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Abstract
Firefly algorithm (FA) is a new random swarm search optimization algorithm that is modeled after movement and the
mutual attraction of flashing fireflies. The number of fitness comparisons and attractions in the FA varies depending on the
attraction model. A large number of attractions can induce search oscillations, while a small number of attractions can
cause early convergence and a large number of fitness comparisons that can add to the computational time complexity.
This study aims to offer H-GA–FA, a hybrid algorithm that combines two metaheuristic algorithms, the genetic algorithm
(GA) and the FA, to overcome the flaws of the FA and combine the benefits of both algorithms to solve engineering design
problems (EDPs). In this hybrid system, which blends the concepts of GA and FA, individuals are formed in the new
generation not only by GA processes but also by FA mechanisms to prevent falling into local optima, introduce sufficient
diversity of the solutions, and make equilibrium between exploration/exploitation trends. On the other hand, to deal with
the violation of constraints, a chaotic process was utilized to keep the solutions feasible. The proposed hybrid algorithm
H-GA–FA is tested by well-known test problems that contain a set of 17 unconstrained multimodal test functions and 7
constrained benchmark problems, where the results have confirmed the superiority of H-GA–FA overoptimization search
methods. Finally, the performance of the H-GA–FA is also investigated on many EDPs. Computational results show that the
H-GA–FA algorithm is competitive and better than other optimization algorithms that solve EDPs.
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1. Introduction

The engineering design problems (EDPs) are extremely signifi-
cant from both the manufacturing and scientific perspectives,
where it is a very important and challenging area especially in
the field of engineering for getting designs that have efficient
form and are more accurate. Generally, EDPs are treated as non-
linear constrained optimization problems (NCOPs). Oftentimes,
the complex nature of constraints leads to that solving NCOPs is

very difficult and the problem feasible region may be a thin sub-
set of the search domain. There is no exact method of locating
the global optimal to the general NCOP (Michael, 2008).

Traditionally, NCOPs are solved by some efficient methods
such as recursive quadratic programming, projection method,
generalized reduced gradient method, penalty method, and a
multiplier method (Rao, 2009). To use these methods, the ob-
jective function must be differentiable and the feasible set is
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convex. In addition, traditional methods are not efficient since
they may only compute local optima. So, it is very hard to apply
these methods to problems that its feasible region is not convex
or the objective function is not differentiable. Moreover, we find
that most of EDPs are discontinuities problems and their search
space is noise, which makes traditional methods unable to find
the global solutions for this kind of problem. Generally, we can
say that conventional optimization methods depend on the ex-
istence of the derivative, local in scope, and they are not suffi-
ciently robust in discontinuous, noisy, and multimodal search
spaces (Michalewicz, 1994).

There are optimization methods that have appeared, which
are completely dissimilar from the conventional methods and
labeled as nontraditional or metaheuristic algorithms. They are
considered popular methods to solve NCOPs. These methods
simulated the behavior and characteristics of molecular, biolog-
ical, swarms, and neurobiological systems. Furthermore, they
can conquer the restrictions and difficulties of conventional
techniques. In addition, these metaheuristic algorithms are sim-
ple in concepts, have a low probability to fall into local optima,
and require simple information about the optimization problem
without requiring that the objective function or the constraints
are derivable or continuous (Onwubolu & Babu, 2004).

Researchers have relied on metaheuristic algorithms based
on simulations for solving EDPs. The main feature of these al-
gorithms is that they merge randomness and rules to simulate
natural phenomena. Among the existing metaheuristic algo-
rithms, famous algorithms are simulated annealing (SA; Alrefaei
& Diabat, 2009), differential evolution (DE; Parouha & Das, 2016),
genetic algorithms (GAs; El-Desoky et al., 2016; El-Shorbagy
et al., 2017, 2019a, b), artificial immune system (Saurabh &
Verma, 2016), neural network-based methods (Zhou, 2005), par-
ticle swarm optimization (PSO; El-Shorbagy, 2010; El-Shorbagy
& Mousa, 2017; El-Shorbagy & Hassanien, 2018), ant colony opti-
mization (ACO; Dorigo & Stützle, 2004), artificial bee colony (ABC;
Karaboga, 2005), bacterial foraging algorithm (Passino, 2002;
Zhao & Wang, 2016), evolution strategies (ESs; Beyer & Schwe-
fel, 2002), glowworm swarm optimization algorithm (Marinaki
& Marinakis, 2016), firefly algorithm (FA; Verma & Mukherjee,
2016), monkey algorithm (MA; Zhou et al., 2016), krill herd al-
gorithm (KHA; Bolaji et al., 2016), whale optimization algorithm
(WOA; Mirjalili & Lewis, 2016), sine cosine algorithm (SCA; Abo-
elnaga & El-Shorbagy, 2020; El-Shorbagy et al., 2020), grasshopper
optimization algorithm (GOA; Saremi et al., 2017), monarch but-
terfly optimization (Ghetas et al., 2015), slime mould algorithm
(Li et al., 2020), moth search algorithm (Wang, 2018), hunger
games search (Yang et al., 2021), Runge–Kutta method (Ahma-
dianfar et al., 2021), Harris hawks optimization (Alabool et al.,
2021), salp swarm algorithm (Mirjalili et al., 2017), grey wolf op-
timizer (Gupta & Deep, 2020), tunicate swarm algorithm (Kaur
et al., 2020), seagull optimization algorithm (SOA; Dhiman &
Kumar, 2019), gravitational search algorithm (GSA; Rashedi et
al., 2009), spherical search optimizer (Zhao et al., 2020), equi-
librium optimizer (El-Shorbagy & Mousa, 2021), backtracking
search algorithm (Nama et al., 2021), teaching-learning-based
optimization (TLBO; Rao et al., 2011), brain storm optimization
(Shi, 2011), bus transportation algorithm (Bodaghi & Samiee-
far, 2019), socio evolution and learning optimization algorithm
(Kumar et al., 2018), hummingbirds optimization algorithm
(Zhuoran et al., 2018), etc. The categorization of metaheuris-
tic algorithms based on algorithmic behaviors is depicted in
Fig. 1.

Although metaheuristic algorithms perform well compared
to traditional methods, they may encounter difficulties such

as being stuck in a local optimum, insufficient diversity of
solutions, and an imbalance between exploitation/exploration
trends in some complex cases. To overcome these weaknesses,
most of the researchers have proposed hybridization strategies
between metaheuristic algorithms to improve the solution qual-
ity, benefit from their advantages, and overcome any deficien-
cies such as hybrid ACO (Goel & Maini, 2018), hybrid GA (Nasr
et al., 2015; Al Malki et al., 2016), hybrid PSO (El-Shorbagy et al.,
2011), hybrid GOA (El-Shorbagy & Ayoub, 2021), hybrid GSO (Chen
et al., 2017), hybrid ABC (Jadon et al., 2017), hybrid BF (Turanoğlu &
Akkaya, 2018), hybrid FA (Ekinci et al., 2019), hybrid KHA (Abuali-
gah et al., 2017), hybrid MA (Marichelvam et al., 2017), hybrid SCA
(Wang et al., 2018), etc. Furthermore, these hybrid strategies have
various properties, such as providing robust algorithms with
faster performance and handling large optimization problems.
Also, they are one of the most interesting recent trends in opti-
mization.

The FA is one of the new metaheuristic algorithms that is
modeled according to the mutual attraction and movement of
flashing fireflies. It is commonly utilized in a wide range of opti-
mization issues. Depending on the attraction model in FAs, the
number of fitness comparisons and attractions varies. A large
number of attractions can induce search oscillations, a small
number can cause early convergence, and a large number of
fitness comparisons can add to the computational time com-
plexity. So we can conclude that FA has several limits, such as
(i) an imbalance between the processes of exploitation and ex-
ploration, (ii) an unstable convergence speed, and (iii) the pos-
sibility of falling into the local optimum. As a result, various
hybrid algorithms combining FA and other metaheuristic algo-
rithms have been presented in the literature. In Goel and Maini
(2018), a hybrid method called hybrid of ant colony and firefly al-
gorithms (HAFA) was created to solve one of the classic NP-hard
optimization problems: vehicle routing. It combines character-
istics of FA and ant colony system (ACS) techniques. FA was em-
ployed to look for the unknown solution space, while ACS served
as the core framework for HAFA. Furthermore, the pheromone
shaking technique was applied in ACS to minimize pheromone
stagnation on exploited locations, allowing it to escape from lo-
cal optima. The electromagnetism-like FA (EFA), a novel hybrid
between the electromagnetism-like algorithm (EM) and the FA,
is proposed in Le et al. (2019). Some of the benefits of EFA in-
clude (i) the use of modified formulas of interactive forces to in-
crease population diversification; (ii) to avoid becoming trapped
in infeasible domains, constraint violations are embedded in the
charges of all electromagnetic fireflies; and (iii) to balance EFA’s
exploration and exploitation abilities, a mechanism known as
“current-to-best” electromagnetic movement is combined with
traditional interactive movements. Aydilek (2018) proposed a hy-
brid algorithm combining firefly and PSO (HFPSO). The advan-
tages of both the particle swarm and the FA methods can be used
in the suggested approach to avoid becoming trapped in local
optima, where HFPSO examines the previous global best fitness
values to appropriately decide the commencement of the local
search phase. Al-Thanoon et al. (2019) introduce a hybrid firefly
method and PSO that can efficiently leverage the strengths of
both determining the best solution with outstanding classifica-
tion performance and escape from the local optimum. In Lieu et
al. (2018), the authors presented an adaptive hybrid evolutionary
firefly algorithm that is a hybridization of the DE algorithm and
the FA. To select an acceptable mutation strategy for an effective
tradeoff between the global and local search abilities, an auto-
matically adapted parameter is utilized. Furthermore, an elitist
strategy was used in the selection process to identify the best
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Figure 1: The categorization of metaheuristic algorithms based on algorithmic behaviors (Nama et al., 2021).

individuals. In Cheng et al. (2021), a novel attraction grouping
model is developed to eliminate FA difficulties, which may suc-
cessfully minimize the number of attractions and fitness com-
parisons, where the fireflies in the group with better fitness are
added with the supervision of the firefly with the best fitness.
In addition, a combination mutation operator is added to FA to
lessen the likelihood of stagnation and early convergence, as
well as to better balance the FA’s exploration and exploitation
capabilities. Finally, nature-inspired computing technique, GA,
is combined with the FA. In Sharma et al. (2021), an improved
clinical decision support system query is proposed that is a com-
bination between the FA and the controlled GA in a restricted
divergence environment. In Kaushik and Arora (2015), a firefly-
based GA is proposed for clustering problems, where the initial
population is selected from a pool of population on the basis of
the FA.

