
Received April 3, 2020, accepted April 11, 2020, date of publication April 16, 2020, date of current version April 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988368

A Hybrid Genetic Algorithm With Bidirectional
Mutation for Maximizing Lifetime of
Heterogeneous Wireless
Sensor Networks

JINGJING LI , ZHIPENG LUO , AND JING XIAO
School of Computer Science, South China Normal University, Guangzhou 510631, China

Corresponding author: Jing Xiao (xiaojing@scnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Project 61872153 and Project 61432012,

in part by the Ministry of Science and Technology of China through the Key Project of Science and Technology Innovation 2030 under

Grant 2018AAA0101303, and in part by the Natural Science Foundation of Guangdong Province under Project 2018A030313318.

ABSTRACT Sleep scheduling is an effective mechanism to extend the lifetime of energy-constrained

Wireless Sensor Networks(WSNs). It is often that the sensors are divided into sets with some constraints

after plentiful sensors are deployed randomly, and then the sensors are scheduled to be activated successively

according to the numbering of the sets. Many approaches divide the sensors into disjoint sets, which are not

suitable for heterogeneous WSNs because of the waste of energy. In this paper, we propose a hybrid genetic

algorithm which adopts greedy initialization and bidirectional mutation operations, termed BMHGA, to find

a number of non-disjoint cover sets to prolong lifetime of heterogeneous WSNs, while subject to ensuring

the full coverage of the monitoring area during the network lifetime. BMHGA adopts two-level structured

chromosome to indicate the sensors and energy assignment to each set. A novel greedymethod only uses little

time to initialize the population that avoids time waste of random initialization. A new bidirectional mutation

is proposed to keepmultiplicity and global search. Through simulations, we show that the proposed algorithm

outperforms the other existing approaches, finding the cover sets with longer lifetime by consuming less

running time, especially in the large-scale networks. The experiment study also verifies the effectiveness of

the proposed genetic operations and reveals the proper parameter settings for BMHGA.

INDEX TERMS Genetic algorithm, non-disjoint set cover problem, sleep scheduling, wireless sensor

networks.

I. INTRODUCTION

Wireless sensor networks(WSNs) consist of numerous wire-

less sensor nodes that are densely deployed in target area

to monitor the physical or environmental condition, includ-

ing building monitoring [1]–[3], health monitoring [4]–[6],

object tracking [7]–[9], intelligent transport system [10], [11],

etc [12]. Each sensor has three basic modules: sensing mod-

ule, processor module, and transmission module. The sensing

module at first senses specific information surrounding the

environment with certain sensing range and the transmission

module transmits the signal to a data center, such as a sink

node, through radio link after processing the sensed data into

The associate editor coordinating the review of this manuscript and

approving it for publication was Gongbo Zhou .

an electric signal by processor module. The above operations

are powered by battery. Since WSNs are usually served for

extensive and rugged circumstances, such as in the deep

sea, arctic areas, and hazardous war zones, it is difficult to

recharge batteries. Therefore, how to minimize the energy

consumption of each sensor to extent the lifetime of the

network is the foremost concern in WSNs.

Transmission module is a main unit contributing to the

entire energy consumption of every sensor. In the module,

different radio state consumes different energy. Minimum

energy is consumed if the radio is in sleep state that there

is no data to send or receive. Accordingly, sleep scheduling is

motivated for the scenario as follows: a tremendous amount of

sensors are randomly deployed such as throwing by aircraft.

It is common as WSNs are used in unreachable area, the

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 72261

https://orcid.org/0000-0001-9569-9173
https://orcid.org/0000-0002-6768-6137
https://orcid.org/0000-0002-5242-7909
https://orcid.org/0000-0001-9759-1895


J. Li et al.: Hybrid Genetic Algorithm With Bidirectional Mutation for Maximizing Lifetime of Heterogeneous WSNs

sensors can not be configured artificially. Therefore, a portion

of the sensors can already offer complete coverage and guar-

anteed connectivity of the area as dense deployment. The key

point of sleep scheduling is to automatically and deliberately

shut down subsets of nodes while remaining other nodes are

alive with each given time interval [13]. The classic sleep

scheduling methods usually divide the sensors into several

disjoint sets with complete coverage and guaranteed connec-

tivity, and the sets are activated successively [14]. In these

methods, each sensor can only in one set that is alive with a

given time. After the interval, even though there is remain-

ing energy for the sensor, it can not be used anymore. The

methods are suitable for homogeneous WSNs that assuming

each sensor has same energy supply, the time interval of each

disjoint sets is set as the lifetime of sensors. As a result,

the whole lifetime of the network is the sum of periods of

the disjoint sets. The sleep scheduling problem is transferred

as finding the maximum number of disjoint sets named as

disjoint set cover(DSC) problem.

However, in realistic world, many applications are

designed as heterogeneous WSNs [15]–[17] in which differ-

ent sensors involved have different data processing capability,

transmission capability and energy supply. Energy hetero-

geneity means that the nodes have different initial energy

which is the most important characters because both compu-

tational heterogeneity and link heterogeneity will consume

more energy resource [18]. In this situation, it is the energy

waste if the sensors are divided into disjoint sets. For example,

in Fig.1(a), assuming a unit time is a, each sensor may have

different initial energy that is different number of units time.

The lifetime of s1, s2, s3, s4 is 1a, 2a, 2a and 1a. Any two

sensors can completely cover the target region. In disjoint sets

cover problem, the network is divided into S1 = {s1, s2} and

S2 = {s3, s4} for 1a time. The total lifetime of the network

is 2a while there is still remaining energy 1a of s2 and s3
respectively.

