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Abstract

The recent development in the technology has increased the complexity of image contents

and demand for image classification becomes more imperative. Digital images play a vital

role in many applied domains such as remote sensing, scene analysis, medical care, textile

industry and crime investigation. Feature extraction and image representation is considered

as an important step in scene analysis as it affects the image classification performance.

Automatic classification of images is an open research problem for image analysis and pat-

tern recognition applications. The Bag-of-Features (BoF) model is commonly used to solve

image classification, object recognition and other computer vision-based problems. In BoF

model, the final feature vector representation of an image contains no information about the

co-occurrence of features in the 2D image space. This is considered as a limitation, as the

spatial arrangement among visual words in image space contains the information that is

beneficial for image representation and learning of classification model. To deal with this,

researchers have proposed different image representations. Among these, the division of

image-space into different geometric sub-regions for the extraction of histogram for BoF

model is considered as a notable contribution for the extraction of spatial clues. Keeping this

in view, we aim to explore a Hybrid Geometric Spatial Image Representation (HGSIR) that

is based on the combination of histograms computed over the rectangular, triangular and

circular regions of the image. Five standard image datasets are used to evaluate the perfor-

mance of the proposed research. The quantitative analysis demonstrates that the proposed

research outperforms the state-of-art research in terms of classification accuracy.

1 Introduction

The category-wise classification of digital images is considered as one of the main requirement

in computer vision applications such as scene analysis, remote sensing, medical science and
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image retrieval [1–7]. The changes in scale, illumination, rotations, overlapping objects,

appearance of same view in the images of different classes, complex structures and difference

in image spatial atterns make image classification an open research problem [8]. In past, global

spatial features such as color and texture were used to perform image classification [1]. The

low computational cost and simple implementation were considered as the main advantages

of global spatial features [1]. In recent years, the Bag-of-Features (BoF) model is applied in var-

ious domains to perform image classification and scene analysis [1]. In BoF model, the local

features [9] are extracted, quantized in the feature space and a histogram-based representation

is used for image representation [9]. Feature extraction, feature description, codebook genera-

tion and order-less representation of image in the form of histograms of visual word are con-

sidered as the main steps of BoF model [8]. The lack of spatial information in histogram-based

image representation is considered a limitation of BoF model [10–12].

The approaches based on a larger codebook size, query expansion and soft quantization are

applied to enhance the classification accuracy of BoF model [11, 13]. The main limitation of all

these approaches is the lack of spatial information that is considered to be beneficial for image

classification-based problems [10, 11]. Researchers have proposed different forms of image

representations to address this problem [10–12, 14–16]. In a broader way, the approaches

that are applied for the computation of sematic spatial layout for histogram-based image

representation are divided into two groups [11]: i) computation of spatial information through

geometric relationships/ co-occurrences of visual words [14, 16, 17] ii) division of image

into geometric sub-regions such as rectangles [10], triangles [11, 13] and circles [12]. The

approaches based on geometric sub-division of image for histogram computation are reported

robust as compared to the approaches based on geometric relationships among visual words

[14]. In the case of geometric relationships [14, 16], the computational complexity increases

with the size of code-book due to increase in the number of geometric relations among visual

words [16].

In the first group [14, 16–18], the spatial information is computed by using the co-occur-

rences of visual words or by exploring the geometric relationships among them in the 2-D

image space [14]. In these approaches [16], the geometric relationships among the words are

computed by using a reduced size of codebook, as the relationships among words decreases

due to increase in the size of codebook. Khan et al. [14] computed the global spatial informa-

tion by computing the histograms of Pairs of Identical Words (PIWs), that are based on the

angles among the same cluster/visual word. The histogram-based spatial representation of

Khan et al. [14] is reported robust to the changes in scale and translation. In another research

[17], Triplets of Identical Visual Words (TIWs) are computed to achieve rotation invariant

image representation by calculating angles among three visual words. Savarese et al. [18]

explored the spatial information among visual words by representing them through a

correlogram that is invariant to the changes in scale. The computational complexity of these

approaches [14, 16–18] increases with the increase in the size of codebook [11].

The second approach to compute the spatial information is based on the division of image

into geometric sub-regions such as rectangles [10], triangles [11, 13] and circles [12]. The most

notable research for this domain is Spatial Pyramid Matching (SPM) [10] that sub-divides an

images into several rectangular cells. A weighted pyramid-based scheme is applied for the

computation of histogram of visual words from each of the divided cell. Inspired from the effi-

cient and effective performance of (SPM) [10], triangular [11, 13] and circular [12] sub-divi-

sions are also applied for the computation of histograms for BoF model to capture the spatial

attributes of images. All of these approaches [10–12] represent an image in a large dimensions

as compared to standard BoF model as histograms equal to the size of codebook are computed

from each of the divided sub-region. The increase in this semantic dimensions of resultant
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histogram is beneficial, as it captures image spatial information that is also useful for the learn-

ing of classification-based model [10–12].