The GA is a metaheuristic algorithm that was established
in 1975 (Holland, 1975) and defined in 1989 (Goldberg, 1989)
as a competent global approach for addressing large optimiza-
tion problems based on natural selection, evolution, and genet-
ics. GA is highly suited to tackling optimization problems, and
academics continue to pay close attention to it. In Farag et al.
(2015), binary–real coded GA-based k-means clustering is pro-
posed for the unit commitment problem, in El-Shorbagy and
El-Refaey (2020) hybridization of the GOA with the GA is intro-
duced for solving a system of nonlinear equations, in Mousa et
al. (2020) steady-state sine cosine GA-based chaotic search was
proposed for nonlinear programming and engineering applica-
tions, and in Ayoub et al. (2020) cell blood image segmentation
based on the GA and k-means algorithm is presented. How-

ever, when solving complicated and massive systems, GA has
some drawbacks, including being highly sluggish, and hence it
is impossible to identify the global optimal solution where it ne-
cessitates an increase in the number of iterations. Hence, it is
suggested that the implementation of GA and FA in a hybrid
form results in superior characteristics, where GA with its op-
erators (ranking, selection, crossover, and mutation) has good
exploitation ability. However, FA constantly updates each solu-
tions’ position based on movement and the mutual attraction of
flashing fireflies. This indicates that FA is an excellent explorer.
As a result of this motivation, this paper makes the following
contributions:

1. Introducing a newfangled hybrid algorithm H-GA–FA for
solving engineering design issues (EDPs).

2. Presenting sufficient diversity of the solutions, and prevent-
ing H-GA–FA to fall into local optima by forming the new gen-
eration in H-GA–FA not only by GA processes but also by FA
mechanisms.

3. Making a balance between exploration/exploitation trends
in H-GA–FA by integrating GA’s exploitation and FA’s explo-
ration capabilities.

4. Adopting a chaotic repair procedure to tackle the constraints
and unfeasible solution.

5. Testing H-GA–FA by well-known test problems as well as sev-
eral EDPs.

6. Using Wilcoxon and Friedman tests to assess the significance
of the H-GA–FA findings.
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Figure 2: Global minimum and local minimum.

7. Showing that H-GA–FA, by computational results and statis-
tical analysis, is competitive and better than other optimiza-
tion algorithms.

The remainder of this paper is arranged as follows: In Section
2, the preliminaries about the problem are presented. In Section
3, the proposed methodology is described in detail. In Section 4,
computational experiments with discussions are done. In Sec-
tion 5, a brief conclusion is offered along with its future scope.

2. Preliminaries

The formulation of the EDPs is discussed in this section. As pre-
viously stated, EDPs are commonly expressed as NCOPs. NCOP’s
mathematical model is as follows:

Minimize or (maximize) f (X)
Subject to:

Ci (X) ≤ 0, i = 1, . . . , p, (1)

He (X) = 0, e = 1, . . . , m, (2)

Ld ≤ xd ≤ Ud, ∀d = 1, . . . , n, (3)

where f, C1, . . . , CP , H1, . . . , Hm are functions defined on ℝn,
X = (x1, . . . , xn) is a vector of n component subset of ℝn. The
above problem must be solved for the values of the variables
x1, . . . , xn that satisfy the restrictions and minimize or (max-
imize) the function f. The function f is the objective function
or the criterion function. If there are no constraints, the prob-
lem is called an unconstrained problem. Each of the constraints
Ci (X) ≤ 0 for i = 1, . . . , p is called an inequality constraint, and
each of the constraints He (X) = 0 for e = 1, . . . , m is called an
equality constraint. Ld represents the lower bounds and Ud the
upper bounds for the decision variables xd∀d = 1, . . . , n.

When solving NCOP, we seek a global solution rather than re-
lying on a local one. The local solution of an optimization prob-
lem is the optimal solution (either maximal or minimal) within
a nearby set of candidate solutions. However, the global opti-
mum is the best solution between every possible solution, not
just those in a particular zone of search region (Michalewicz,
1994). Definition 1 introduces the difference between a local so-
lution and a global solution. Figure 2 illustrates this definition.

Definition 1:
Let X = (x1, x2, ..., xn) be a feasible solution to a minimization

problem with objective function f (X) (Michalewicz, 1994). Then,
X is

1. A global minimum if f (X) ≤ f (Y) for every feasible point Y =
(y1, y2, ..., yn).

Figure 3: The GA’s flowchart.

2. A local minimum if f (X) ≤ f (Y) for all feasible points Y =
(y1, y2, ..., yn) sufficiently close to X.

3. Methodology

In this section, we provide a brief overview of both the GA and
the FA. The proposed algorithm is then thoroughly described.

3.1 Genetic algorithm

GA was first proposed in Holland (1975) as an optimization ap-
proach for locating the global or near-global optimal solution. It
starts with a group of chromosomes (solutions). Then, the op-
erators of genetic selection, crossover, and mutation are applied
one by one to get a new set of solutions. The quality of the newly
generated chromosomes is predictable to be better than the ini-
tial generation. These steps are repeated until the criterion of
termination is met. Algorithmically, GA main steps are described
as follows:

Step I: Randomly create an initial group of solutions so that
they are appropriate for the problem.

Step II: The fitness value of every solution, in the group, is
evaluated.

Step III: Generate a new group of solutions by repeating and
applying the following steps:

a) Two parents are selected from the group of solutions accord-
ing to the selection mechanism.

b) Crossover the parents to create new offspring.
c) New offsprings are mutated.

Step IV: If the satisfying criteria are met, stop; otherwise, go
to step II.

The flowchart that represents GA is shown in Fig. 3.

3.2 Firefly algorithm

The FA is a metaheuristic optimization technique that was pro-
posed in Yang (2008). FA simulates the social performance of fire-
flies in nature for solving optimization problems. The major ad-
vantage of FA is that all local modes, as well as global modes,
will be visited. This is due to the decreasing of light intensity
with distance, leading to that the attraction among fireflies can
be global or local, depending on the absorbing coefficient. So,
it has taken much interest and has been applied effectively to
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Figure 4: Flowchart of the FA.

solve a lot of optimization problems. The main steps of FA are
described as follows:

Step 1 Initialization:
A population of random N fireflies (solutions) is initialized

(K = 0), where the position of the i-th firefly in d-dimensional
space is denoted as Xi and represented as XK

i = (xi1, xi2, ..., xid).

Step 2 Evaluation:
Evaluate the fitness value [the light intensity I (XK

i )∀i =
1, ..., N] of each firefly in the population or simply I (XK

i ) =
f (XK

i )∀i = 1, ..., N.

Step 3 Determination of best solution:
For minimization problems, the firefly that has minimum

light intensity is the best solution Xb.
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Figure 5: Diagram depiction of H-GA–FA.

Step 4 Updating positions of fireflies:
For every firefly i = 1, ..., N and every firefly j = 1, ..., N Do:
If I (XK

j ) < I (XK
i ), the i-th firefly is attracted to the firefly j and

updating its position XK
i according to the following equation:

XK +1
i = XK

i + β0e(−γ r2
i j ) (XK

j − XK
i

) + αkεk,

ri j = ∣∣XK
i − XK

j

∣∣ =
√√√√ d∑

d=1

(
xK

id − xK
jd

)2
, (4)

where β0 is attractiveness at ri j = 0, γ is the light absorption co-
efficient, ri j is the Cartesian distance between the two fireflies i
and j, αk is a parameter controlling the step size, and εk is a vector
drawn from a Gaussian or other distribution.

Step 5 Updating the best solution Xb:
If any of the new positions for the fireflies XK +1

i ∀i = 1, ..., N is
better than the best solution Xb, i.e. I (XK +1

i ) < I (Xb)∀i = 1, ..., N,
then Xb = XK +1

i .

Step 6 Stopping condition:
If the stopping condition is satisfied, stop; otherwise, go to

step 4.
The flowchart that represents FA is shown in Fig. 4.

3.3 Hybrid genetic–firefly algorithm

This section shows the idea of the proposed algorithm H-GA–FA.
H-GA–FA integrates the benefits of the two metaheuristic algo-
rithms, GA and FA. FA has strong exploration capabilities since it
visits all local and global modes, and finds good solutions, while
GA has high exploitation capabilities where its operators (rank-
ing, selection, crossover, and mutation) make a comprehensive
change in the shape of the solutions, which makes the proposed
algorithm get out of the local optima when needed. Figure 5
describes the diagram depiction of the H-GA–FA. According to
Fig. 5, H-GA–FA is initiated by an initial population. Assuming
the initial population contains 4N individuals that are randomly
generated. The 4N individuals are arranged by fitness. The top
2N individuals (the best individuals) are used by GA as chromo-
somes to generate 2N new individuals by its operators (Fig. 3).
The reason for this is that the best solutions may be located in
the local optima and with the help of GA operators (crossover
and mutation), the best solutions can escape the local optima.

However, the other 2N individuals (the worst individuals) with
the 2N individuals generated by GA are used by FA as fireflies to
generate 2N new fireflies (Fig. 4), which leads to an improved va-
riety of solutions. In addition, FA’s exploration capabilities can
move the worst solutions to better areas in the search space,
which leads to rapidly converging to the optimal solution. The
process of enhancing the 2N fireflies in FA includes the deter-
mination of the best solution. The generated 4N individuals are
arranged to prepare to repeat the previous steps. H-GA–FA is
ended either when the maximum number of generations Kmax
is completed or when the individuals’ convergence occurs. Con-
vergence occurs when all individuals’ positions are identical. In
this case, updating the position of any individual will have no
further effect.

By using a simple optimization problem, we show how H-GA–
FA works as follows:

Minimizing F (x, y) = x2 + y2 subject to −1 ≤ x, y ≤ 1
Then, the procedures described above are repeated until the

maximum number of iterations is reached.

3.3.1 Repairing infeasible solution by a chaotic process
A chaotic process is used to violate the constraint, where it re-
pairs any infeasible solution in the population at each genera-
tion. To begin, an initial reference point R is specified as any fea-
sible solution in the search area. Then, if the new position XK +1

i

obtained in any generation is infeasible, it is chaotically repaired
according to the following equation:

XK +1
i = φt × XK +1

i + (1 − φt) × R. (5)

Or according to the following equation:

XK +1
i = φt × R + (1 − φt) × XK +1

i , (6)

where φ is a chaotic number that is created by the following
chaotic logistic map (Mousa et al., 2021):

φt+1 = cφt (1 − φt) ; c = 4, x0 ∈ (0, 1) and φ0 /∈ {0.0, 0.25, 0.5, 0.75, 1.0} ,

(7)

where t is the age of the infeasible position.
In other words, the feasibility for each newly generated solu-

tion XK +1
i is checked. If it is infeasible, the chaotic φ parameter
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Step 1: Initialize population: H-GA–FA is initiated by an initial population. We assume that the initial population contains four individuals that
are randomly generated.

Initialization 4N, N = 1

(x, y) [−0.4096, 0.3408] [−0.8488, 0.5966] [−0.8138, 0.1217) [−0.3467, −0.4951]
F (x, y) 0.2839 1.0763 0.6770 0.3653

Step 2: Ranke the population: The four individuals are arranged by fitness.