In this paper, our objective is to find the optimal

non-disjoint sets to maximize the lifetime of heterogeneous

WSNs. In non-disjoint set cover(NDSC) problem, each sen-

sor may be given different energy supplies and if the sensor

has residual energy after a time duration in a set, it can be

selected to other sets. As shown in Fig. 1(b), the non-disjoint

sets are: S1 = {s1, s2} for 1a time, S2 = {s3, s4} for 1a time

and S3 = {s2, s3} for 1a time. The lifetime of the network is

3a which is 33% increase compared to the disjoint sets.

Compared with DSC problem, NDSC problem is more

complex since a sensor can be assigned to multiple sets. It is

nondeterministic polynomial (NP)-complete which has been

proved in [19]. NDSC problem can be solved by approxi-

mation algorithms, however, the obtained solutions are not

always optimal. Heuristic algorithms can also be applied

to NDSC problem. Gentic Algorithm(GA) is a heuristic

search algorithm that obtains the optimized results through

simulating biological evolution [20], which is suitable for

multi-objectives problems, especially the resource-constraint

scheduling problems [21] with large search space and small

FIGURE 1. Sensors s1, s2, s3, s4 are deployed in target area. (a) The
sensors are divided into two disjoint sets S1, S2. (b) The sensors are
divided into three non-disjoint sets S1, S2, S3.

number of feasible solutions. Its population can process a set

of solutions and each individual can involve different objec-

tives and constraints. Since the NDSC problem defined in

this paper includes two objectives and two constraints and the

scale of networks is great while the number of possible solu-

tions is small, we prefer GA to solve the problem. However,

the searching speed of the traditional GA is slow and it is easy

to trap into the local optima. Therefore, a modified genetic

algorithm is proposed in this paper, termed the Bidirectional

Mutation Hybrid Genetic Algorithm(BMHGA). Given differ-

ent initial energy and position of each sensor, the algorithm

can find the non-disjoint sets to cover the target area fully and

the sum of the lifetime of the sets is maximized. Compared

with the existing works, the contributions of BMHGA are as

follow:

1) For explicitly indicating the resource constraint and

showing the schedules of each sensor, a two-level structured

chromosome is designed in the paper. At a high level, each

sensor is mapped to a gene. At a low level, there are genomes

embodied in each ’high level’ gene that is represented as a set

of pairs, each specifying duration time for a different cover

set.

2) An initial population of high quality can accelerate

the population evolution of GA to reach a satisfactory solu-

tion rapidly [22]. Although the greedy algorithm makes a

locally-optimal selection at each moment so that it can-

not produce global optimized solutions, its advantages are

their simplicity and efficiency [23]. Therefore, we initialize

the chromosomes based on the feasible solutions that are

obtained by a designed greedy algorithm to promote individ-

ual to evolve.

3) After greedy initialization, there are still a lot of redun-

dant sensors in the individuals that need to be optimized.

Thus, we propose a forward mutation that schedules the

redundant sensors among the different cover sets without los-

ing the coverage percentage of each cover set but increasing

the total lifetime of the sets. GA is trend to the premature con-

vergence to local optima. A backward mutation is presented

to help skipping local optima when necessary.
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4) Compared with the prior works, the proposed BMHGA

can effectively extend the lifetime of the network with faster

speed in different size of networks.

The BMHGA is executed by a central node that knows

the number of sensors and their initial energy and location

when deployment. The scheduling message is broadcast to

the whole network after the scheduling scheme is computed.

Then each sensor node would know when to sleep or activate.

The scheduling can be based on the synchronization method

proposed in [24], in which nodes are synchronized with their

own clocks, sensors are able to interact with each other at the

same physical time by periodical beacon broadcast.

The remainder of this paper is organized as follows.

Section II describes the related works on this problem.

The preliminaries and the problem definition are given in

section III. Section IV illustrates the detailed implementa-

tions of the proposed algorithm. A series of experimental

simulations are conducted and the results are analyzed in

section V. Finally, section VI concludes the paper.

II. RELATED WORKS

The common approaches that sleep-scheduling protocols

adopted for increasing the lifetime of the network are to

divide the sensors into DSCs [25]. Cardei and Du [19] firstly

proved the DSC problem is NP-complete. Deschinkel and

Hakem [26] presented a near optimal algorithm with a lower

bound. In [27], S. Henna constructed two disjoint cover sets

in randomly deployedWSNs and presented an approximation

algorithm. In [28], three kinds of algorithms named greedy

game algorithms(GGAs) were proposed to solve the SET

K-Cover problem in heterogeneous WSNs. However, these

approximation approaches can not always find the optimal

solution. Some researchers tried to use heuristic algorithms

to find the optimal result. For example, Hu et al. [29]

designed amodified genetic algorithmwith forward encoding

scheme(STHGA) and Mir et al. [30] adopted particle swarm

optimization to maximize the lifetime of WSNs. The per-

formance of the proposed approaches showed the heuristic

algorithms are effective for solving the DSC problem.

In recent literatures, more sleep scheduling algorithms par-

tition the network into NDSCs since NDSCs provide longer

lifetime compared to disjoint cover sets [31], [32].

The methods of NDSC problem can be classified into

three types: approximation methods, heuristic methods and

bio-inspired search methods.

For the first type, Ding et al. [33] proposed a

polynomial-time (4 + η)-approximation algorithm to extend

the lifetime of WSNs based on Minimum Weight Sensor

Coverage Problem. In [34], the target coverage with detection

probability was considered and an approximation algorithm

that has three main phases was presented. In the computation

phase, the candidate coverage set of each target is calculated.

In the selection phase, an independent coverage set is selected

from every target candidate coverage set in turn. In the con-

nection phase, a steiner tree algorithm is used to select some

sensors as relay nodes that maintain the network connectivity.

Paper [35] formulated the master problem and subproblem

of NDSC problem. Consequently a column generation based

exact algorithm is proposed to solve the master problem and

branch-and-cut method is adopted to reduce the computation.