Images of a dataset may contain various transformations such as changes in scale, position

of object at different locations and multiple objects in the same scene. Fig 1 represents the

images taken from different semantic classes of the MSRC-v2 image database [18]. The images

shown in first to fourth row belong to the semantic classes “cow, grass”, “sheep, grass” and

“water, boat”, respectively (the images shown in the third and fourth row belong to the same

semantic class that is “water, boat”). The sub-figures b,c and d for the respective class show the

division of image into circles, triangles and rectangles. From Fig 1, it can be seen that in some

cases the area or object of interest such as cow lies within the circle for the computation of spa-

tial histograms of visual words. In case of division of image into triangular cells, we can see

that the areas or regions of interest such as sky, water and grass are likely to be situated within

the top and bottom cells of triangles [11]. In case of rectangular divisions, we can see that ani-

mals and ships are divided into various rectangles and the visual words are splitted across

respective histograms. In case of standard BoF model, non-spatial histogram is computed

form the whole image, while in case of image division into sub-regions, separate histograms

are constructed from each of the divided sub-region [10–12]. This technique provides an

option to represent an image in a larger dimensions on a smaller size of constructed codebook

[10–12]. This is beneficial for image representation as it captures the image spatial attributes

that are also beneficial for the learning of classification-based model [10–12]. Here it is impor-

tant to mentioned that the geometric sub-divisions of image (circular, triangular and rectangu-

lar) are different from image segmentation, as it divides the image at the time of computation

of histogram by following a fixed rule (circular, triangular or rectangular). The main

Fig 1. Images taken from the different classes of MSRC-v2 image database [18].

https://doi.org/10.1371/journal.pone.0203339.g001
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contribution of this paper is to propose a novel image representation that is based on a Hybrid

Geometric Spatial Image Representation (HGSIR). Each image is divided into circles, triangles

and rectangles and histograms of visual words are constructed from each of the divided region.

Later on, all the constructed histograms for a single image are concatenated to represent the

image in the form of a histogram based on HGSIR.

The structure this research article is as follow: section 2 is about literature review and

related work. Section 3 is about BoF model and is about the proposed methodology that is

based on computation of spatial information. Section 4 is about image datasets, experimental

parameters, results and discussion, while section 5 is about conclusion and future directions of

research.

2 Related work

In recent few years, there is an increase in multimedia contents and digital images play a major

role in various applied applications such as remote sensing, medical care, scene analysis, for-

estry and image retrieval [19–23]. The basic requirement for image classification is to assign

the labels to the images so that they can be arranged in any of the pre-defined category [16].

The performance for any image classification-based system depends on the training of classi-

fier. In BoF model, the final feature vector is the order-less histogram of visual words that is

used as an input for the training of classifier [16]. The representation of image spatial attributes

in the histogram for BoF model has shown good results in various image classification-based

problems [16]. Researchers have proposed different image representations to address the prob-

lem for the BoF based image representation. The first group is based on visual words co-occur-

rences/ geometric relationships such as angle and distance among visual words [14, 16, 17],

while the second group sub-divides the image into geometric regions and histograms for BoF

model are computed over the divided sub-regions [10–12].

Khan et al. [14] captured the global spatial attributes of images by computing the angle his-

togram among PIWs. The proposed angle histogram-based image representation captured the

global spatial attributes that are reported invariant to transformations such as translation and

scaling but suffers in case of image rotations. To deal with image rotations, Anwar et al. [17]

computed the triplets within the circular regions of image and evaluated triplets for ancient

coins datasets. Later on, Zafar et al. [16] extended the previous work [14, 17] by computing an

orthogonal vector for triplets of identical visual words. The final histogram-based representa-

tion is computed by using magnitude of these orthogonal vectors. The approaches discussed

above [14, 16, 17], are based on the geometric relationships among visual words and computa-

tional complexity of these approaches increases exponentially with the increase in the size of

codebook [14, 17].

Lazebnik et al. [10] proposed SPM and captured the spatial attributes of image to enhance

the classification accuracy of BoF model. The image is sub-divided into rectangular regions of

different sizes and histograms of visual word are computed over each sub-divided rectangular

region. The final feature vector for BoF-model is computed by applying a weighted scheme on

three different levels and image is represented in a higher-dimensional feature space as com-

pared to the standard BoF model [24]. Fig 2 provides an illustration of the PIWAH (visual

words co-occurrences/ geometric relationships) [14] and SPM (image sub-divisions) [10]

approaches. Inspired from the concept of SPM, Ali et al. [11] computed the image spatial

attributes by dividing an image into different triangular cells and presented an idea about

the histograms of triangles (level-1 and level-2). For level-1 triangles, the dimension of resul-

tant histogram is twice the size of constructed codebook, while for level-2 triangles the size

of feature vector is four times the constructed codebook [11]. Li et al. [25] computed the
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image spatial attributes by using Spatial Pyramid Ring (SPR) for scene classification-based

problem. The SPR is reported rotation invariant [25] as circular regions are used for histogram

computation.