Ranke the population Best 2N (GA) Worst 2N (FA)

(x, y) [−0.4096, 0.3408] [−0.3467, −0.4951] [−0.8138, 0.1217] [−0.8488, 0.5966]
F (x, y) 0.2839 0.3653 0.6770 1.0763

Step 3: GA process: The best two individuals are used by GA as chromosomes to generate two new individuals by its operators.

GA process Parent New offspring

(x, y) [−0.4096, 0.3408] [−0.3467, −0.4951] [−0.4290, 0.1720] [−0.0644, 0.4932]
F (x, y) 0.2839 0.3653 0.2136 0.2474

Step 4: FA process: The other two worst individuals with the two individuals generated by GA are used by FA as fireflies to generate two new
fireflies.

FA process Old fireflies New offspring of GA

(x, y) [−0.8138, 0.1217] [−0.8488, 0.5966] [−0.4290, 0.1720] [−0.0644, 0.4932]
F (x, y) 0.6770 1.0763 0.2136 0.2474

New fireflies
(x, y) [−0.4096, 0.3408] [−0.3283, 0.0480]
F (x, y) 0.2839 0.1101
New generated population 4N, N = 1
(x, y) [−0.4290, 0.1720] [−0.0644, 0.4932] [−0.4096, 0.3408] [−0.3283, 0.0480]
F (x, y) 0.2136 0.2474 0.2839 0.1101

is implemented as in equations (5)–(7), where t is increased with
the number of failed trials to keep the feasibility of the solution.

3.3.2 Computational complexity of the H-GA–FA algorithm
When evaluating the process time of any metaheuristic op-
timization method, it is critical to consider the computa-
tional complexity, which is related to the algorithm’s struc-
ture and implementation. It should be noted that the com-
putational cost of the suggested H-GA–FA is primarily de-
termined by three factors: the process of the initialization,
fitness function evaluation, and updating the solutions. The
complexity of the initialization process is O(4N), where 4N
shows the population size. The complexity of updating so-
lutions by GA is O(K max × 2N × n), where Kmax indicates it-
erations and n is the number of parameters in the prob-
lem (dimension). The complexity of updating solutions by FA
is O(K max × 4N × n). Therefore, the computational complexity
of updating solutions is O(K max × 2N × n) + O(K max × 4N × n).
Hence, the computational complexity of the proposed H-GA–
FA is O(4N) + O(K max × 2N × n) + O(K max × 4N × n). In the next

section, various benchmark test functions and real optimiza-
tion problems are used to validate and confirm the perfor-
mance of the proposed H-GA–FA in addressing optimization
problems.

4. Computational Experiments

In this section, a suite of test problems, which have different
characteristics and are widely used in the literature, are used
to benchmark the performance of the proposed algorithm H-
GA–FA and demonstrate its robustness and efficiency. These test
problems are divided into three groups: 17 unconstrained mul-
timodal test functions (available in Appendix A), 7 constrained
benchmark problems (available in Appendix B), and many EDPs.
The results were compared with popular algorithms that solve
this type of problem.

The maximization problem is solved as a minimization prob-
lem by transforming − f (X) to − f (X). The equality constraints
were handled by a reduction strategy (Rao, 2009). To show how
this strategy works, we provide an illustrative example. Consider
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The generated four individuals are arranged to prepare to repeat the previous steps as follows:

Ranke the population Best 2N (GA) Worst 2N (FA)

(x, y) [−0.3283, 0.0480] [−0.4290, 0.1720] [−0.0644, 0.4932] [−0.4096, 0.3408]
F (x, y) 0.1101 0.2136 0.2474 0.2839
GA process Parent New offspring
(x, y) [−0.3283, 0.0480] [−0.4290, 0.1720] [−0.4281, 0.1229] [−0.3874, 0.0568]
F (x, y) 0.1101 0.2136 0.1983 0.1533
FA process Old fireflies New offspring of GA
(x, y) [−0.0644, 0.4932] [−0.4096, 0.3408] [−0.4281, 0.1229] [−0.3874, 0.0568]
F (x, y) 0.2474 0.2839 0.1983 0.1533

New fireflies
(x, y) [−0.1866, −0.1369] [−0.2567, −0.0457]
F (x, y) 0.0536 0.0680
New generated population 4N, N = 1
(x, y) [−0.4281, 0.1229] [−0.3874, 0.0568] [−0.1866, −0.1369] [−0.2567, −0.0457]
F (x, y) 0.1983 0.1533 0.0536 0.0680
Ranke the population Best 2N (GA) Worst 2N (FA)
(x, y) [−0.1866, −0.1369] [−0.2567, −0.0457] [−0.4281, 0.1229] [−0.3874, 0.0568]
F (x, y) 0.0536 0.0680 0.1983 0.1533
GA process Parent New offspring
(x, y) [−0.1866, −0.1369] [−0.2567, −0.0457] [−0.1146, 0.0050] [−0.1556, −0.0380]
F (x, y) 0.0536 0.0680 0.0132 0.0256
FA process Old fireflies New offspring of GA
(x, y) [−0.4281, 0.1229] [−0.3874, 0.0568] [−0.1146, 0.0050] [−0.1556, −0.0380]
F (x, y) 0.1983 0.1533 0.0132 0.0256

New fireflies
(x, y) [−0.0315, 0.0315] [−0.0505, 0.0146]
F (x, y) 0.0020 0.0028
New generated population 4N, N = 1
(x, y) [−0.1146, 0.0050] [−0.1556, −0.0380] [−0.0315, 0.0315] [−0.0505, 0.0146]
F (x, y) 0.0132 0.0256 0.0020 0.0028

the following constrained problem:

Min f (X) = x2
1 + x2

2

Subject to : x1 − 3 = 0

− x2 + 2 ≤ 0

− 10 ≤ xi ≤ 10, i = 1, 2. (8)

From equation (8), we can obtain a relationship x1 = 3 from
the equality constraint. The constrained problem presented in
(8) can be transformed into

Min f = 9 + x2
2

Subject to : − x2 + 2 ≤ 0
− 10 ≤ x2 ≤ 10.

(9)

In comparison, the solution space of constrained problem (8)
is 2D, and an equality constraint has to be considered during
the solution search process. However, the solution space of con-
strained problem (9), processed by reduction strategy, becomes
one dimensional with only one bound inequality constraint. No-
ticeably, the complexity of the original constrained problem is
reduced.

Simulations of the proposed algorithm H-GA–FA and numer-
ical solutions are coded in the MATLAB programming software
and run on an Intel(R) Core (TM) i3 CPU M430 @ 2.4 GHz proces-
sor, installed memory (RAM): 3.00 GB. The parameters used in
the execution of H-GA–FA are listed in Table 1.

4.1 Results for unconstrained multimodal test
functions

The unconstrained multimodal test functions have many opti-
mum solutions, where one of them is called global optimum and
the others are called local optimum. Any algorithm should avoid
all local optima to determine and access the global optimum.
These test functions are more difficult than unimodal test func-
tions, Also, they are more difficult than unimodal test functions,
where it is not easy to get the globally optimum solution.

The unconstrained multimodal test functions were solved by
five algorithms: continuous GA (CGA; Chelouah & Siarry, 2000),
continuous hybrid algorithm (CHA; Chelouah & Siarry, 2003), hy-
brid GA and PSO (H-GA–PSO; Kao & Zahara, 2008), integrating
PSO–GA (Abd-El-Wahed et al., 2011), and the proposed algorithm
H-GA–FA.

Table 2 shows the results for the unconstrained multimodal
test functions. In Table 2, we can see a comparison between the
solutions obtained by the proposed algorithm H-GA–FA and the
best-known solutions, where H-GA–FA found the best-known
solutions in 13 multimodal test functions (RC, B2, ES, GP, SH, DJ,
S4,5, R2, R5, R10, Z2, Z5, and Z10). In the other four multimodal
test functions, H-GA–FA found solutions very close to the best-
known solutions in H6,4, S4,7, and S4,10, while in H3,4 H-GA–FA
found a solution better than the best-known solution.

Also, in Table 2, we can see the calculated average error
for the proposed algorithm H-GA–FA and the other approaches
mentioned above. As a result of Table 2, the average error of H-
GA–FA is smaller than those of other comparison algorithms in
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Table 1: The parameters used in the execution of H-GA–FA.

Parameter Notation Value

Initialization Size of population (individuals) 4N 40
Generations maximum number (iterations) Kmax 60–400

FA Initial attractiveness β0 1
The light absorption coefficient γ 1
The step size factor α 0.95

GA
Selection operator Stochastic universal sampling
Crossover operator Single-point crossover
Crossover rate Pc 0.8
Mutation operator Real value mutation
Mutation rate Pm 0.06

Table 2: Results for unconstrained multimodal test functions.

Test function
Best-known solution

Solution calculated by
H-GA–FA

Average error

CGA CHA H-GA–PSO
Integrating

PSO–GA H-GA–FA

RC 0.397887 0.397887 0.0001 0.0001 0.00009 4.59E-7 0
B2 0 0 0.0003 0.0000002 0.00001 1E-25 0
ES −1 −1 0.0010 0.0010 0.00003 1E-30 0
GP 3 3 0.0010 0.0010 0.00012 −6.3060E-14 0
SH −186.7309 −186.7309 0.0050 0.0050 0.00007 8.83064E-6 0
DJ 0 0 0.0002 0.0002 0.00004 8.443663E-15 0
H3,4 −3.86278 −3.863433477876346 0.0050 0.0050 0.00020 3E-05 1.6917E-04
H6,4 −3.32237 −3.322368 0.0400 0.0080 0.00024 2E-6 6.0198E-07
S4,5 −10.1532 −10.1532 0.1400 0.0090 0.00014 0 0
S4,7 −10.40294 −10.40291634 0.1200 0.0100 0.00015 2E-05 2.2744E-06
S4,10 −10.53641 −10.53638558 0.1500 0.0150 0.00012 2E-05 2.3177E-06
R2 0 0 0.0040 0.0040 0.00064 1E-30 0
R5 0 0 0.1500 0.0180 0.00013 1E-20 0
R10 0 0 0.0200 0.0080 0.00005 1E-18 0
Z2 0 0 0.000003 0.000003 0.00005 1E-15 0
Z5 0 0 0.0004 0.00006 0.00000 1E-17 0
Z10 0 0 0.000001 0.000001 0.00000 1E-25 0

all test functions except in H3,4 where H-GA–FA found a solution
better than the best-known solution of this test function.

4.2 Results for constrained benchmark problems

Constrained benchmark problems are available in Appendix
B, where the details, the variable bounds, objective function,
and constraints, of all problems are displayed. The constrained
benchmark problems were solved by three algorithms: Aug-
mented Lagrange PSO (ALPSO; Sedlaczek & Eberhard, 2005),
chaotic genetic algorithm (CGA; El-Shorbagy et al., 2016), and the
proposed algorithm H-GA–FA. As in ALPSO and CGA, the con-
strained benchmark problems were solved, by the proposed al-
gorithm H-GA–FA, 30 independent times.