Since the results of above methods are not always opti-

mal and NDSC problem is also a NP problem, the heuristic

algorithms are preferred. B.Diop etc [36] proposed a greedy

algorithm that distributes sensors among disjoint sets and

each set satisfies full target coverage. In [37], a central-

ized connected target k-coverage algorithm(CCTCk) and a

distributed connected target k-coverage algorithm(DCTCk)

were proposed. Two algorithms minimize the total number

of active sensor nodes and guarantee that each sensor node

is connected to a sink. A novel Energy Efficient Connected

Coverage (EECC) scheduling was proposed to maximize the

lifetime of WSNs in [31]. EECC elevates the coverage and

connectivity ability of each sensor, considering its remaining

energy and the sensor nodes which monitor the crucial tar-

gets are handled carefully as well the redundant coverage at

critical points is avoided. In [38]–[40], the clustering method

is used for prolonging the network lifetime. The adjacent

sensors are clustered by self-organizing, and some of them

are changed to sleep status. When an activated sensor is run

out of energy, the neighboring available sensors are waked up

to cover the data loss. The methods have good fault tolerance

and performance. Since the frequent computation among the

neighboring sensors, they are suitable for small-scale WSNs.

Besides the heuristic algorithms, the bio-inspired search

algorithms are usually used to solve the NDSC problem.

Zhong and Zhang [41] proposed an ant colony optimization

method(mc-ACO) based sleep scheduling. mc-ACO con-

structs a first layer set and multiple successor sets by select-

ing the sensors to cover the uncovered area according to

the pheromone. However, mc-ACO is not suitable for large

scale networks and sometimes achieves premature conver-

gence. Liao and Ting [42] adopted integer representation and

designed a new fitness function that considers both the num-

ber of covers and the contribution of each sensor to covers.

A local improvement method was also developed to enhance

the performance on Set k-Cover problem. However, the algo-

rithm is only used for target coverage problem. In paper [32],

a novel gene coding to solve NDSC problem by using genetic

algorithm(NDSC-GA) was proposed. Each gene is an array

that includes the time periods of the sensors in the set. The

length of a gene is the number of sensors in the network.

In order to prolong the lifetime of network, NDSC-GA adopts

random crossover and probability mutation for improving

gene and creating new set. It takes much time to execute

traversal operation, hence, NDSC-GA is not efficient when

the number of sensors is large.

III. PRELIMINARY AND PROBLEM DEFINITION

In this paper, we consider that each sensor has the same

sensing range and communication range. The sensing area of

each sensor is a circle with the radius R and the communica-

tion range is twice of sensing range that means a completely
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covered network is also connected [43], [44]. Therefore,

the sink node can connect with each sensor through mul-

tihop communication in the completely covered network.

It is responsible for scheduling the sensors and collecting

the sensing data from sensors. We also assume the sensors

execute fault-free operations in their lifetime. For evaluating

whether the target field is completed covered, we use the

grid-basedmethod [45] to approximately estimate the sensing

coverage of sensors. Assume the monitored area is divided

into L × W virtual grids of uniform size, the sensing area

of each sensor is calculated as the number of grids that are

totally inside its sensing region. When a set of sensors are

deployed in the target field, the whole sensing area of the set

is D grids, the coverage ratio P of the set is approximately as

in formula (1).

P =
D

L ×W
(1)

If P = 100%, the target area can be covered by the set of

sensors completely.

FIGURE 2. Coverage area of sensors s1 and s2.

For example, in Fig.2, two sensors are deployed in the area

that consists of 48 grids and each sensor covers 20 grids.

The overlapping area of two sensors are 4 grids. Therefore,

the sensing range of the two sensors is 38 grids and the

coverage ratio is 38
48
.

For monitoring the area, if all of the sensors in WSNs

are activated, full coverage should be satisfied. Otherwise,

the arrangement of sensors fails.

When the target field consists of L × W virtual grids,

assume all the sensors are alive, each grid ti is covered by

n(n ≥ 1) sensors si1 , si2 , . . . , sin with initial energy supply

ei1 , ei2 , . . . , ein . The maximum time period li that grid ti
covered by the sensors can be computed by

li =

n
∑

k=1

eik (2)

where i ∈ [1,L × W ], eik is the initial energy of sensor sik .

The grid with minimum value of li which is the critical field

will firstly lose being monitored, meanwhile WSNs can not

fully cover the target area. As a result, the upper limit lifetime

T of network is decided by

T = min(l1, l2, . . . , lL×W ) (3)

FIGURE 3. The target area that consists of 4 grids t1,t2,t3,t4 is covered by
three sensors s1,s2,s3.

For example, in Fig.3, the target area is divided into 4 grids

t1, t2, t3, t4 and there are 3 sensors s1, s2, s3. t1 is covered by

s2, s3, t2 is covered by s1, s3, t3 is covered by s2, t4 is covered

by s1. The initial energy of sensors s1, s2, s3 is e1 = 2,

e2 = 3, e3 = 4. Therefore, the maximum time period of

each grid is l1 = e2 + e3 = 7, l2 = e1 + e3 = 6,

l3 = e2 = 3, l4 = e1 = 2. The upper limit lifetime of the

network T = min(l1, l2, l3, l4) = 2.

There are still several simple concepts should be defined

firstly before the problem is formally defined.

Definition 1 (Lifetime of Set): Let a set of sensors Sk =

{s1, s2, . . . , sn} provide energy E = {e1, e2, . . . , en}. Sk is

a complete cover set if the sensors in Sk cover the target area

completely. Sk is an incomplete cover set if the sensors in Sk
cannot fully cover the target area. The lifetime Lk of set Sk is

Lk =

{

min(e1, e2, . . . , en) Pk = 100%

0 Pk < 100%
(4)

Definition 2 (Residual Energy of Sensor): Suppose sen-

sor si with initial energy ei belongs to k sets Si1, Si2, . . . , Sik .

The lifetime of the sets Si1, Si2, . . . , Sik is ei1, ei2, . . . , eik .