According to Piotr et al. [26], the geometric sub-divisions for the computation of spatial

clues are applied in many recent object recognition and image classification techniques, as this

can provide coarse-to-fine spatial attributes. Inspired for this idea [10], the spatial information

among local descriptors is computed by using Spatial Coordinate Coding (SSC) with semi-

coding. The initial spatial component is computed at the local descriptor-level while the other

is computed through SPM [10]. The experimental results and analysis stated that pyramid

matching can be applied with color and dominant angle [26]. Krapac et al. [27] applied a

Fisher kernel framework based on Gaussian Mixture Model (GMM) with soft-assignments to

encode the image spatial attributes by using spatial pyramid representation. The image spatial

layout is combined with Fisher kernel to compute the appearance of local features. The results

and comparisons stated that the use of Fisher kernel with image spatial layout and soft assign-

ments is computationally efficient with linear classifiers [27]. According to SáNchez et al. [28],

the computation of averaging local-statistics features for BoF model can enhance the perfor-

mance of image classification. The image spatial layout is computed through the representa-

tions that are based on average statistics. The experimental results and comparisons stated that

the traditional ways to capture the image spatial layout based on spatial pyramid increase vari-

ance and reduced variations. To address this problem, the two different approaches are pro-

posed that can balance the two features that are variance and variations [27].

In addition to the computation of spatial information, there are other approaches that can

be used to enhance the performance of image classification [1]. Feature fusion [1] is consid-

ered as one of the technique that can enhance the performance of image classification and

object recognition. The type of feature, either local or global contains the discriminating visual

information in the form of feature vector [29]. The global features are applied to represent the

entire image, while local feature are used to represent the information about image patches

[29]. Kabbai et al. [1] proposed a hybrid visual descriptor for BoF model to represent an image

in the form of color and texture. For computation of global features, the authors [1] applied

wavelet transform with a modified version of local ternary pattern while Speeded-Up Robust

Features (SURF) are used for the computation of local information among image patches.

All the visual features (both local and global) are computed by using three color planes [1].

According to Xie et al. [30], the BoF model for image classification treats the visual features as

nouns and this ignores useful information. The authors suggested [30] to treat the image visual

features as adjectives and proposed a framework to combine the adjectives based on color,

Fig 2. Fig (a) shows the approach based on geometric relationships among visual words [14] (b) SPM approach
based on histograms of geometric sub-regions (rectangular) [10].

https://doi.org/10.1371/journal.pone.0203339.g002
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shape and image spatial attributes. The experimental results are conducted by using various

scene-based image dataset and adjective-based approach is reported superior in terms of classi-

fication accuracy with reasonable computational cost [30].

The approaches that are discussed above are based on traditional feature extraction and

machine learning techniques [1, 14, 16, 17, 26–30]. The recent research for image classifica-

tion and machine learning-based problems is shifted to the use of Deep Convolutional Neu-

ral Networks (DCNNs) [31–35]. Cheng et al. [33] stated that the use of convolution features

can enhance the image classification accuracy of BoF model and proposed Bag of Convolu-

tional Features (BoCF). The research of Cheng et al. [33] is different from the traditional

approaches as the visual words are not based on handcrafted features and convolutional neu-

ral network is applied to compute the deep convolutional features. The application of BoCF

[33] enhances the effectiveness in terms of classification accuracy for scene analysis. Accord-

ing to Scott et al. [34], CNNs are suitable for large-scale image classification models with suf-

ficient training samples. The performance of CNNs is evaluated by using satellite images in

Transfer Learning (TL) mode to obtain fine-tuning for the classification of satellite images.

TL is selected as it allows to boost the performance of a DCNNs by preserving the previous

features extracted over a different domain of images. In another research [35], the fusion

technique is applied to combine multiple DCNNs by placing the main focus at the classifica-

tion. The approaches based on the use of DCNNs obtained higher classifier accuracy with a

higher computational cost [35]. Here it is important to mention that the image representa-

tion approach presented in this paper is simple, robust and it provides a comparable perfor-

mance with low computational cost as compared to the recent approaches based on DCNNs

[33–35]. On the basis of classification accuracy and other comparisons that are conducted

in this paper, it can be stated that the proposed research demonstrates an effective perfor-

mance and can be applied in a domain for scene analysis and image classification. It can be

concluded that the proposed HGSIR provides an effective image classification performance

with the advantage of scalability.

3 Proposed research

The proposed research is based on the late fusion of visual words that are constructed through

different geometric regions of image. Each image is divided into rectangles [10], triangles [11],

circles [12] and histograms of visual words are constructed for each of the divided region.

Later on, all the constructed histograms for a single image are concatenated to represent the

image in the form of a histogram based on HGSIR.

Each approach i.e. circles, rectangles and triangles, has its strengths and limitations. The

simplicity and efficiency of rectangular method, in combination with its tendency to yield

unexpectedly high recognition rates on challenging data, makes it a good base-line for calibrat-

ing new datasets and for evaluating more sophisticated recognition approaches [10].

Semantic information is available at the top, right, left and bottom of the image. Discrimi-

nating objects and regions of interest are usually located in different sub-regions of the image.

The construction of histograms from triangular regions of the image reduces the semantic

gap and adds discriminating information to image representation, in the form of objects and

regions of interest that are located at the top, left, right and bottom of the image. The triangles

approach has been applied for image retrieval [11].