Table 3 shows the results for the constrained benchmark
problems, where a comparison is made between the known op-
timal solutions for these problems and best solutions obtained
by the three algorithms: ALPSO, CGA, and H-GA–FA. Accord-
ing to Table 3, the proposed algorithm H-GA–FA found the op-
timum solution in five cases (C1, C2, C3, C5, and C7), just like
CGA, and outperformed ALPSO in C1 and C2. In C4, the H-GA–FA
method obtained a solution that was close to the optimal so-
lution. However, H-GA–FA achieved a solution that was near to

the optimal solution in the test issue C6, which was not solved
by CGA or ALPSO. In general, it can be said that the proposed al-
gorithm H-GA–FA is capable of solving constrained benchmark
problems, reaching the optimal solution, and showing superior
performance compared to other algorithms.

4.3 Results for engineering design problems

In this subsection, the proposed algorithm performance is in-
vestigated in many EDPs that are the gear train design, can-
tilever design, pressure vessel design, welded beam design, ten-
sion/compression spring design, and speed reducer design. Each
of the EDPs was solved 100 times independently, as in other
compared algorithms. Statistically, to evaluate the proposed
algorithm H-GA–FA, statistical measures have been recorded,
which are the worst value, mean deviation value, best value,
and standard deviation (SD), and we compare them to other
algorithms. In addition, the number of function evaluations
(NFEs) (computational cost) is determined by multiplying the
number of 4N individuals that are randomly generated and the
number of iterations. In other words, in this paper, the NFEs
are considered as the value corresponding to the best-obtained
solution.
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Table 3: Results for constrained benchmark problems.

Constrained benchmark problems
Known optimal

solution
Best solution of

ALPSO CGA H-GA–FA

C1 13.0000 12.9995 13.0000 13.0000
C2 0.01721 0.01719 0.01721 0.01721
C3 −0.09583 −0.09583 −0.09583 −0.09583
C4 −6961.81 −6963.57 −6961.804 −6961.80211
C5 0.75 0.75 0.75 0.75
C6 1.000 NA NA 1.000001
C7 −30665.5 −30 665.5 30665.8 −30 665.5

Figure 6: Gear train design problem (Gandomi et al., 2013).

A. The gear train design problem:
The aim, of this problem, is to locate the optimal number of

the teeth for four gears (nA ← x1, nB ← x2, nC ← x3, nD ← x4) to
minimize the gear ratio cost (nB nC /nDnA) of a gear train as shown
in Fig. 6 (Gandomi et al., 2013). The mathematical description of
this problem is as follows:

Min f (x) =
(

1
6.931

− x2x3

x1x4

)2

Subject to : 12 ≤ xi ≤ 60, i = 1, 2, 3, 4.

(10)

In this problem, the constraints just are lower and upper
limits on the previous design variables. However, these design
variables are in a discrete form where each gear must have an
integer tooth number, which increases the complexity of the
problem. In the proposed algorithm, every search solution was
rounded to the nearby integer number previous to the step of
evaluation.

This problem is solved by many algorithms such as cuckoo
search (CS; Gandomi et al., 2013), mine blast algorithm (MBA;
Sadollah et al., 2013), interior search algorithm (ISA; Gan-

domi, 2014), GA (Wu & Chow, 1995), combined genetic adap-
tive search (GeneAS; Deb & Goyal, 1996), augmented Lagrange
multiplier (ALM; Kannan & Kramer, 1994) and ant lion opti-
mizer (ALO; Mirjalili, 2015), unified PSO (UPSO; Parsopoulos &
Vrahatis, 2005), and ABC (Akay & Karaboga, 2012). Table 4 ex-
plains a comparison of the best-optimized design variables
and the best function value found by these algorithms, the
original FA, the original GA, and the proposed algorithm H-
GA–FA. Table 5 gives the statistical results using the differ-
ent optimizers. In addition, Fig. 7 demonstrates the conver-
gence curves of gear ratio cost (function values) versus the
iteration number for the original FA, the original GA, and
H-GA–FA.

Results show that H-GA–FA can solve discrete real problems
efficiently where it found a design with the optimal value identi-
cal to that of ALO and outperforms other algorithms. Also, from
the values of best, worst, mean, and SD, we can see that the so-
lution accuracy and stability of H-GA–FA are better than other
algorithms. Furthermore, H-GA–FA gives a new (design) solu-
tion ( nA = 36, nB = 12, nC = 16, nD = 37) with an acceptable
value for the function value. Finally, Fig. 7 shows that H-GA–FA
has fast convergence to reach a solution better than original FA
and original GA.

B. Cantilever beam design problem
As shown in Fig. 8, this design problem consists of five hollow

elements with a square-shaped cross-section (Mirjalili, 2015).
Every element is expressed as a variable, whereas the thick-
ness is considered constant. So the problem includes five struc-
tural parameters and only one perpendicular displacement con-
straint. From Fig. 8, we can see that there is a perpendicular load
applied to node 6 and node 1 is strictly supported. This problem
aims to minimize the weight of this beam that is subject to one
constraint; where the final optimal design must be fulfilled this

Table 4: Comparisons for gear train design problem.

Method x1 x2 x3 x4 f (x) NFEs

CS 43 16 19 49 2.7009E-012 5000
MBA 43 16 19 49 2.700857E-012 10 000
ISA NA NA NA NA 2.7009E-012 200
GA NA NA NA NA 2.33E-07 10 000
GeneAS 33 14 17 50 1.362E-09 NA
ALM 33 15 13 41 2.1469E-08 NA
ALO 49 19 16 43 2.7009E-012 120
Original FA 33 15 13 41 2.1469E-08 6000
Original GA 33 14 17 50 1.362E- 09 6000
The proposed algorithm H-GA–FA 49 19 16 43 2.7009E-012 6000

36 12 16 37 1.8274E-08 6000

Note. “NA” means that the result is not available.
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Table 5: Statistical result comparison for gear train problem.

Method Worst Mean Best SD NFEs

Unified PSO (UPSO) NA 3.805620E-08 2.700857E-12 1.09E-07 100 000
ABC NA 3.641339E-10 2.700857E-12 5.52E-10 60
MBA 2.062904E-08 2.471635E-09 2.700857E-12 3.94E-09 1120
H-GA–FA 2.0453E-09 2.156400E-010 2.7009E-012 1.49E-010 6000

Note. “NA” means that the result is not available.

Figure 7: Convergence curve of gear ratio cost versus the iteration number for
the original FA, the original GA, and H-GA–FA.

constraint. The mathematical formulation of this problem is as
follows:

Min f (x) = 0.6224x1 + x2 + x3 + x4 + x5

Subject to :
61
x3

1

+ 37
x3

2

+ 19
x3

3

+ 7
x3

4

+ 1
x3

5

≤ 1

0.01 ≤ xi ≤ 100, i = 1, 2, ..., 5.

(11)

This problem is solved by many algorithms such as symbi-
otic organisms search (SOS; Cheng & Prayogo, 2014), CS (Gan-
domi et al., 2013), method of moving asymptotes (MMA; Chick-
ermane & GEA, 1996), generalized convex approximation (GCA I;
Chickermane & GEA, 1996), GCA II (Chickermane & GEA, 1996),
enhanced leader PSO (ELPSO; Jordehi, 2015), WOA (Zhou et al.,
2018), improved WOA based on a Lévy flight trajectory (LWOA;
Zhou et al., 2018), and ALO (Mirjalili, 2015). Table 6 illustrates the
comparison of the best optimal design variables and the best
function value obtained by H-GA–FA and these algorithms. Sta-
tistical results of this problem using the different algorithms are
shown in Table 7, while Fig. 9 demonstrates the convergence
curve of the weight of this beam (function values) versus the iter-
ation number for the original FA, the original GA, and H-GA–FA.

Results explain that H-GA–FA outperforms other algorithms,
where the obtained weight by H-GA–FA is less than that obtained
by other algorithms. This shows that H-GA–FA has a high perfor-
mance in bringing the global best solution to this problem. Also,
Fig. 9 shows that H-GA–FA has fast convergence to reach a so-
lution better than original FA and original GA. In addition, from
the values of best, worst, mean and SD, we can see that the solu-
tion accuracy and stability of the proposed algorithm are better
than other algorithms. Finally, the maximum number of func-
tion evaluations in Tables 6 and 7 demonstrates the superiority
of H-GA–FA over the other algorithms, where it found the global

Figure 8: Cantilever beam design problem (Mirjalili, 2015).

Table 6: Comparisons for the cantilever design problem.

Algorithm Optimal values for variables Optimum weight NFEs

x1 x2 x3 x4 x5 f (x)

SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 15 000
CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 2500
MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 NA
GCA I 6.0100 5.30400 4.4900 3.4980 2.1500 1.3400 NA
GCA II 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 NA
ELPSO 6.0160 5.3092 4.4943 3.5015 2.1527 1.34000 NA
WOA 5.9518 5.0649 4.6744 3.5476 2.2916 1.34350 NA
LWOA 6.0105 5.3470 4.4468 3.5165 2.1546 1.34000 NA
ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 14 000
Original FA 6.134208 5.35598 4.527011 3.378503 2.102520 1.33804996 2400
Original GA 6.197047 5.41243 4.413968 3.419296 2.064024 1.33858163 2400
H-GA–FA 6.017563478 5.311392298 4.497733036 3.494192221 2.152821173 1.336523225 2400

Note. “NA” means that the result is not available.
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Table 7: Statistical result comparison for the cantilever design problem.

Method Worst Mean Best SD NFEs

ELPSO 1.3400 1.3400 1.3400 0.00001755 NA
WOA 1.4865 1.3668 1.3435 0.0270 NA
LWOA 1.349137 1.34101 1.3400 0.002208 NA
H-GA–FA 1.343678930 1.340121354 1.336523225 0.0008745 2400

Note. “NA” means that the result is not available.

Figure 9: Convergence curve of cantilever beam weight versus the iteration num-
bers for the original FA, the original GA, and H-GA–FA.

Figure 10: Pressure vessel design problem (Sadollah et al., 2013).

optimum solution for this problem in the fewest number of func-
tion evaluations.

C. Pressure vessel design problem
As shown in Fig. 10, this design problem is specific to a cylin-

drical vessel that is capped at both ends by hemispherical heads
(Sadollah et al., 2013). It was proposed in Kannan and Kramer
(1994) and aims to minimize the total cost, containing the cost
of welding, forming, and material. It contains four design vari-
ables: the shell thickness Ts (x1), head thickness Th (x2), inner
radius R (x3), and the cylindrical section length of the vessel
with no head L (x4). The two variables R and L are continuous,
while the other two variables Ts and Th are expected to be in-
teger multiples of 0.0625 inch that is the available thickness of
the rolled steel plates. This problem is written mathematically
as

Min f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1 x4 + 19.84x2
1 x3

Subject to : − x1 + 0.0193x3 ≤ 0
− x2 + 0.00954x3 ≤ 0

− πx2
3 x4 − 4

3
πx3

3 + 1296 000 ≤ 0

x4 − 240 ≤ 0
1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625
10 ≤ x3, x4 ≤ 200.