Therefore the residual energy eir of sensor si is calculated by

eir = ei −

j
∑

k=1

eik . (5)

Definition 3 (Lifetime of WSNs): The sensors in WSNs

are divided into c sets S1, S2, . . . , Sc. Lifetime LT of WSNs

is the sum of lifetime of sets.

LT =

c
∑

k=1

Lk (6)

The NDSC problem in this paper is defined as follows:

Given a set S = {s1, s2, . . . , sN } of sensors are randomly

deployed in an L×W field. Assume each sensor si has initial

energy ei and the identical sensing range R. The objective is

to find c successive scheduling sets S1, S2, . . . , Sc with the

maximum lifetime L1 + L2 + . . .+ Lc of WSNs, satisfying:

1) each set Sk = {sk1, sk2, . . . , sk|Sk |} of sensors can

completely cover the target area, where |Sk | is the number

of sensors that are assigned to the set Sk .
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2) as to any sensor si, the total active time do not exceed its

initial energy ei, that is

ei ≥

c
∑

k=1

eiSk (7)

where eiSk is the lifetime of set Sk if si is assigned to Sk . If si
does not belong to set Sk , eiSk = 0.

IV. PROPOSED ALGORITHM

To solve the NDSC problem, in this paper, we propose a

hybrid genetic algorithm(BMHGA) which uses bidirectional

mutations. In this algorithm, initialization with greedy tech-

niques instead of random initialization is adopted for each

chromosome, then adaptive crossover and multiple mutation

operations are designed to accelerate the solving procedure.

The chromosomes with highest fitness value are selected to

next generation. The flowchart of the proposed algorithm is

shown in Fig.4, where f records the best fitness value of

chromosomes in the previous generation, i counts the number

of generations that the best fitness value remain unchanged.

Table 1 tabulates the notations used in this paper. The pro-

posed algorithm is performed by the sink node. According

the obtained computing results, the sink node will wake up

the sensors successively.

FIGURE 4. Flowchart of the BMHGA.

A. REPRESENTATION OF CHROMOSOME

Since the multi-objectives and constraints are needed to be

satisfied in the problem of the paper, the chromosome should

TABLE 1. Notations.

include various information such as the cover sets, the corre-

sponding sensors and their energy. The two-level structured

chromosome is proposed in this paper. Since each sensor has

a unique ID, at the high level of the chromosome, each gene

is mapped to a sensor. Therefore each chromosome Cm at the

high level in the population is represented as

Cm = {Gm1,Gm2, . . . ,Gmc,GmN } (8)

where m = 1, 2, . . . ,M . At the low level, each Gmi is

represented as a genome shown in (9) that the number of sets

of sensor si belongs to, and the specific sets with its lifetime

are indicated.

Gi = {(gi1, ei1), (gi2, ei2), . . . , (gi|Gi|, ei|Gi|)} (9)

where gij is the scheduling number that means the sensors

with the same scheduling number will form a set, |Gi| is the

number of total sets sensor si is in.

The benefit of the hierarchical genomic structure is the life-

time of the total cover sets and the corresponding scheduling

scheme are contained in the chromosome so that it is easy to

be evaluated.

FIGURE 5. The two level structure of the example chromosome C1.

For example, as shown in Fig.5, suppose a chromo-

some C1 ={G11, G12, G13, G14}, G11 = {(1, 2), (2, 3)},
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G12 = {(2, 3)}, G13 = {(1,2), (2,3), (3,1)}, G14 = {(2,3),

(3,1)} that means there are 4 sensors s1, s2, s3, s4 in the

area, s1, s4 are scheduled in two different sets, s2 is only

activated in one set and s3 is scheduled in three different

sets. Accordingly, these sensors are divided into three sets

S1 = {s1, s3}, S2 = {s1, s2, s3, s4}, S3 = {s3, s4}. The lifetime

of sets is 2,3,1 respectively.

B. GREEDY INITIALIZATION

Initially, in traditional GA, the individuals are usually gen-

erated randomly. However, in the case of this paper, we will

use greedy policies for initialization. The first population is

generated by a greedy algorithm. According to the method,

at beginning, the grids in given field are marked as uncovered.

There is a candidate set includes the whole sensors and the

number of cover sets c = 0. Then the steps are executed as

follows:

1)c = c+ 1, and Sc is initialized as an empty set.

2)A sensor from the candidate set that can improve the

coverage percentage of the set Sc is selected into the set Sc,

meanwhile the corresponding grids are marked as covered.

3)The second step 2) is repeated until the total grids are

marked. The set Sc is formed and the lifetime of the set Sc is

calculated.

4)Accordingly, the rest lifetime of sensor is updated. If the

sensor is exhausted, it is removed from the candidate set. And

the total grids are marked as uncovered.

5)Execute the above four steps in a loop until the sensors

in the candidate set cannot cover the whole area.

Finally, the remaining sensors in the candidate set will form

the Sc+1 set which is an incomplete set.

A series of successive cover sets are formed by the greedy

algorithm, therefore, the chromosomes are initialized from

the result of the algorithm. The proposed greedy algorithm

ensures the initial population is not entirely random and

thereby the convergence is accelerated. Since the complexity

of the greedy algorithm is polynomial O(c× N ), this initial-

ization step takes little time to increase convergence speed

significantly.

The whole initialization process is described as

Algorithm 1, where function ClearGrids() marks all grids as

uncovered, MarkGrids(sai ) marks the grids as covered that is

covered by sensor sai . Function GetenCoverGrids(sn) returns

the number of the uncovered grids that sensor sn enables

to cover. Function GetLifetime(Sc) calculates the lifetime of

set Sc, and functionGetRestEnergy(san ) returns the remaining

energy of sensor san .