The standard BoVWmodel lacks spatial information and the approaches based on the

division of images into cells to create histograms of visual words do not allow rotations and

changes in view-point. The circular approach constructs the histograms of visual words by

dividing images into circular regions and can handle the changes in view point, rotations and
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computation of spatial information [12]. We have combined the above said three approaches

for image representation to enhance the classification accuracy of BoF model.

The block diagram of proposed framework is shown in Fig 3. The BoF model [9] is used to

evaluate the performance of proposed research, the detail about the construction of histograms

for the proposed HGSIR is mentioned in the following sub-section.

3.1 Proposed Hybrid Geometric Spatial Image Representation

1. In BoF model, a two dimensional image with name IMG is represented as:

IMG ¼ I ðm;nÞ ð1Þ

where Im,n are the coordinates or pixels at the spatial location (m,n).

Fig 3. The block diagram of proposed research based on HGSIR.

https://doi.org/10.1371/journal.pone.0203339.g003
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2. Interest point detectors are applied to compute the local features and resultantly the IMG

can be expressed mathematically as:

IMG ¼ fLFD1; LFD2; . . . :LFDMg ð2Þ

Where LFD1 to LFDM are the descriptors that are computed along the detected interest

points.

3. The local features are in a high-dimensional space, therefore feature space is reduced

through a quantization algorithm such as K-means. The aim of K-means is to compute a

visual dictionary or a codebook with N clusters. We selected K-means for quantization due

to the its simple and efficient implementation as compared to other clustering approaches

such as hierarchical clustering [36]. The codebook CBwith N numbers of clusters is repre-

sented as:

CB ¼ fC1;C2; . . . :;CNg ð3Þ

where C1 to CN are the constructed clusters.

4. To add the spatial information from circular regions, histograms of concentric circles are

created [12]. The partitioning of image into regions at each level is done in a concentric cir-

cles fashion, where the lth level has l + 1 regions. Each extracted region is then represented

by a histogram of visual words. For an image IMG of size R × C, the centroid c = (cx, cy) of

an image is calculated as

cx ¼
1

j IMG j

XjIMGj

i¼1

xi; cy ¼
1

j IMG j

XjIMGj

i¼1

yi ð4Þ

where IMG = {(xi, yi) j 1� xi� C, 1� yi� R} and j IMG j is the number of elements in

IMG. Let L be the number of levels, then the radius r of lth level is given by

rl ¼
l

L
minfcx; cyg ð5Þ

The radius of the smallest circle will be r1.

5. To map the visual words on the circular regions, the nearest clusters are assigned to the

quantized features by using the following equation:

CðLFDkÞ ¼ argmin
C εCB

DistðC; LFDkÞ ð6Þ

where C(LFDk) is representing the cluster (visual word) that is assigned to the kth feature

LFDk while Dist(C,LFDk) shows the distance of computed feature LFDk and the cluster cen-

ter C. Each patch of image is represented in the form of visual words.

6. Consider Ei is the group of all features that are assigned to the cluster Ci, then the ith bin of

the histogram of visual words bi, is the cardinality of the set Ei.

bi ¼ CardðEiÞ and Ei ¼ fLFDk; k 2 ð1; . . . :;MÞ j CðLFDkÞ ¼ Cig ð7Þ

7. The spatial histograms computed over the circular regions of image are mathematically

expressed as:

HistCir ¼ fhist
CR1

; hist
CR2

; . . . :hist
CRN

g ð8Þ
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whereHistCir are the circular spatial histograms and histCR1 to histCRN are the number of

divided circles and dimension of visual words computed through each histogram over a cir-

cular region is equal to the size of constructed codebook.

8. The histograms of visual words for level-2 triangles [11] based on image triangular sub-divi-

sions are computed and step number 5-6 are repeated. The resultant histograms of triangles

are mathematically expressed as:

HistTri ¼ fhist
TR1

; hist
TR2

; . . . :hist
TRN

g ð9Þ

whereHistTri are the triangular spatial histograms and histTR1 to histTRN are the number of

divided triangles and dimension of visual words computed through each histogram over a

triangular region is equal to the size of constructed codebook.

9. The histograms of visual words for level-1 rectangles [10] based on image rectangular sub-

divisions are computed and step number 5-6 are repeated. The resultant histograms of rect-

angles are mathematically expressed as:

HistRect ¼ fhist
RR1

; hist
RR2

; . . . :hist
RRN

g ð10Þ

where histRect are the rectangular spatial histograms and histRR1 to histRRN are the number of

divided rectangles and dimension of visual words computed through each histogram over a

rectangular region is equal to the size of constructed codebook.

10. In the last step, the histograms of visual words that are computed using circular, triangular

and rectangular geometric regions are vertically concatenated to represent image in the

form of histogram of hybrid geometric regions. The final feature vector that is the histo-

gram of visual words of hybrid geometric regions is expressed as:

HGSIR ¼ fHistCir;HistTri;HistRectg ð11Þ

whereHGSIR is the final spatial histogram based on visual words computed over hybrid

geometric regions of image.