(12)

Previously, this problem is solved using other algorithms
such as GA-based co-evolution model (GA3; Coello, 2000), GA
through the use of dominance-based tour tournament selection
(GA4; Coello & Montes, 2002), co-evolutionary PSO (CPSO; He &
Wang, 2006), hybrid PSO (HPSO; He & Wang, 2007), hybrid Nelder-
Mead simplex search and PSO (NM-PSO; Zahara & Kao, 2009),
Gaussian quantum-behaved PSO (G-QPSO; Coelho, 2010), PSO
with DE (PSO-DE; Liu et al., 2010), UPSO (Parsopoulos & Vrahatis,

Table 8: The comparisons for pressure vessel design problem.

Method Design variables f (x)

Ts Th R L

GA3 0.8125 0.4375 40.3239 200.0000 6288.7445
GA4 0.8125 0.4375 42.0974 176.6540 6059.9463
CPSO 0.8125 0.4375 42.0913 176.7465 6061.0777
HPSO 0.8125 0.4375 42.0984 176.6366 6059.7143
NM-PSO 0.8036 0.3972 41.6392 182.4120 5930.3137
G-QPSO 0.8125 0.4375 42.0984 176.6372 6059.7208
MBA 0.7802 0.3856 40.4292 198.4964 5889.3216
Original FA 0.862732839386900 0.426319500657094 44.6836939800188 147.117669089838 6049.94158296718
Original GA 0.924760935072174 0.457064486928402 47.8982898850724 116.128691460803 6193.19736445249
H-GA–FA 0.778169505064424 0.384649589721359 40.3196634724738 199.999377073430 5885.33425081451
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Table 9: Statistical result comparison for pressure vessel design problem.

Method Worst Mean Best SD NFEs

GA3 6308.4970 6293.8432 6288.7445 7.4133 900 000
GA4 6469.3220 6177.2533 6059.9463 130.9297 80 000
CPSO 6363.8041 6147.1332 6061.0777 86.45 240 000
HPSO 6288.6770 6099.9323 6059.7143 86.20 81 000
NM-PSO 5960.0557 5946.7901 5930.3137 9.161 80 000
G-QPSO 7544.4925 6440.3786 6059.7208 448.4711 8000
PSO-DE NA 6059.714 6059.714 NA 42 100
UPSO NA 9032.55 6544.27 995.573 100 000
ABC NA 6245.308 6059.714 205 30 000
(μ + λ)-ES NA 6379.938 6059.7016 210 30 000
TLBO NA 6059.71434 6059.714335 NA 10 000
MBA 6392.5062 6200.64765 5889.3216 160.34 70 650
H-GA–FA 5889.09968292685 5887.5687171994 5885.33425081451 1.05462 6000

Note. “NA” means that the result is not available.

Figure 11: Convergence curve of pressure vessel design cost versus the iteration
numbers for the original FA, the original GA, and H-GA–FA.

2005), ABC (Akay & Karaboga, 2012), (μ + λ)-ES (Mezura-Montes
& Coello, 2005), TLBO (Rao et al., 2011), and MBA (Sadollah et al.,
2013). Table 8 demonstrates the comparisons of the best solu-
tion, for the optimization of pressure vessel design problem, for
H-GA–FA and other reported algorithms, while statistical results
are given in Table 9. In addition, Fig. 11 demonstrates the con-
vergence curve of pressure vessel design cost (function values)
versus the iteration number for the original FA, the original GA,
and H-GA–FA.

Results show that H-GA–FA outperforms the other algo-
rithms, where the obtained total cost by H-GA–FA is less than
that obtained by other reported algorithms and illustrates that
it has high performance in bringing the global best solution to
this problem. Also, Fig. 11 shows that H-GA–FA has fast conver-
gence to reach a solution better than original FA and original GA.
In addition, from the values of best, worst, mean and SD, we can
see that the solution accuracy and stability of the proposed algo-
rithm are better than other reported algorithms. Finally, Tables 8
and 9 show that H-GA–FA has a low computational cost, where it
found the global optimum solution for this problem in the least
number of function evaluations.

D. The welded beam design problem
This design problem aims to optimize the designing cost of

the welded beam subject to several constraints such as shear
stress (τ ), bending stress (σ ), buckling load (P), end deflection
(δ), and side constraints (Cheng & Prayogo, 2014). As shown

Figure 12: The welded beam design problem (Sadollah et al., 2013).

in Fig. 12, this design problem includes four variables, which
are the weld thickness h(x1), attached part length of bar l(x2),
the bar height t(x3), and the bar thickness b(x4) (Sadollah et
al., 2013). The mathematical formulation of this problem is
written as

Min f = 1.10471h2l + 0.04811 t b(14 + l)

Subject to : τ − τmax ≤ 0 −→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ =
√

τ 2
1 + 2τ1τ2

(
l

2R

)
+ τ 2

2

τ1 = P√
2hl

τ2 = MR
J

τmax = 13 600psi

−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R = 1
2

√
l2 + h + t2

P = 6000 lb

M = P (L + 0.5)

J = 2

(
hl√

2

[
l2

12
+
(

h + t
2

)2
])

σ − σmax ≤ 0 −→

⎧⎪⎪⎨
⎪⎪⎩

σ = 6P L
bt2

σmax = 30 000psi

−→ {
L = 14 in

h − b ≤ 0, 0.125 − h ≤ 0

δ − 0.25 ≤ 0 −→
{
δ = 4P L3

E bt3
−→

{
E = 30 × 106psi

P − Pc ≤ 0 −→
{

Pc = 4.013
√

E Gt2b6

6L2

(
1 − t

2L

√
E

4G

)
−→

{
G = 12 × 106psi

0.1 ≤ h ≤ 2, 0.1 ≤ l, t ≤ 10, 0.1 ≤ b ≤ 2,

(13)

where τ1 is the primary stress, τ2 is the secondary stress,
τmax is the maximum permissible shear stress of the weld, L
is the length of the overhang portion of the beam, σmax is the
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Table 10: Comparisons for the welded beam design problem.

Method Design variables f (x)

h l t b

Developed HS 0.2442 6.2231 8.2915 0.2443 2.38
A penalty-guided ABC 0.24436198 6.21767407 8.29163558 0.24436883 2.38099617
ARSAGA 0.223100 1.5815 12.84680 0.2245 2.25
GP 0.245500 6.196000 8.273000 0.245500 2.385937
SSM 0.24436895 6.21860635 8.29147256 0.24436895 2.3811341
SC algorithm 0.244438276 6.237967234 8.2885761430 0.2445661820 2.3854347
GSA 0.22349476917 7.8278697763206 8.28377214722 0.25644859066 2.6628178327
LXGSA 0.24434783486 6.2153684818530 8.29452799679 0.24434813295 2.3810923303
PMGSA 0.24265157269 6.2768500252288 8.29587136937 0.24436429788 2.3858653166
LXPMGSA 0.24436873660 6.2174949128463 8.29150645150 0.24436873664 2.3809581283
Original FA 0.323828994417369 4.95633313479088 6.46449574776373 0.402014677676637 2.9442673784997
Original GA 0.326565801979975 4.44908967197571 7.10293125986479 0.332992262286482 2.6234928286527
H-GA–FA 0.24436897580 5.3104279688297 8.29147139048 0.24436897580 2.2326937762

Table 11: Statistical result comparison for the welded beam design problem.

Method Worst Mean Best SD

Developed HS NA NA 2.38 NA
A penalty-guided ABC 2.38146999 2.38108932 2.38099617 0.00010123
ARSAGA 2.28 2.26 2.25 NA
GP NA NA 2.385937 NA
SSM 2.3812614 2.3811786 2.3811341 NA
SC algorithm 6.3996785 3.2551371 2.3854347 0.9590780
GSA 4.658170101252 3.509128043982 2.662817832721 0.522504812259
LXGSA 2.798319913618 2.486396607177 2.381092330370 0.109157595213
PMGSA 2.634437273036 2.467970463125 2.385865316644 0.075590736939
LXPMGSA 2.537728435508 2.416140783674 2.38095812831348 0.045576480782
H-GA–FA 2.2330487596 2.2328875241 2.2326937762 0.009913753581

Note. “NA” means that the result is not available.

maximum permissible normal stress for the beam material, Pc

is the bar buckling load, M is called moment, and J is called the
polar moment of inertia.

This benchmark problem was solved by many other opti-
mizers such as developed harmony search (HS) algorithm (Lee
& Geem, 2005), a penalty-guided ABC algorithm (Garg, 2014), a
novel adaptive real-parameter simulated annealing genetic al-
gorithm (ARSAGA; Hwang & He, 2006), geometric programming
(GP; Ragsdell & Phillips, 1976), simplex search method (SSM;
Mehta & Dasgupta, 2012), society and civilization (SC) algorithm
(Ray & Liew, 2003), GSA, and three new variants of GSA, namely
LXGSA (Singh & Deep, 2017), PMGSA (Singh & Deep, 2017), and
LXPMGSA (Singh & Deep, 2017) by embedded Laplace crossover
and power mutation into GSA.

The comparison for the best solution given by H-GA–FA and
these algorithms is offered in Table 10, where the proposed al-
gorithm obtained the best solution f (x) = 2.2326937762, while
Table 11 explains the statistical results for optimization, where
the values of best, worst, mean, and SD indicated that the so-
lutions of the proposed algorithm are more accurate and sta-
ble than other algorithms. In addition, Fig. 13 shows the con-
vergence curve of the designing cost of the welded beam (func-
tion values) versus the iteration numbers for the original FA, the
original GA, and H-GA–FA. We can see that in the proposed H-
GA–FA algorithm, at the early iterations, the function values are
reduced close to the optimum point.

E. Tension/compression spring design problem
The goal of this optimization problem is to mini-

mize the weight of tension/compression spring according to

Figure 13: Convergence curve of designing cost of the welded beam versus the
iteration numbers for the original FA, the original GA, and H-GA–FA.

many constraints such as shear stress, minimum deflection,
surge frequency, outside diameter limits, and design variables.
The tension/compression spring contains three variables, which
are the wire diameter d(x1), the mean coil diameter D(x2), and ac-
tive coil number P (x3) as shown in Fig. 14 (Sadollah et al., 2013).
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Figure 14: Tension/compression spring design problem (Sadollah et al., 2013).

This problem can be described mathematically as

Min f (x) = (x3 + 2)x2x2
1

Subject to : 1 − x3
2 x3

71 785x4
1

≤ 0

4x2
2 − x1x2

12 566(x2x3
1 − x4

1 )
+ 1

5108x2
1

− 1 ≤ 0

1 − 140.45x1

x2
2 x3

≤ 0

x1 + x2

1.5
− 1 ≤ 0

0.05 ≤ x1 ≤ 2
0.25 ≤ x2 ≤ 1.3
2 ≤ x3 ≤ 15.