After initialization, in each chromosome Ch, there are ch
complete cover sets and an incomplete set Sh,ch+1. After

executing mutation and crossover, the coverage percentage

of set Sh,ch+1 rises higher. The lifetime of WSNs is increased

when the incomplete set Sh,ch+1 becomes a complete set.

C. EVALUATION & SELECTION

The chromosome indicates the full cover sets that WSNs

are divided into and the lifetime of each set, therefore the

Algorithm 1 Greedy Initialization

Require: N sensors S = {s1, s2, . . . , sN }, L ×W grids

Ensure: M chromosomes C1,C2, . . . ,CM
1: c← 0;G1,G2, . . . ,GN ← {φ};

2: repeat

3: ClearGrids();

4: c← c+ 1;Sc← {φ};

5: for sn in S do

6: if GetenCoverGrids(sn) > 0 then

7: Sc← Sc + sn;

8: MarkGrids(sn);

9: end if

10: end for

/*Get the lifetime of the set Sc*/

11: Lc← GetLifetime(Sc)

12: for sn in Sc do

13: Gn← Gn + (c,Lc)

/*Get the rest energy of sensor sn*/

14: e← GetRestEnergy(sn)

15: if e = 0 then

16: S ← S − sn
17: end if

18: end for

19: until sensors in S can not cover the whole area.

/*Remaining sensors form the last cover set*/

20: Sc+1← S;

21: for sn in S do

22: e← GetRestEnergy(sn)

23: Gn← Gn + (c, e);

24: end for

/*CopyM chromosomes*/

25: for m := 1→ M do

26: for n := 1→ N do

27: Cm← Cm + Gn
28: end for

29: end for

lifetime of WSNs can be calculated. The fitness function of a

chromosome Ch is defined as

Fh =

ch
∑

k=1

Lk + Pch+1. (10)

The larger the lifetime of WSNs is, the higher the fitness

of chromosome is. If the lifetime of WSNs for two chromo-

somes is equal, the chromosome with a greater coverage per-

centage of the incomplete set is the better one. The population

is sorted by fitness values, and then the chromosomeswith the

higher fitness are selected to the next generation.

D. FORWARD MUTATION

To search a better chromosome, there are two kinds of sensors

should be scheduled.

1) Coverage redundant sensor: if a sensor in a set that can

be removed without changing the coverage percentage of the
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set, we call the sensor is coverage redundant sensor. This kind

of sensors should be rescheduled to other sets. Fig.6(a) shows

the rescheduling procedure of coverage redundant sensors.

2) Lifetime redundant sensor: if the residual energy of

a sensor is greater than 0, we call the sensor is a lifetime

redundant sensor. It can be scheduled to other sets using the

residual energy. Fig.6(b) describes the scheduling of lifetime

redundant sensors.

FIGURE 6. (a)In chromosome Ch, sensor si is a coverage redundant
sensor in set Sghij

, then Si is rescheduled to set Sk with energy ehik .

(b)In chromosome Ch, sensor si is a lifetime redundant sensor, then si
can be scheduled to set Sk with energy ehik , k ∈ [1, ch + 1], ehik is
residual lifetime of the sensor si .

FIGURE 7. The change of the redundant sensors between complete cover
sets and an incomplete cover set in the chromosome Ch.

In the mutation, K genes are checked randomly for each

chromosome Ch. If the related sensors are coverage/lifetime

redundant, they are assigned to other cover sets in two ways.

Firstly, if the redundant sensor is in a complete cover set,

it is scheduled to the ch + 1th incomplete set. Secondly,

if the redundant sensor is in the incomplete set Sh,ch+1, it is

scheduled to one of ch complete sets, the specific number

of the set is decided randomly. Fig.7 shows the redundant

sensors in the complete sets are scheduled to the incomplete

set Sh,ch+1, and the redundant sensors in the incomplete set

Sh,ch+1 are scheduled to one of complete sets. Since there is

only one incomplete set for each chromosome, the first way

of forward mutation can get the higher coverage percentage

of incomplete set. The second way in forward mutation pro-

motes the genetic diversity of chromosomes. This operation

provides positive effect on evolutionary of individuals and

thereby is termed forward mutation.

E. BACKWARD MUTATION WITH REPLACE OPERATION

When the highest fitness of chromosomes in populations

gets stuck in a value, never to reach upper limit lifetime of

network, the algorithm is trapped in the local optimum. The

reason for this phenomenon is that there is no redundant

sensor to be scheduled to the incomplete set. Thus, in this

paper, backward mutation is designed to avoid the premature

convergence. For the best chromosome in current population,

if its fitness value is constant for Gm generations, backward

mutation is performed under two scenarios.

When there exists an incomplete cover set in a chromo-

some, since the coverage percentage of incomplete cover set

is less than 1, even to the best chromosome, there still are

grids without being covered by sensors. Draw a circle with

radius 2R centered on the center of a random uncovered

grid tu. For the incomplete cover set, the sensors within the

circle are rescheduled back to random complete cover sets.

Then replace operation is executed by rescheduling a cover-

age redundant sensor in a complete cover set that covering the

grid tu to the incomplete set.

FIGURE 8. The change of the incomplete cover set during backward
mutation.

For example, in Fig.8, there are 4 sensors s1, s2, s3, s4 in

an incomplete cover set and an uncovered grid tu. As shown

in Fig.8(a), s1, s2, s4 are in the circle that is centered on the

center of grid tu with radius 2R. Then, s1, s2, s4 are resched-

uled back to the complete sets randomly and there is only

one sensor s3 in the incomplete set as shown in Fig.8(b).

In Fig.8(c), after replace operation there are two sensors s3
and s5 in the incomplete cover set and s5 can cover the

grid tu. s5 is a coverage redundant sensor which is rescheduled

from a complete cover set. Fig.9(a) illustrates the scheduling

directions in the situation.