4 Experimental datasets and results

This section is about the selected image datasets, implementation details, image classification

and results obtained form the proposed research. We selected 15-scene image benchmark for

the evaluation of proposed research that contains fifteen semantic classes. It is the most widely

used dataset for the evaluation of research for image classification and object recognition. This

dataset contains a wide range of in-door and out-door images, there are total of 4485 images

(200-400 images per semantic class) with an average size of 300 × 250 pixels. The photo gallery

of the images taken from the 15-scene dataset is shown in Fig 4.

The details about the class titles/lables and number of images per class is referred to [10,

14]. To perform a fair comparison with the existing research in terms of classification accu-

racy, we selected 100 images from each of the class of 15-scene image benchmark for training

and remaining for testing (1500 training images and 2985 test images). The same percentage

of training and testing is being used in the research that is selected for comparison.

UCMerced (UCM) Land Use image dataset is also selected to evaluate the performance of

the proposed research. This dataset was created by Yang et al. [37] and it contains 21 classes,

with a uniform distribution of 100 images per class. The photo gallery of images from UCM

dataset is shown in Fig 5.
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The details about the class titles/lables and number of images per class is referred to [37].

We followed the experimental setup as mentioned in [37–39], by a random selection of 80

images for each class for training and the remaining for testing, with a training-testing ratio of

1680-420 images respectively.

The third dataset is the Caltech-101 [40], that was created in 2003 and there are 101 object

categories in this dataset (animals, furniture, vehicles etc) with a total of 9144 images. There

are 40-800 images per class with an average image size of 300 × 200 pixels. For the sake of com-

parisons, the dataset is randomly divided by using a training-testing ratio of 0.6:0.4. The photo

gallery of images selected from some categories of the Caltech-101 dataset is shown in Fig 6.

Fig 4. The photo gallery of images representing each class of 15-scene image dataset.

https://doi.org/10.1371/journal.pone.0203339.g004

Fig 5. The photo gallery of images representing each class of UCM dataset.

https://doi.org/10.1371/journal.pone.0203339.g005

Fig 6. The photo gallery of images selected from the Caltech-101 dataset.

https://doi.org/10.1371/journal.pone.0203339.g006
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The forth dataset used to evaluate the performance of proposed image representation is the

RSSCN7 dataset [41]. There are total of 2800 images of remote sensing with 07 different clas-

ses. The details about the class titles/lables and number of images per class is referred to [41].

To ensure fair comparison, the training-testing ratio for this dataet is 0.5:0.5 is consistence

with the related works [42]. The photo gallery of images from this dataset are shown in Fig 7.

Finally, the results are also collected for the MSRC-v2 image dataset. It consists of 591

images classified into 23 different categories. The details about the class titles/lables and

number of images per class is referred to [14, 18]. The training and testing sets are randomly

selected using a training-testing ratio 0.6:0.4. The photo gallery of images fromMSRC-v2 data-

set is shown in Fig 8.

4.1 Implementation details

For all datasets, the image representations are created by following the same experimental

steps. We repeated every experiment 10 times with different realizations of training and test

images to reduce the influence of randomness. As a pre-processing step, all the images are con-

verted to gray-scale to extract dense SIFT features with a dense grid of size 8 and computed

SIFT descriptor after evert 8th pixel. To quantize these descriptors, K-means clustering is

applied and computational cost of clustering is reduced by selecting 0.5% of random features

from the training dataset (for codebook computation) [43]. The size of visual vocabulary is an

important parameter that has a significant impact on the classification accuracy. The perfor-

mance is directly proportional to vocabulary size, while a larger vocabulary size tends to over-

fit [43]. The experiments are performed with different sizes of vocabulary to sort out the best

Fig 7. The photo gallery of images selected from the RSSCN7 image dataset.

https://doi.org/10.1371/journal.pone.0203339.g007

Fig 8. The photo gallery of images selected from the MSRC-v2 image dataset.

https://doi.org/10.1371/journal.pone.0203339.g008
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performance obtained from the proposed research. Since our approach adds spatial informa-

tion after visual vocabulary construction, the images are then partitioned into regions accord-

ing to different schemes to obtain the spatial histograms. The histograms constructed from

different levels are concatenated to create the histogram representation for each relevant

scheme. The spatial histograms are then normalized. The final hybrid histogram based repre-

sentation is obtained by combining the histograms obtained through each scheme.

The dimensions of Rectangular (Rect), Triangular (Tri) and Circular (Cir) histograms are

given by

dimðHistRectÞ ¼ KRect � RRect

dimðHistTriÞ ¼ KTri � RTri

dimðHistCirÞ ¼ KCir � RCir

where K is the size of visual vocabulary and R is the number of regions. As we have partitioned

the image upto level-1 for Rect, level-2 for Tri and level-3 for Cir, (R is equal to 4 in all cases).

The dimensions of final histogram is computed by vertically concatenating the histograms

computed over three geometric regions. This can be expressed as:

dimðHGSIRÞ ¼ dimðHistRectÞ; dimðHistTriÞ; dimðHistCirÞ ð12Þ

Support Vector Machines (SVM) is an example of supervised classification [8], given the + ve

and −ve training images, the objective is to classify a test image whether it contains the object

class or not. We applied Hellinger kernel [44] with linear SVM on the normalized histograms

of visual words computed through proposed approach. The best value C, that is parameter of

linear SVM is computed through 10-fold cross validation by using training images. To demon-

strate the effectiveness of the proposed approach, we compared the classification accuracy

obtained from circular, triangular and rectangular histograms for every image dataset (using

the same set of training and test images for the respective iteration).