(14)

The methods that before used to solve this problem are
GA3 (Coello, 2000), GA4 (Coello & Montes, 2002), cultural algo-
rithms with evolutionary programming (CAEP; Coello & Becerra,
2004), UPSO (Parsopoulos & Vrahatis, 2005), CPSO (He & Wang,
2006), HPSO (He & Wang, 2007), NM-PSO (Zahara & Kao, 2009),

G-QPSO (Coelho, 2010), quantum-behaved PSO (QPSO; Coelho,
2010), PSO-DE (Liu et al., 2010), differential evolution with level
comparison (DELC; Wang & Li, 2010), differential evolution with
dynamic stochastic selection (DEDS; Zhang et al., 2008), hy-
brid evolutionary algorithm and adaptive constraint handling
technique (HEAA; Wang et al., 2009), SC algorithm (Ray & Liew,
2003), (μ + λ)-ES (Mezura-Montes & Coello, 2005), ABC (Akay &
Karaboga, 2012), TLBO (Rao et al., 2011), and MBA (Sadollah et al.,
2013).

The best solutions given by such algorithms are offered in
Table 12, where the proposed method obtained the best so-
lution f (x) = 0.012665 as most comparison algorithms. How-
ever, the statistical results for the optimization of the ten-
sion/compression spring design problem, given in Table 13,
show that the solutions resulting from the proposed algorithm
are accurate and consistent as most comparison methods. Also,
the maximum number of function evaluations in Table 13 shows
that H-GA–FA is competitive with other algorithms, as it is the
third-best value among the nineteen comparison methods. On
the other hand, Fig. 15 demonstrates the convergence curve of
tension/compression spring weight (function values) versus the
iteration numbers for the original FA, the original GA, and H-GA–
FA. We can see that H-GA–FA has fast convergence at the early
iterations to the optimal solution.

F. Speed reducer design problem
The goal of this design problem is to minimize the weight

of the speed reducer subject to several constraints such as the
stress of gear teeth bending, the stress of surface, the shafts’
transverse deflections, and stresses in the shafts. It includes

Table 12: Comparisons for tension/compression spring problem.

D.V. DELC DEDS CPSO HPSO NM-PSO G-QPSO HEAA MBA Original FA Original GA H-GA–FA

x1 0.051689 0.051689 0.051728 0.051706 0.051620 0.051515 0.051689 0.051656 0.06741053 0.05768662 0.05172433
x2 0.356717 0.356717 0.357644 0.357126 0.355498 0.352529 0.356729 0.355940 0.86479565 0.47742290 0.35756704
x3 11.288965 11.288965 11.244543 11.265083 11.333272 11.538862 11.288293 11.344665 9.56892128 8.83673351 11.2393464
g1 − 3.40E-09 1.45E-09 − 8.25E-04 − 3.06E-06 1.01E-03 -4.83E-05 3.96E-10 0 − 3.1750223 − 0.2096714 − 2.6645E-15
g2 2.44E-09 − 1.19E-09 − 2.52E-05 1.39E-06 9.94E-04 − 3.57E-05 − 3.59E-10 0 − 0.0012838 − 0.0679039 − 1.3323E-15
g3 − 4.053785 − 4.053785 − 4.051306 − 4.054583 − 4.061859 − 4.0455 − 4.053808 − 4.052248 − 0.3229989 − 3.0225234 − 4.0555
g4 − 0.727728 − 0.727728 − 0.727085 − 0.727445 − 0.728588 − 0.73064 − 0.727720 − 0.728268 − 0.3785292 − 0.6432603 − 0.7271
f (x) 0.012665 0.012665 0.0126747 0.0126652 0.0126302 0.012665 0.012665 0.012665 0.04546339 0.01721678 0.012665

Table 13: Statistical result comparison for tension/compression spring problem.

Method Worst Mean Best SD NFEs

GA3 0.0128220 0.0127690 0.0127048 3.94E-05 900 000
GA4 0.0129730 0.0127420 0.0126810 5.90E-05 80 000
CAEP 0.0151160 0.0135681 0.0127210 8.42E-04 50 020
CPSO 0.0129240 0.0127300 0.0126747 5.20E-04 240 000
HPSO 0.0127190 0.0127072 0.0126652 1.58E-05 81 000
NM-PSO 0.0126330 0.0126314 0.0126302 8.47E-07 80 000
G-QPSO 0.017759 0.013524 0.012665 0.001268 2000
QPSO 0.018127 0.013854 0.012669 0.001341 2000
DELC 0.012665575 0.012665267 0.012665233 1.3E-07 20 000
DEDS 0.012738262 0.012669366 0.012665233 1.3E-05 24 000
HEAA 0.012665240 0.012665234 0.012665233 1.4E-09 24 000
PSO-DE 0.012665304 0.012665244 0.012665233 1.2E-08 24 950
SC algorithm 0.016717272 0.012922669 0.012669249 5.9E-04 25 167
UPSO NA 0.02294 0.01312 7.20E-03 100 000
(μ + λ)-ES NA 0.013165 0.012689 3.9E-04 30 000
ABC NA 0.012709 0.012665 0.012813 30 000
TLBO NA 0.01266576 0.012665 NA 10 000
MBA 0.012900 0.012713 0.012665 6.30E-05 7650
H-GA–FA 0.012665 0.012665 0.012665 0 7000

Note. “NA” means that the result is not available.
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Figure 15: Convergence curve of tension/compression spring weight versus the
iteration numbers for the original FA, the original GA, and H-GA–FA.

Figure 16: Speed reducer design problem (Sadollah et al., 2013).

seven variables that represent the width of face b(x1), the teeth
module m(x2), the number of the teeth in the pinion z(x3), the first
shaft length between bearings l1(x4), the second shaft length be-
tween bearings l2(x5), the first shaft diameter d1(x6), and the sec-
ond shaft d2(x7) as shown in Fig. 16 (Sadollah et al., 2013). Math-

ematically, this problem can be described as

Min f (x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x2

6 + x2
7

) + 7.4777
(
x3

6 + x3
7

) + 0.7854
(
x4x2

6 + x5x2
7

)
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1.93x3
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x2x3x4
7

− 1 ≤ 0,
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745x4
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)2
+ 16.9 × 106

110x3
6

− 1 ≤ 0

√(
745x5
x2 x3

)2+157.5×106

85x3
7

− 1 ≤ 0,
x2x3

40
− 1 ≤ 0

5x2

x1
− 1 ≤ 0,

x1

12x2
− 1 ≤ 0

1.5x6 + 1.9
x4

− 1 ≤ 0,
1.1x7 + 1.9

x5
− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28
7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9
5 ≤ x7 ≤ 5.5.

(15)

This problem is solved previously by many algorithms as
SC algorithm (Ray & Liew, 2003), PSO-DE (Liu et al., 2010), DELC
(Wang & Li, 2010), DEDS (Zhang et al., 2008), HEAA (Wang et al.,
2009), modified differential evolution (MDE; Mezura-Montes et
al., 2006), (μ+ λ)-ES (Mezura-Montes & Coello, 2005), ABC (Akay
& Karaboga, 2012), TLBO (Rao et al., 2011), MBA (Sadollah et al.,
2013). Table 14 shows a comparison between the best solution
obtained by such algorithms and the proposed algorithm H-GA–
FA, while the statistical results for this problem of all algorithms
are given in Table 15.

Table 14 shows that the proposed method obtained the best
solution f (x) = 2994.471066 as in DEDS and DELC methods and
better than the other algorithms. The statistical results for the
optimization of speed reducer design problem that is given in
Table 15 show that the solutions resulting from the proposed al-
gorithm are accurate and consistent as in (μ + λ)-ES, ABC, and
TLBO methods and better than the other algorithms. On the
other hand, the maximum number of function evaluations in

Table 14: Comparisons for speed reducer design problem.

D.V. DEDS DELC HEAA MDE PSO-DE MBA Original FA Original GA H-GA–FA

x1 3.5 + 09 3.5 + 09 3.500022 3.500010 3.50000 3.50000 3.502215 3.500703 3.50000
x2 0.7 + 09 0.7 + 09 0.70000039 0.70000 0.70000 0.70000 0.700067 0.700059 0.70000
x3 17 17 17.000012 17 17.0000 17.0000 17.007069 17.000985 17.0000
x4 7.3 + 09 7.3 + 09 7.300427 7.300156 7.30000 7.300033 7.393423 7.300368 7.30000
x5 7.715319 7.715319 7.715377 7.800027 7.800000 7.715772 7.716988 7.741199 7.715319
x6 3.350214 3.350214 3.350230 3.350221 3.350214 3.350218 3.352355 3.351213 3.350214
x7 5.286654 5.286654 5.286663 5.286685 5.2866832 5.286654 5.287034 5.287375 5.286654
f (x) 2994.471066 2994.471066 2994.499107 2996.356689 2996.348167 2994.482453 2998.515145 2996.472564 2994.471066

Table 15: Statistical result comparison for speed reducer design problem.

Method Worst Mean Best SD NFEs

SC algorithm 3009.964736 3001.758264 2994.744241 4.0 54 456
PSO-DE 2996.348204 2996.348174 2996.348167 6.4E-06 54 350
DELC 2994.471066 2994.471066 2994.471066 1.9E-12 30 000
DEDS 2994.471066 2994.471066 2994.471066 3.6E-12 30 000
HEAA 2994.752311 2994.613368 2994.499107 7.0E-02 40 000
MDE NA 2996.367220 2996.356689 8.2E-03 24 000
(μ + λ)-ES NA 2996.348 2996.348 0 30 000
ABC NA 2997.058 2997.058 0 30 000
TLBO NA 2996.34817 2996.34817 0 10 000
MBA 2999.652444 2996.769019 2994.482453 1.56 6300
H-GA–FA 2994.471066 2994.471066 2994.471066 0 16 000

Note. “NA” means that the result is not available.
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Figure 17: Convergence curve of the speed reducer weight versus the iteration

numbers for the original FA, the original GA, and H-GA–FA.

Table 15 shows that H-GA–FA is competitive with other al-
gorithms, where it found the global optimum solution for
this problem in the third place according to the number of
function evaluations. Figure 17 demonstrates the convergence
curve of the speed reducer weight (function values) versus
the iteration number for the original FA, the original GA, and
H-GA–FA.

Finally, Table 16 shows an overall comparison between all
methods in solving EDPs. The overall comparison shows that H-
GA–FA is considered an efficient optimization system to solve
EDPs and an attractive alternate optimizer offering quick con-
vergence and high solution quality. This is due to the integra-
tion of FA with the GA process that leads to efficiently per-
forming global exploration, rapid scanning of the feasible area,
and effectively reaching the optimum solution. Also, in most
EDPs, merging GA’s exploitation and FA’s exploration capabil-
ities leads to a balance between exploration and exploitation
in H-GA–FA and adequate variety of solutions, and prevents H-
GA–FA from falling into local optima, as shown in convergent
figures.