If there is no incomplete cover set in the best chromo-

some Ch that means Pch+1 = 0. The backward mutation

reschedules the sensors in the last complete cover set Sh,ch
back to other complete cover sets randomly, such as shown

in Fig.9(b). Every sensor in set Sh,ch of chromosome Ch
has 50% chance to be rescheduled back. After backward

mutation, the cover set Sh,ch becomes an incomplete cover

set.

In the first situation, the uncovered grid becomes being

covered through the replace operation and the complete cover

sets are changed by swapping the sensors. In the second situa-

tion, the combination of the complete cover sets that results in

local optima is broken. As a result of backward mutation, all

local optima can be avoided. Though the coverage percentage

of the incomplete cover set or the last complete cover set may

decrease after themutation, that is also the reason whywe call

the mutation as backward mutation, the coverage percentage

can rise when the forward mutation is executed again.
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FIGURE 9. (a)The specified sensors in the set Sh,ch+1 are rescheduled

back randomly, and a specified redundant sensor in set Sh,k is scheduled
to the set Sh,ch+1. (b)The sensors in set Sh,ch

are scheduled back to

ch − 1 sets randomly.

The procedure of the backward mutation is shown in

Algorithm 2, where function UncoveredGrid(Cm) picks an

uncovered grid tu from the incomplete cover set Sm,cm+1

in chromosome Cm, function Distance(sn, tu) calculates

the distance between sensor sn and grid tu, function

isRedundant(sn, Sm,gmni ) checks if sensor sn is coverage

redundant in set Sm,gmni .

F. ADAPTIVE CROSSOVER

Crossover operation selects two individuals as parents to cre-

ate new individuals. It aims to produce better chromosomes

from old ones. The idea behind adaptive crossover [46] is that

the crossover probability of each chromosome is determined

by its genome and is evolved with it. Firstly, a chromosome

Ci is selected randomly from current population as a parent.

For each chromosome Cj, the matrix variance Vij with chro-

mosome Ci is calculated by

Vij =

N
∑

n=1

max(|Gin|,|Gjn|)
∑

k=1

(gink − gjnk )
2 (11)

where Gin is the gene that belongs to chromosome Ci,

|Gin| is the number of sets that sensor si belongs to, gink is

the set number.

The chromosome Cj with the greatest Vij is considered as

the other parent. According to the method, only two parent

chromosomes with maximum difference between them are

chosen so that the genetic diversity of their offsprings is

guaranteed. If all the chromosomes in the population tend

to have the same genetic coding, the algorithm tends to

converge. Therefore, in this case, the crossover operation will

be stopped.

For inheriting the genetic material from the better of

two parent chromosomes, the crossover probability is

calculated as

pbetter =
Fbetter − Fmin

Fmax − Fmin
(12)

pother = 1− pbetter (13)

Algorithm 2 Backward Mutation

Require: M chromosomes C1,C2, . . . ,CM
1: for m := 1→ M do

2: if Fm = Fmax and Pcm+1 > 0 then

3: tu← UncoveredGrid(Cm)

4: for n := 1→ N do

5: if Distance(sn, tu) < 2R then

6: for i := 1→ |Gmn| do

7: if gmni = cm + 1 then

8: gmni← Rand(1,cm)

9: end if

10: end for

11: end if

12: end for

/*Replace Operation*/

13: for n := 1→ N do

14: if sensor sn covers grid tu then

15: for i := 1→ |Gmn| do

16: if isRedundant(sn, Sgmni) then

17: gmni← cm + 1

18: end if

19: end for

20: end if

21: end for

22: else if Fm = Fmax and Pcm+1 = 0 then

23: for n := 1→ N do

24: for i := 1→ |Gmn| do

25: if gmni = cm and Rand(0,1)=1 then

26: gmni← Rand(1,cm − 1)

27: end if

28: end for

29: end for

30: end if

31: end for

where pbetter is the probability of selecting the gene from the

better parent while pother is the probability to select a gene

from the other parent. Fbetter is the fitness of the better parent

chromosome.

The formula (12) indicates the parent chromosome with

higher fitness will maintain more genes to the offspring. If the

parent chromosome is the best member in current population,

the whole individual will become an offspring.

V. EXPERIMENTAL STUDY

In the simulation environment, N sensors are randomly

deployed in a two-dimensional L × W area. Each node

has its x and y location that randomly generated as inte-

ger values in [0,L] and [0,W ]. The sensing range of each

sensor is R and the initial energy ei of sensor si is also

generated randomly as an integer value in [1,Emax], Emax
is the maximum value of initial energy of sensors in the

network. All cases are run by a computer with an Intel i7-7700

3.60GHz CPU.
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TABLE 2. Assumptions and goals of algorithms.

A. COMPARISON WITH OTHER ALGORITHMS

In this section, we compare BMHGA with other algorithms,

including STHGA [29], mc-ACO [41], NDSC-GA [32] and

EXACT algorithm [35]. Table 2 shows a comparison in

aspects of assumptions and goals among the algorithms

above. We can find that the goal of BMHGA is different from

other algorithms.

The algorithms are designed for NDSC problem except

STHGA, which is a classic algorithm that is proposed to

solve DSC problem under the assumption that each sensor

has the same initial energy(a unit energy). However, STHGA

can be modified easily for the problem defined in the paper

through a preprocess, in which if a sensor with multiple units

energy, it can be regarded as multiple sensors all with a unit

energy. For example, a sensor with 3 units energy is regarded

as 3 sensors with a unit energy at the same location. After the

preprocess, the genetic operations of STHGA can function

normally just the size of WSNs increases.

TABLE 3. Computational complexity of algorithms.

Table 3 investigates the time complexity and space com-

plexity of above mentioned algorithms, where the J is the

number of iterations for each algorithm. The running time

is relevant to the network scale. The time complexity of

traversing N sensors is O(N ). BMHGA is a hybrid algorithm

consists of greedy initialization and genetic operators. The

computational complexity of greedy algorithm in initializa-

tion step is O(c × N ) that has been mentioned in section IV.

