874 10 829 10 829 10 829 10 829

C106 10 897 10 868 10 902 10 829 10 829 10 829 10 829

C107 10 904 10 926 10 926 10 829 10 829 10 829 10 829

C108 10 855 10 866 10 928 10 829 10 829 10 829 10 829

C109 10 888 10 912 10 957 10 829 10 829 10 829 10 829

RC101 16 1867 16 1851 15 1767 15 1751 15 1676 15 168114 1669

RC102 15 1760 14 1644 14 1569 14 1685 13 1671 14 159813 1557

RC103 13 1673 12 1465 11 1328 12 1430 11 1401 11 138111 1110

RC104 11 1301 11 1265 11 1263 10 1224 10 1204 10 1210 10 1226

RC105 16 1922 15 1809 14 1612 14 1697 14 167014 1691 14 1602

RC106 13 1611 - - 12 1608 13 1461 12 1486 13 1501 13 1420

RC107 13 1385 12 1338 12 1396 12 1328 11 1275 12 139011 1264

RC108 11 1253 11 1228 11 1250 11 1210 11 1187 11 119210 1281
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Appendix C (cont.)

Legend:

Prob.: VRPTW problems from the literature. NV: Number of vehicles
TD: Total distance travelled. Solomon: Solomon, 1987.
CTA: Thompson and Psaraftis, 1993. GIDEON: Thangiah, 1993.

. PTABU: Potvin et al., 1993. GENEROUS: Potvin and Bengio, 1994.
Chia/Russ: Chiang and Russell, 1994

Table 11: Best known solutions for data sets R2, C2 and RC2 and problems D249, E249, D417 
and E417 using seven different heuristics.

Prob Solomon CTA GIDEON PTABU GENEROUS Chia/Russ GenSAT

NV TD NV TD NV TD NV TD NV TD NV TD NV TD

R201 4 1741 4 1786 4 1478 4 1669 4 1554 4 14944 1354
R202 4 1730 4 1736 4 1279 3 1530 3 1530 3 15624 1176
R203 3 1578 3 1309 3 1167 3 1237 3 1201 3 11733 1126
R204 3 1059 3 1025 3 909 3 952 3 904 2 914 3 803

R205 3 1471 3 1392 3 1274 3 1200 3 1159 3 12123 1128
R206 3 1463 3 1254 3 1098 3 1153 3 1066 3 10743 8338
R207 3 1302 3 1072 3 1015 3 987 3 954 3 999 3 904
R208 3 1076 3 862 3 826 3 806 2 759 2 805 2 823

R209 3 1449 3 1260 3 1159 3 1164 3 1108 3 11322 855
R210 4 1542 3 1269 3 1269 3 1200 3 1146 3 12453 1052
R211 3 1016 3 1071 3 898 3 984 3 913 3 977 3 816

C201 3 591 3 590 3 753 3 590 3 592 3 592 3 591

C202 3 731 3 664 3 756 3 591 3 592 3 648 3 707

C203 3 811 3 653 3 855 3 631 3 592 3 751 3 791

C204 4 758 3 684 3 803 3 665 3 591 3 927 3 685

C205 3 615 3 628 3 667 3 589 3 589 3 589 3 589

C206 3 730 3 641 3 694 3 588 3 588 3 588 3 588

C207 3 691 3 627 3 730 3 588 3 588 3 588 3 588

C208 3 615 3 670 3 735 3 588 3 588 3 588 3 588

RC201 4 2103 4 1959 4 1823 4 1985 4 1799 4 17344 1294
RC202 4 1799 4 1858 4 1459 4 1742 4 1603 4 15644 1291
RC203 4 1626 4 1521 3 1323 3 1309 3 1253 3 12843 1203
RC204 3 1208 3 1143 3 1021 3 1034 3 1002 3 10123 897
RC205 5 2134 4 1988 4 1594 4 1888 4 1693 4 17514 1389
RC206 4 1582 3 1515 3 1530 3 1440 3 1324 3 12983 1213
RC207 4 1632 4 1457 3 1501 3 1321 3 1222 3 11943 1181
RC208 3 1373 - - 3 1038 3 1041 3 1049 3 1053 3 919

D249 4 477 4 457
E249 5 506 5 495
D417 55 4235 54 4866
E417 55 4397 55 4149