4.3.1. Engineering design problems’ Friedman test and Wilcoxon
signed-rank test

The Friedman test (Derrac et al., 2011) is used to examine the
outcomes for the various algorithms of EDPs in this section. The
Friedman test compares the algorithms’ average ranks and pro-
duces Friedman statistics, where the smaller the ranking, the
better the performance of the algorithm. The p-value is another
essential term in the Friedman test; it indicates whether there is
a significant difference between algorithms or not. A smaller p-
value (p < 0.05) indicates greater evidence of a significant differ-
ence. Table 17 shows the results of the EDPs’ Friedman test. From
Table 17, we can see that the p-value is less than 0.05 in the ma-
jority of EDPs, which indicates that there are differences in the
results obtained by all algorithms. Furthermore, the proposed H-
GA–FA algorithm outperforms the compared algorithms in most
EDPs, with a lower mean rank.

In addition, the Wilcoxon signed-rank test (Garcı́a et al., 2010)
is used to show the significant differences in each design prob-
lem between the H-GA–FA and the other algorithms. It is a pair-
wise test that searches for the significant differences in the be-
havior of any two algorithms and is connected to the p-value. Ta-
ble 18 gives the results of the EDPs’ Wilcoxon signed-rank test.
The total of positive ranks is R+, whereas the sum of negative
ranks is R–. Table 18 shows that the p-value in some compar-
isons between algorithms is more than 0.05. This is because cer-
tain data were recorded insufficiently or not at all by some of the
comparator algorithms. On the other hand, Table 18 shows that
H-GA–FA obtains higher R– values than R+ in all cases of EDPs,
indicating that it is superior to other algorithms. Based on the
Wilcoxon signed-rank test findings, it can be inferred that the
H-GA–FA outperforms the majority of algorithms that processed
EDPs.

Comparative studies were carried out in this section to as-
sess the efficacy of the suggested hybrid algorithm solutions.
Unlike traditional algorithms, the proposed H-GA–FA algorithm
searches through a set of solutions rather than a single solu-
tion. in addition, H-GA–FA uses only objective function data,
not derivatives or any ancillary information, enabling it to solve
nonsmooth, noncontinuous, nondifferentiable problems in real-
world applications.

On the other hand, it is well known that metaheuristic
algorithms suffer from a lack of consistency in their solu-
tions. So, H-GA–FA was used to improve the quality of the

Table 16: Overall comparison between all algorithms in solving EDPs.

EDPs Max. worst Min. mean Min. best Min. SD Min. NFEs

Gear train MBA H-GA–FA MBA
UPSO
ABC

H-GA–FA ABC

Cantilever design WOA ELPSO H-GA–FA ELPSO H-GA–FA
Pressure vessel design G-QPSO H-GA–FA H-GA–FA H-GA–FA H-GA–FA
Welded beam design SC algorithm H-GA–FA H-GA–FA A penalty-guided ABC NA
Tension/compression spring QPSO NM-PSO G-QPSO

ABC
TLBO
MBA
H-GA–FA

H-GA–FA QPSO
G-QPSO

Speed reducer design SC algorithm DELC
DEDS
H-GA–FA

DELC
DEDS
H-GA–FA

(μ + λ)-ES
ABC
TLBO
H-GA–FA

MBA

Note. “NA” means that the result is not available.
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Table 17: Engineering design problems’ Friedman test.

Tension/compression spring design problem Speed reducer design problem

Algorithm MR Algorithm MR
GA3 16.33 SC algorithm 9.75
GA4 13.83 PSO-DE 8.00
CAEP 5.50 DELC 3.88 Test statistics
CPSO 16.00 DEDS 4.13 N 4
HPSO 14.33 HEAA 6.75 Chi-square 17.324
NM-PSO 6.83 MDE 7.50 df 10
G-QPSO 8.00 Test statistics (μ + λ)-ES 5.25 p-value 0.067
QPSO 6.67 N 3 ABC 7.50
DELC 7.50 Chi-square 33.991 TLBO 4.88
DEDS 10.33 df 18 MBA 6.00
HEAA 7.17 p-value 0.013 H-GA–FA 2.38
PSO-DE 10.50 Welded beam design problem
SC algorithm 12.33 Algorithm MR
UPSO 18.33 Developed HS 3.00
(μ + λ)-ES 14.17 A penalty-guided ABC 4.67
ABC 8.17 ARSAGA 2.00 Test statistics
TLBO 5.00 GP 7.33 N 3
MBA 6.00 SSM 5.33 Chi-square 26.909
H-GA–FA 3.00 SC algorithm 9.67 df 10

GSA 10.67 p-value 0.003
Pressure vessel design problem LXGSA 8.00

PMGSA 8.33
Algorithm MR LXPMGSA 6.00
GA3 11.67 H-GA–FA 1.00
GA4 8.50 Gear train design problem
CPSO 9.67 Algorithm MR Test statistics
HPSO 7.33 Test statistics UPSO 3.63 N 4
NM-PSO 4.50 N 3 ABC 1.88 Chi-square 6.600
G-QPSO 7.67 Chi-square 22.523 MBA 2.63 df 3
PSO-DE 4.83 df 12 H-GA–FA 1.88 p-value 0.086
UPSO 12.33 p-value 0.032 Cantilever design problem
ABC 6.33 Algorithm MR Test statistics
(μ + λ)-ES 6.50 ELPSO 1.38 N 4
TLBO 5.00 WOA 4.00 Chi-square 10.385
MBA 5.67 LWOA 2.88 df 3
H-GA–FA 1.00 H-GA–FA 1.75 p-value 0.016

Note. “MR” means the Mean Rank.

solutions by integrating the benefits of the two metaheuris-
tic algorithms, namely GA and FA, and making a balance
between exploration/exploitation trends. FA has high explo-
ration capabilities where all local modes will be visited, as
well as global modes, and by all fireflies, good solutions are
reached. GA has high exploitation capabilities where its op-
erators (ranking, selection, crossover, and mutation) make a
comprehensive change in the shape of the solutions, which
makes the proposed algorithm get out of the local optima when
needed.

By using unconstrained multimodal text functions, con-
strained benchmark problems, and engineering design chal-
lenges, the efficiency of the proposed H-GA–FA was compared to
that of previous optimization techniques. The proposed H-GA–
FA has displayed an exceptional execution where it performed
better in terms of the best solution and the number of func-
tion evaluations and provided better solutions than other al-
gorithms for most of the testing problems. Moreover, by com-
paring its results to the original GA and the original FA, H-GA–
FA has been proven to improve the solutions’ quality and bal-
ance between exploration/exploitation capabilities as shown in
Figs 7, 9, 11, 13, 15, and 17.

Statistically according to the Wilcoxon rank-sum and Fried-
man rank tests (Tables 17 and 18) for EDPs, H-GA–FA is very com-
petitive in obtaining the solution compared to other algorithms
where the results of the Wilcoxon rank-sum test analysis show
that the p-values are less than 0.05 in most of the design prob-
lems. In addition, the sum of the negative ranks (R–) is greater
than the sum of the positive ranks (R+), which suggests that the
results obtained by H-GA–FA are significantly different from the
other compared algorithms. In contrast, according to the Fried-
man rank test results in Table 17, the rank of H-GA–FA is the
least, which showed that it is superior to the compared algo-
rithms on all EDPs.

Finally, the results demonstrated that the proposed method
is capable of resolving EDPs, which are often formulated as
NCOPs, and that, due to the simplicity of H-GA–FA, it can han-
dle a wide range of applications that can be expressed as NCOPs
such as design and manufacturing optimization, economic op-
timization of heat exchangers, conceptual design of automobile
components, design optimization of highway guardrails, opti-
mization of a vehicle engine connecting rod, design optimiza-
tion of a cam-follower mechanism, optimum structural design
of automobile brake components, etc.
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Table 18: Engineering design problems’ Wilcoxon signed-rank test.

Design problem Compared algorithms Evaluations of solution

Gear train Algorithm 1 Algorithm 2 R− ≈ R+ P-value Best algorithm
H-GA–FA UPSO 3 1 0 0.108809430040546 ≈
H-GA–FA ABC 2 1 1 1 ≈
H-GA–FA MBA 3 1 1 0.715000654688089 ≈

Cantilever Compared algorithms Evaluations of solution
Algorithm 1 Algorithm 2 R− ≈ R+ P-value Best algorithm
H-GA–FA ELPSO 1 0 3 0.465208818452142 ≈
H-GA–FA WOA 4 0 0 0.067889154861829 ≈
H-GA–FA LWOA 4 0 0 0.067889154861829 ≈

Pressure vessel Compared algorithms Evaluations of solution
Algorithm 1 Algorithm 2 R− ≈ R+ P-value Best algorithm
H-GA–FA GA3 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA GA4 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA CPSO 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA HPSO 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA NM-PSO 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA G-QPSO 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA PSO-DE 3 0 0 0.108809430040546 ≈
H-GA–FA UPSO 4 0 0 0.067889154861829 ≈
H-GA–FA ABC 4 0 0 0.067889154861829 ≈
H-GA–FA (μ + λ)-ES 4 0 0 0.067889154861829 ≈
H-GA–FA TLBO 3 0 0 0.108809430040546 ≈
H-GA–FA MBA 5 0 0 0.0431144467830754 H-GA–FA

Welded beam Compared algorithms Evaluations of solution
Algorithm 1 Algorithm 2 R− ≈ R+ P-value Best algorithm
H-GA–FA Developed HS 1 0 0 NA No decision
H-GA–FA A penalty-guided ABC 3 0 1 0.144127034816015 ≈
H-GA–FA ARSAGA 3 0 0 0.108809430040546 ≈
H-GA–FA GP 1 0 0 NA No decision
H-GA–FA SSM 3 0 0 0.067889154861829 ≈
H-GA–FA SC algorithm 4 0 0 0.067889154861829 ≈
H-GA–FA GSA 4 0 0 0.067889154861829 ≈
H-GA–FA LXGSA 4 0 0 0.067889154861829 ≈
H-GA–FA PMGSA 4 0 0 0.067889154861829 ≈
H-GA–FA LXPMGSA 4 0 0 0.067889154861829 ≈

Tension/compression spring Compared algorithms Evaluations of solution
Algorithm 1 Algorithm 2 R− ≈ R+ P-value Best algorithm
H-GA–FA GA3 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA GA4 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA CAEP 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA CPSO 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA HPSO 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA NM-PSO 2 0 3 0.685830434451606 ≈
H-GA–FA G-QPSO 3 1 1 0.715000654688089 ≈
H-GA–FA QPSO 4 0 1 0.500184257070795 ≈
H-GA–FA DELC 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA DEDS 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA HEAA 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA PSO-DE 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA SC algorithm 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA UPSO 4 0 0 0.067889154861829 H-GA–FA
H-GA–FA (μ + λ)-ES 4 0 0 0.067889154861829 ≈
H-GA–FA ABC 3 1 0 0.108809430040546 ≈
H-GA–FA TLBO 2 1 0 0.179712494879 ≈
H-GA–FA MBA 4 1 0 0.067889154861829 ≈