In each generation, the running time is O(K +N ) that mainly

consumed by the forward mutation and evaluation. Since

the parameter K ≤ N , the time complexity of each gen-

eration is O(N ). From the Table 3, we can find that, for

BMHGA, NDSC-GA and STHGA, the time complexity of

each generation isO(N ) respectively that the algorithmwhich

executes less generations will be faster. mc-ACO also adopts

the greedy method at initialization, so the time complexity is

the sum of two parts. Each iteration of mc-ACO is solvable

in exponential time. Besides, time complexity O(N !) reflects

that using the EXACT algorithm to get the best solution is the

most costly. The space complexity of NDSC-GA is O(N 2)

since the specific structure of individual. The algorithms,

mc-ACO and EXACT, yield an O(N ) space complexity.

Because the size of chromosome is dynamically determined

by the number of assigned sets for each sensor, BMHGA and

STHGA is solved in O(Emax × N ) space. Usually, Emax is

smaller than N , the space complexity is O(N ) for the above

two algorithms.

In the experiments, the parameter configurations of these

algorithms are according to the corresponding references,

which are shown in Table 4. For NDSC-GA, the population

sizeM is set as 50 and the number of prescribed groups is set

as P = N/10. The parameters of mc-ACO are the number

of artificial ants M , exploitation rate q0, pheromone decay

coefficient ϕ, global pheromone update coefficient ρ and

heuristic coefficient β. The population size M , scheduling

coefficient K1 and K2, mutation probability µ and mutation

generations gm are set in STHGA. For the proposed BMHGA,

if there is no other declaration, the population size M is

fixed at 3, the interval for performing backward mutation Gm
is 1, and the parameter K = 1

10
N . Since the processes and

time complexity of these algorithms are extremely distinct,

for a fair comparison, a maximum running time(maxRT) is

used as the stopping criterion, except EXACT algorithm.

If the lifetime of WSNs achieves T (the upper limit lifetime

of the network), the algorithm also stops. All algorithms

are executed 100 times for each case, with maxRT being

1 minute(60,000ms).

To evaluate the performance of different algorithms, firstly,

a set of 13 cases with different number of sensors and differ-

ent size of monitoring field in Table 5 are conducted. Table 6

lists the results obtained by the five algorithms on each

case, including the average time(Time) in microsecond(ms)

used for meeting the stop condition in each run, the success

rate(ok) and the mean results(Mean). In all the cases, our

proposed algorithm consistently reaches the superior perfor-

mance than others, which implies that our algorithm can fast

evolve to better chromosome and converge towards global

optima quickly. The main reason is that our genetic oper-

ations especially the mutation operations can fully exploit

the diversity of the chromosome and effectively avoid local

optima. It is to be noted that, the proposed BMHGA produces
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TABLE 4. Parameter configurations.

FIGURE 10. Comparison of running time and success rate with R increasing from 4 to 20 for the test cases that N = 500, L = W = 50.

TABLE 5. Specification of WSN Cases for experiment.

significantly better results than other algorithms on the

cases 10 − 13. These results verify that, even in large-scale

WSNs, the proposed genetic operations can enhance the per-

formance of GA powerfully.

We further compare BMHGA with the four evolutionary

algorithms by varying the sensing range. Fig.10 depicts the

experimental results including consumed time and success

rate. Fig.10(a) reports that BMHGA outperforms other algo-

rithms and its running time is not affected by the increasing

sensing range. It can be observed that the running time of

STHGA and NDSC-GA is increasing when using greater

sensing range. This is principally because the lifetime of

network is increasing with the increasing R that takes more

generations to find out all the complete cover sets. For mc-

ACO, the consumed time is in a relatively stable state that

given R ≤ 17, but the time is much larger than others when

R = 18, 19, 20. From Fig.10(b), we can deduce the reason

behind this is that, under the cases that R = 18, 19, 20, it is

difficult for mc-ACO to find the optimal solution within the

maxRT.

B. INVESTIGATION OF PARAMETERS

There is a main parameter K in the BMHGA, which is

the number of sensors selected to be mutated in forward

mutation. This section investigates the relationship among

the number of sensors N , the number of selected sensors K

in mutation operation and the consumed time of BMHGA.

Furthermore, the suitable value of K is revealed here.

The running time of BMHGA under the search scenarios

with the two varying parameters is reported in Fig.11. Com-

paring the running time with respect to different parameter

values, it can be found that the time increases as N increases

and K decreases. The BMHGA costs a lot of time to obtain

the optimal result when K = 5, especially in the scenario

that N = 500 and K = 5, the most time is consumed.

This observation proves that the forward mutation plays an

important role in searching optimal result. Meanwhile, from

the figure, we can also find that the running time rises gradu-

ally when the number of sensors becomes larger. However,

if the selected genes becomes more, the algorithm will be

accelerated as more genes are changed in the chromosome

without fitness value falling.

In addition, BMHGA is tested with K ∈ [5, 400],

respectively, with the other parameter N being fixed. Fig.12

illustrates that the plot of the running time is generally par-

titioned to three phases. At start there is a very sharply

decline and the least time is reached when K is equal to

a certain value, e.g. Kl . Then, the algorithm keeps a stable

performance between the lowest point, e.g., Kl and a certain

K value, e.g., Ki. When K exceeds the Ki value, the running

time slowly increases as K rises. We further compare the

performances of 8 cases and note that as N increases, greater

the range of second phase becomes and much slower the raise

in running time for third phase is. This indicates that setting

K in the range of [Kl,Ki] can provide a good performance
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TABLE 6. Performance comparison of BMHGA with other algorithms.

TABLE 7. Performance comparison with different genetic operations.