4.2 Classification of 15-scene image dataset

To ascertain the optimal performance for accurate feature representation, experiments are

performed with visual vocabulary of different sizes. From Table 1, it can be observed that the

best performance for HGSIR i.e. 90.41% is obtained for a vocabulary of size 400. For all other

approaches, the optimal performance is obtained for the same vocabulary size i.e. 400 (as illus-

trated in Fig 9 through a plot). The classification accuracy obtained from the proposed HGSIR

is higher than the other approaches based on computation of spatial information. Our method

provides 4.36% higher accuracy compared to Rect, 3.09% more than Tri and 2.52% higher

accuracy compared to the second best method i.e Cir.

The above comparisons demonstrate the effectiveness of the proposed HGSIR as compared

to the state-of-the-art concurrent methods. We also compared HGSIR with the recent methods

focused to enhance the classification accuracy using different approaches such as spatial

Table 1. Comparison of classification accuracy while using different sizes of vocabulary.

Voc. Size Rect Tri Cir HGSIR

50 79.5% 80.37% 81.86% 86.1%

100 83.05% 84.82% 85.43% 89.02%

200 85.2% 86.14% 86.9% 89.39%

400 86.05% 87.32% 87.89% 90.41%

600 86.01% 87.15% 87.75% 90.2%

https://doi.org/10.1371/journal.pone.0203339.t001
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context and feature fusion techniques. It is clearly evident from the Table 2 that the proposed

hybrid representation gains the highest classification accuracy.

The proposed approach provides 9.01% higher accuracy as compared to SPM pyramid level

2 [10]. Khan et al. [14] created an image representation by incorporating the relative spatial

context termed as PIWAH, that resulted in a classification accuracy of 76%. They proposed

to combine PIWAH with SPM [10] in PIWAH+ and achieved an accuracy of 82.5%. HGSIR

image representation results in 7.9% higher accuracy as compared to their work. Further,

it should be noted here that the approaches based on computing geometric relationships

between visual words are computationally expensive [11]. HGSIR provides superior perfor-

mance to their work in terms of both classification accuracy and computational complexity,

as it incorporates the absolute spatial information. Soft Pairwise Similarity Angle Distance

Histogram (SPSad+ [15]) combines angle, distance and absolute spatial information to final

histogram representation. HGSIR comparatively provides 6.7% better results with reduced

computational complexity.

Fig 9. The mean classification accuracy comparison while using different sizes of visual vocabulary for 15-scene
image dataset.

https://doi.org/10.1371/journal.pone.0203339.g009

Table 2. Comparison with existing research in-terms of classification accuracy while using 15-scene image dataset.

Algorithms Accuracy

SPM Entire Pyramid (L = 2) [10] 81.4 ±0.5

Zang et al. [45] 81.5%

PIWAH+ [14] 82.5%

LVS+SIFT [46] 83.2±0.58%

SPSad+ [15] 83.7%

Karmakarei et al. [47] 84.2%

EMFS [48] 85.7%

LGF [38] 85.8%

OVH [16] 87.07%

LVFC-HSF [49] 87.23%

CWCH [12] 88.04%

HGSIR 90.41%±0.72

https://doi.org/10.1371/journal.pone.0203339.t002
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Karmakar et al. [47] enhanced the conventional spatial pyramid method to obtain rotation-

invariant image classification by partitioning image into concentric rectangles. The proposed

approach used concatenated weighted histograms extracted in a rectangular ring fashion from

each region at each level. They reported an accuracy of 84.20% using a vocabulary of size 200

with a feature vector of size 4200. Our proposed HGSIR provides 6.21% higher accuracy com-

pared to their work.

Zou et al. [38] proposed LGF, a fusion of local and global features and also considered the

spatial context by incorporating SPM in implementation. Our proposed representation attains

a performance gain of 4.6% over LGF. Huang et al. [46] included the spatial information at

descriptor level and achieved 83.2% accuracy. Zang et al. [45] proposed a framework that

utilizes important and useful information from images to simplify OB (Object Bank) represen-

tation. OB combines both semantic and spatial information. HGSIR achieves 8.9% higher clas-

sification accuracy as compared to their work. HGSIR provides competitive performance to

the recent state-of-the-art methods.

Extended Multi-Feature Spatial Context (EMFS) representation [48] is based on combina-

tion of multiple features, and the spatial neighborhood resulting in 85.7% classification accu-

racy. Lin et al. [49] proposed a local visual feature coding based on heterogeneous structure

fusion to overcome the limitation of capturing intrinsic invariance in intra-class images or

image structure for large variability image classification. Our methods provides 3.18% higher

accuracy compared to their approach.

OVH [16] is a relative spatial feature extraction method. It is based on extracting global geo-

metric spatial relationships by computing the magnitude of orthogonal vectors between TIWs.

HGSIR yields 3.34% better accuracy compared to OVH. CWCH [12] is a recent approach,

focused to incorporate the spatial context by partitioning the images in geometric sub-regions.