Speed reducer Compared algorithms Evaluations of solution
Algorithm 1 Algorithm 2 R− ≈ R+ P-value Best algorithm
H-GA–FA SC algorithm 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA PSO-DE 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA DELC 2 3 0 0.179712494879 ≈
H-GA–FA DEDS 2 3 0 0.179712494879 ≈
H-GA–FA HEAA 5 0 0 0.0431144467830754 H-GA–FA
H-GA–FA MDE 4 0 0 0.067889154861829 ≈
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Table 18: Continued

Design problem Compared algorithms Evaluations of solution

H-GA–FA (μ + λ)-ES 3 1 0 0.102470434859749 ≈
H-GA–FA ABC 3 1 0 0.102470434859749 ≈
H-GA–FA TLBO 2 1 1 1 H-GA–FA
H-GA–FA MBA 4 0 1 0.500184257070795 H-GA–FA

5. Conclusion

This paper presents a hybrid algorithm, called H-GA–FA, for solv-
ing EDPs that combines two optimization techniques, which are
GA and FA. This hybrid technique creates individuals in a new
generation by GA operations and mechanisms of FA. In addition,
this combination aims to prevent falling into local optima, in-
troduce sufficient diversity of the solutions, and make a balance
between exploration and exploitation trends. The proposed hy-
brid algorithm H-GA–FA was tested by using a suite of 17 uncon-
strained multimodal test functions, 7 constrained benchmark
problems taken from the literature, and many EDPs. The pro-
posed algorithm showed several advantages, which we mention
as follows:

1. H-GA–FA is a flexible and adaptive method to solve a wide
range of optimization problems.

2. H-GA–FA has a high solution quality due to the combination
of the advantages of the two optimization algorithms GA
and FA.

3. Unlike traditional methods, H-GA–FA provides a globally op-
timal solution where it searches through a population of
points.

4. H-GA–FA uses only the objective function information, so
it can solve any practical optimization problem that may
include noncontinuous, nonsmooth, and nondifferentiable
functions.

5. Computational experiments have proven the superiority of
H-GA–FA over those reported in the literature, as it is signif-
icantly better than other comparison methods.

6. H-GA–FA saves time where it converges more quickly to the
optimal or near-optimal solution in the early iteration.

7. H-GA–FA has a low competitive computational cost, where
it found the global optimum solution for most solved prob-
lems in the least number of function evaluations.

8. The use of the chaotic repair procedure enables H-GA–FA to
retain the feasibility of the solutions.

9. Statistical results indicated that solutions obtained by H-
GA–FA are accurate and stable than most solutions obtained
by other algorithms.

10. Wilcoxon and Friedman’s tests showed the significance of
the H-GA–FA findings.

11. The proposed method can be used to handle large-scale
engineering challenges such as resource allocation issues,
cost-effective load transfer problems, unit commitment
concerns, wind farm optimization of turbines, and real-
time applications.

Without any prejudice, the suggested approach, like other
metaheuristic algorithms, has the potential flaw of not guaran-
teeing an increase in computing speed or accuracy while tack-
ling any optimization issue. Because metaheuristic algorithms
are random techniques, the computational effectiveness and so-
lution quality presented by the H-GA–FA depends on the nature
and complexity of the problem. In our future works, we will con-
centrate on three directions: (i) developing H-GA–FA to use it in

solving many-objective problems; (ii) applying H-GA–FA to solve
optimization problems in different fields; and (iii) introducing
new algorithms for these types of problems.
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A.1. Branin (RC) (two variables)

RC (x1, x2) =
(

x2 −
(

5
4π2

)
x2

1 +
(

5
π

)
x1 − 6

)2

+ 10
(

1 −
(

1
8π

))
cos (x1) + 10

Search domain: −5 < x1 < 10, 0 < x2 < 15.
No local minimum; three global minima: (x1, x2)∗ = (−π ,

12.275), (π , 2.275), (9.42478, 2.475); RC[(x1, x2)∗] = 0.397887.

A.2. B2 (two variables)

B2(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7;

Search domain: −100 < xj < 100, j = 1, 2.
Several local minima (exact number unspecified in usual lit-

erature); one global minimum: (x1, x2)∗ = (0, 0); B2[(x1, x2)∗] = 0.

A.3. Easom (ES) (two variables)

ES(x1, x2) = − cos(x1) cos(x2) exp(−((x1 − π )2 + (x2 − π )2));

Search domain: −100 < xj < 100, j = 1, 2.
Several local minima (exact number unspecified in usual lit-

erature); one global minimum: (x1, x2)∗ = (π , π ); ES[(x1, x2)∗] = −1.

A.4. Goldstein and Price (GP) (two variables)

GP(x1, x2) =
[
1 + (x1 + x2 + 1)2 × (19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2 )
]

×
[
30 + (2x1 − 3x2)2 × (18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2 )
]

;

Search domain: −2 < xj < 2, j = 1, 2.
Four local minima; one global minimum: (x1, x2)∗ = (0, −1);

B2[(x1, x2)∗] = 0.

A.5 Shubert (SH) (two variables)

SH(x1, x2) =
{∑5

j=1
j cos[( j + 1)x1 + j]

}

×
{∑5

j=1
j cos[( j + 1)x2 + j]

}
;

Search domain: −10 < xj < 10, j = 1, 2.
760 local minima; 18 global minima: SH[(x1, x2)∗] = −186.7309.

A.6. De Joung (DJ) (three variables)

DJ(x1, x2, x3) = x2
1 + x2

2 + x2
3 ;

Search domain: −5.12 < xj < 5.12, j = 1, 2, 3.
One single minimum (local and global): (x1, x2, x3)∗ = (0, 0, 0);

DJ[(x1, x2, x3)∗] = 0.

A.7 Hartmann (H3,4) (three variables)

H3,4(X) = −
∑4

i=1
ci exp

[
−
∑3

j=1
ai j (xj − pi j )

2
]
;

Search domain: 0 < xj < 1, j = 1, 2, 3.
Four local minima; one global minimum: x∗ = (0.11, 0.555,

0.855); H3,4(x) = −3.86278.

i aij ci pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8827

A.8. Hartmann (H6,4) (six variables)

H6,4(X) = −
∑4

i=1
ci exp

[
−
∑6

j=1
ai j (xj − pi j )

2
]
;

Search domain: 0 < xj < 1, j = 1, . . . , 6.
Four local minima; one global minimum: x∗ = (0.20169,

0.150011, 0.47687, 0.275332, 0.311652, 0.6573); H6,4(x) = −3.32237.

A.9. Shekel (S4,n) (four variables)

S4,n(X) = −
∑n

i=1

[
(x−ai)

T(x−ai)+ci

]−1
;

X = (x1, x2, x3, x4)T;

a = (a1
i , a2

i , a3
i , a4

i )T;

Three functions S4,n were considered: S4,5, S4,7, and S4,10.
Search domain: 0 < xj < 10; j = 1, . . . , 4.
n local minima (n = 5, 7, or 10): aT

i = i-th local minimum ap-
proximation; S4,n(aT

i ) ∼= −1/ci
;

S4,5: Five minima with one global minimum; S4,5(x) =
−10.1532.

S4,7: Seven minima with one global minimum; S4,7(x) =
−10.40294.

S4,10: Ten minima with one global minimum; S4,10(x) =
−10.53641.

A.10 Rosenbrock (Rn) (n variables)

Rn(x) =
∑n−1

j=1

[
100(x2

j − xj+1)
2 + (xj − 1)2

]
;

Three functions were considered: R2, R5, and R10.

Search domain: −5 < xj < 10, j = 1, . . . , n.
Several local minima; one global minimum: x∗ = (1, . . . , 1);

Rn(x∗) = 0.

A.11. Zakharov (Zn) (n variables)

Zn(x) =
(∑n

j=1
x2

j

)
+
(∑n

j=1
0.5 jxj

)2
+
(∑n

j=1
0.5 jxj

)4

Two functions were considered: Z2 and Z5.

Search domain: −5 < xj < 10, j = 1, . . . , n.
Several local minima; one global minimum: x∗ = (0, . . . , 0);

Zn(x∗) = 0.

Appendix 2.
B.1. Constrained problem 1 (C1)

Min x2
1 + x2

2

Subject to : x1 − 3 = 0
−x2 + 2 ≤ 0
−10 ≤ xi ≤ 10, i = 1, 2
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i aij ci pij

1 10.0 3.00 17.0 3.50 1.70 8.00 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.10 8.00 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.00 3.50 1.70 10.0 17.0 8.00 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.00 0.05 10.0 0.10 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

i aij ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

B.2. Constrained problem 2 (C2)

Min
1

4000
(x2

1 + x2
2 ) − cos

(
x1√

1

)
cos

(
x2√

2

)
+ 1

Subject to : x1 − 3 = 0
−x2+2 ≤ 0
−10 ≤ xi ≤ 10, i = 1, 2

B.3. Constrained problem 3 (C3)

Min
− sin (2πx1)3 sin(2πx1)

x3
1 (x2 + x1)

Subject to : −x1 + (x2 − 4)2 + 1 ≤ 0
x2

1 − x2 + 1 ≤ 0
0.1 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10

B.4. Constrained problem 4 (C4)

Min (x1 − 10)3 + (x2 − 20)3

Subject to : −(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0
−(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
13 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 100

B.5. Constrained problem 5 (C5)

Min x2
1 + (x2 − 1)2

Subject to : −x2
1 + x2 = 0

−1 ≤ xi ≤ 1, i = 1, 2

B.6. Constrained problem 6 (C6)

Min (
√

n)n n∏
i=1

xi

Subject to :
n∑

i=1
x2

i − 1 = 0

0 ≤ xi ≤ 1, i = 1, 2, ..., 4

B.7. Constrained problem 7 (C7)

Min 5.357857x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to : −85.334407 − 0.0006262x1x4 − 0.0056858x2x5 + 0.0022053x3x5 ≤ 0

85.334407 + 0.0006262x1x4 + 0.0056858x2x5 − 0.0022053x3x5 − 92 ≤ 0

−80.51249 − 0.0029955x1x2 − 0.0071317x2x5 − 0.0021813x2
3 + 90 ≤ 0

80.51249 + 0.0029955x1x2 + 0.0071317x2x5 + 0.0021813x2
3 − 110 ≤ 0

−9.300961 − 0.0012547x1x3 − 0.0047026x3x5 − 0.0019085x3x4 + 20 ≤ 0

9.300961 + 0.0012547x1x3 + 0.0047026x3x5 + 0.0019085x3x4 − 25 ≤ 0

8 ≤ x1 ≤ 100,

3 ≤ x2 ≤ 45,

27 ≤ x3 ≤ 45,

27 ≤ x4 ≤ 45,

27 ≤ x5 ≤ 45.
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