FIGURE 11. Comparison of the time used by BMHGA when K increases
from 5 to 300 and N increases from 100 to 500 for the test cases that
L = W = 30, R = 8.

for the algorithm, and meanwhile, the boundary values of the

range, i.e., Kl and Ki, are depended on the number of sensors

N . By observing these plots, approximately K = 1
10
N is

recommended in this paper.

Besides K , the interval of backward mutation Gm and the

number of chromosomesM in a population are discussed. In

Fig.13, the search speed of using different Gm on different

K and N is depicted and compared, where the vertical axis is

the executing time to obtain the optimal result. The parameter

Gm decides the frequency that the backward mutation is per-

formed. When using a largeGm, the algorithm can be trapped

in a local optimum for a long time, which is not efficient.

When using a small Gm, if the K is too small, the algorithm

takes long time to achieve a local optimum and executes

backward mutation frequently, which is also not efficient.

From Fig.13, it can be observed that, in different scale

of WSNs, when the values of K are great enough such as

K ≥ 1
10
N , setting Gm as 1 can help improving the search

efficiency of BMHGA. Therefore, Gm = 1 is recommended

to be suitable setting.

The effect of different M on the performance of BMHGA

is plotted in Fig.14, where the horizontal axis is M and the

vertical axis is the running time(Time). It can be observed

that the proper range of M is [2,4] for each case. A larger

M will lead to more time needed in the process for each

generation. When K is smaller than 20 andM = 2, since the

diversity and the number of chromosomes of a population is

decreased, more generations are required to obtain a optimal

result. Hence,M = 3 is regarded as the proper value.

What’s more, from the Fig.13 and Fig.14, we can find that

the plots are almost overlapped in each case when K > 1
10
N .

It demonstrates the correctness of the proper K setting that

K = 1
10
N .

C. EFFECTS OF GENETIC OPERATIONS

In BMHGA, greedy initialization is used for construction of

an initial population that can speed up searching for better

chromosomes. Forward mutation is the basic operation for

improving the value of fitness. Backward mutation is able

to escape from local optima, where the replace operation is
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FIGURE 12. Comparison of the time used by BMHGA when K increases from 5 to 400 for the test cases that Gm = 1, M = 3 and
N ∈ {400, 800, 1200, 1600, 2000, 2400, 2800, 3200}, L = W = 30, R = 8.

FIGURE 13. Comparison of the time used by BMHGA when Gm increases from 1 to 20 for the test cases that N = {500, 1500, 2500}, L = W = 30, R = 8.

FIGURE 14. Comparison of the time used by BMHGA with Gm = 1 and different M, K for the test cases that N = {500, 1500, 2500}, L = W = 30, R = 8.

designed for the incomplete cover set. In order to demonstrate

the effectiveness of the proposed genetic operations, we com-

pare the performances of BMHGA with default settings,

without greedy initialization and without replace operation

and without backward mutation that is shown in Table 7. The

four algorithms are tested through executing theNO.1-9 cases

in Table 5. Though the former three algorithms can gain

the optimal results with 100% success rate, the convergence

speed of BMHGA with default settings is always fastest.

It validates that greedy initialization and replace operation

can speed up the process of searching to get optimal results.

The last algorithm obtains global optimal solutions in two

cases. The success rates of case 1 and case 9 are 80% and

100% respectively. It is evident that backward mutation can

jump out of local optima with great efficiency, and hence can

support the global search.

To further observe the effect of the density of the network

on the backward mutation and greedy initialization, we com-

pare the fitness values of initial chromosomes and average

executing times of backward mutation using vary redundancy
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TABLE 8. Comparison of decreasing values of redundancy rate η.

rate. In the paper, the redundancy rate η is calculated by

η =

∑N
i=1 ei

T
×

πR2

LW
(14)

where ei is the initial energy of sensor si.

As illustrated in Table 8, the redundancy rate η decreases

as the number of sensors N decreases with L × W =

20 × 20,R = 8,T = 100. The fitness value of the

initial population Finit , the executing times of backward

mutation(Backward) and the average running time(Time)

are related to the redundancy rate η. Since the density of

sensors in the area reduces, the number of complete cover

sets obtained by greedy initialization decreases, whereas

more backward mutation operations are needed that means

the probability of being trapped in local optima increases.

This observation proved that the complexity of the problem

depends on the redundancy rate. A small η will make a hard

search, which would result in local optima and hence increase

the executing times of backwardmutation(Backward). On the

other hand, when η is a large value, the global optima results

can be obtained quickly. Moreover, this conclusion can be

further verified by comparing the running time(Time) of

cases with different η.

VI. CONCLUSION

In the paper, we have designed a modified genetic algo-

rithm BMHGA for extending the lifetime of heterogeneous

WSNs. Different from the previous works, BMHGA uses the

two-level structured chromosomes to represent solutions. The

benefit of this chromosome is the specific scheduling of each

set and the detailed energy assignment of each sensor are

reflected in each chromosome. A greedy method is designed

to produce an initial population. This method only costs

O(c× N ) time complexity but can accelerate the searching

speed greatly. The novel mutation operations involving for-

ward mutation and backward mutation are developed. The

forward mutation can guarantee the diversity of chromo-

somes and the backward mutation can help jumping out of

local optima effectively. Simulations results are verified that

BMHGA is superior in the solution quality and computation

speed to other methods on different size of networks, in par-

ticular, the advantages of BMHGA are even more obvious in

large-scale networks.

As part of our future work, we will further investigate

the heterogeneous WSNs. Since there is still possibility for

reducing the time complexity of the greedy initialization,

in the future, we will seek a method which has faster conver-

gence speed so as to apply the proposed algorithm to larger

scale network. Moreover, BMHGA may be modified to con-

sider the sensors with different sensing ranges and different

transmission range. And to be practical for more application

scenarios, improving the fault tolerance of the algorithm is

necessary. Another direction is based on BMHGA, to design

a new algorithm for energy-efficient area coverage in

3D WSNs.
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