It works by partitioning the images into circular regions and aggregates the weighted histo-

grams from each sub-region and each level in a pyramid fashion. The proposed hybrid

approach, HGSIR, outperforms CWCH by obtaining 2.37% higher accuracy. It can be safely

concluded that HGSIR provides better performance compared to the state-of-the-art absolute

and relative spatial feature extraction methods.

The mean confusion matrix for 15-scene image dataset obtained from the proposed

research is shown in Fig 10. The diagonal values show the precision normalized percentages

for each class.

The class-wise classification accuracy comparison between LGF [38] and the proposed

HGSIR is shown in Fig 11. The results show that the proposed research outperforms and pro-

vides competitive performance with LGF [38] against all classes for the 15-scene image dataset.

4.3 Classification of the UCM image dataset

The second dataset used for the evaluation of the proposed research is the UCM image dataset.

Fig 12 provides a comparison of the Rect, Tri, Cir and the proposed hybrid approach while

using the visual vocabulary of different sizes. For all the approaches, the highest performance

is obtained for a vocabulary of size 400. The UCM dataset mostly contains land-use scene

images at a large scale, hence the spatial information provides important clues leading to the

better discrimination. The experimental results validate the effectiveness of the proposed

hybrid approach.

In order to further assess the performance of HGSIR, it is compared with the state-of-the-

art methods aimed to enhance the classification performance (as shown in Table 3). Zhao et al.

[50] proposed CCM-BOVW for describing spatial information and implied multiple features

for land use scene classification. Our approach provides 13.31% performance gain as
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compared to CCM-BOVW. Chen et al. [51] proposed MS-CLBP descriptor to characterize

dominant texture features of multi-resolution images. HGSIR achieves a performance gain of

9.35% over MS-CLBP.

The proposed hybrid approach attains a substantial performance gain over the recent state-

of-the-art methods. HGSIR achieves 0.62% highest accuracy as compared to Evolved Sugeno

Fig 10. The confusion matrix representing the computed classification accuracy % for the proposed research while using
15-scene image dataset.

https://doi.org/10.1371/journal.pone.0203339.g010

Fig 11. Class-wise comparison between LGF [38] and HGSIR for the 15-scene image dataset.

https://doi.org/10.1371/journal.pone.0203339.g011
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[35], that is based on deep learning. To the best of our knowledge, Scott et al. [35] reported

the highest classification accuracy i.e. 99.33% for UCM image dataset using deep learning

approaches. Prior to their work, Penatti [54] reported highest classification accuracy that is

99.43% by combining CaffeNet with OverFeat and the outputs were fed into SVM. CWCH

[12] is a complementary approach to HGSIR as it is based on spatial feature extraction by

using concentric weighted circles, resulting in an accuracy of 99.4%. The proposed approach

yields 0.55% higher accuracy compared to CWCH. The proposed hybrid image representation

provides competitive performance as compared to the state-of-the-art methods. The confusion

matrix for the UCM image dataset is shown in Fig 13. The diagonal values show the precision

normalized percentages for each class.

The class-wise comparison between LGF and UCM image dataset is shown in Fig 14. It

can be seen that our method provides major improvement in accuracy of classes i.e. buildings,

overpass, storage tanks and tennis court. Significant improvement is also observed in classes

medium-residential and mobile home park. Our method provides remarkable results for high

resolution scene classification.

Fig 12. The mean classification accuracy comparison while using different sizes of visual vocabulary for UCM
image dataset.

https://doi.org/10.1371/journal.pone.0203339.g012

Table 3. Comparison with existing research in-terms of classification accuracy while using UCM image dataset.

Algorithms Accuracy

CCM-BOVW [50] 86.64% ± 0.81%

MS-CLBP1 [51] 90.6% ± 1.4%

SOS [52] 94.33%

LGF [38] 95.48%

salM3LBP-CLM [39] 95.75% ± 0.80%

LGFBOVW [53] 96.88% ± 1.32%

ResNet50 [34] 98.5%

Zeng et al. [42] 99±0.35%

Evolved Sugeno [35] 99.33%

CWCH [12] 99.4%

HGSIR 99.95%±0.1

https://doi.org/10.1371/journal.pone.0203339.t003
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4.4 Classification of Caltech-101 image dataset

To further investigate the classification performance of HGSIR, experiments are performed on

the challenging Caltech-101 image dataset. Table 4 demonstrates the accuracy attained for the

complementary Rect, Tri, Cir and HGSIR approaches over visual vocabulary of different sizes.

The optimal performance for HGSIR i.e. 99.2% is obtained for a vocabulary of size 100. Fig 15

Fig 13. The confusion matrix representing the computed classification accuracy % for the proposed research while using UCM
image dataset.

https://doi.org/10.1371/journal.pone.0203339.g013

Fig 14. Class-wise comparison between LGF [38] and HGSIR for UCM image dataset.

https://doi.org/10.1371/journal.pone.0203339.g014
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provides a graphical comparison between state-of-the-art approaches as a function of vocabu-

lary size.

Table 5 provides a comparison of HGSIR with more recent methods enhancing classifica-

tion accuracy for the Caltech-101 image dataset by relative spatial information, encoding

spatial information at descriptor level and deep learning approaches. Our proposed method

provides a performance gain of 34.6% compared to SPM [10], 32.1% compared to PIWAH+

[14], 30.8% as compared to SPSad+ [15], 24.2% compared to the LVS+ SIFT [46] descriptor

and 20.47 compared LVFC-HSF [49] feature encoding method.

HGSIR achieves 12.29% performance gain over DeCAF6 [55] which is based of features

extracted from DCNN activation. SVM(VGGI9)+ SRSL [56] in aimed to increase the classifi-

cation performance by improving feature learning. The proposed approach provides 6.61%

Table 4. Comparison in-term of classification accuracy while using Caltech-101 image dataset.

Voc. Size Rect Tri Cir HGSIR

50 93.06% 92.14% 92.41% 96.47%

100 97.73% 97.08% 96.7% 99.2%

200 97.4% 97.3% 97.2% 99.1%

https://doi.org/10.1371/journal.pone.0203339.t004

Fig 15. The mean classification accuracy comparison while using different sizes of visual vocabulary for Caltech-
101 image dataset.

https://doi.org/10.1371/journal.pone.0203339.g015

Table 5. Comparison with existing research in-terms of classification accuracy for Caltech-101 image dataset.

Algorithms Accuracy

SPM Entire Pyramid (L = 2) [10] 64.6±0.8%

PIWAH+ [14] 67.1%

SPSad+ [15] 68.4%

LVS+SIFT [46] 75±0.67%

LVFC-HSF [49] 78.73%

DeCAF6 [55] 86.91±0.7%

SVM(VGGI9)+SRSL [56] 92.59%

HGSIR 99.2%

https://doi.org/10.1371/journal.pone.0203339.t005
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higher classification accuracy to the second best reference method. The comparisons demon-

strate that the spatial information provides significant clues by enhancing the discriminative

power of features.

4.5 Classification of RSSCN7 image dataset

The RRSCN7 image dataset is a challenging dataset as the images are taken at four different

scales and angles. Table 6 provides a comparison of classification performance of Rect, Tri and

Cir methods with HGSIR. Our method yields best performance resulting in an accuracy of

98.89%. Fig 16 illustrates the classification performance comparison of these methods over dif-

ferent sizes of visual vocabulary. Our method provides 0.82% higher accuracy to the second

best method in comparison. The proposed approach consistently produces remarkable results

compared to related approaches.

Table 7 provides a comparison of the proposed method with recent state-of-the-art

approaches. Recently, a research trend is seen to shift to the implementation of deep learning

methods for image classification. The deep learning methods have shown outstanding results

on most of the datasets. It is worth mentioning here that CNN based methods require huge

amounts of data and significant training time to learn the features. Table 7 demonstrates

the superiority of the proposed approach to more recent CNN and deep learning based

approaches. Zeng et al. [42] applied CNN and improved scene classification by combining

global-context and local-object features. The proposed method provides 3.3% higher accuracy

Table 6. Mean average classification accuracy as a function of vocabulary size.

Voc. Size Rect Tri Cir HGSIR

50 86.89% 85.99% 84.17% 88.84%

100 92.38% 90.73% 91.41% 93.14%

200 93.44% 92.6% 93.1% 95.56%

400 96.73% 95.92% 96.07% 98.64%

600 98.07% 97.82% 98.04% 98.89%

https://doi.org/10.1371/journal.pone.0203339.t006

Fig 16. The mean classification accuracy comparison while using different sizes of visual vocabulary for RSSCN7
image dataset.

https://doi.org/10.1371/journal.pone.0203339.g016

A Hybrid Geometric Spatial Image Representation for scene classification

PLOSONE | https://doi.org/10.1371/journal.pone.0203339 September 12, 2018 19 / 27

https://doi.org/10.1371/journal.pone.0203339.t006
https://doi.org/10.1371/journal.pone.0203339.g016
https://doi.org/10.1371/journal.pone.0203339


compared to the second best method in comparison, despite of the simplicity of the proposed

approach.

The experimental results demonstrate the efficacy of our approach in recognizing the

complex remote scene images. The confusion matrix for the RSSCN image dataset is shown in

Fig 17.

4.6 Classification of MSRC-v2 image dataset

In order to demonstrate the sustainable performance of the proposed approach, experiments

are also conducted by using the MSRC-v2 image dataset. The above comparisons have

clearly demonstrated that our proposed HGSIR outperforms the concurrent Rect, Tri and

Cir approaches. For MSRC-v2 image dataset, the best performance for HGSIR i.e. 99.89% is

obtained for a vocabulary of size 100.

Here in Table 8, we provide a comparison with different state-of-the-art approaches. Savar-

ese et al. [18] and Liu et al. [60] are the most notable contributions, concerned with modeling

geometric relationship between visual words. In addition to this, [60] requires an integrated

feature selection and spatial information extraction step. The extraction of spatial information

at learning stage would lead to re-computation of features with a modification in training

set, hence making it difficult to generalize. Whereas, the approach proposed by Savarese et al.

[18] requires a 2nd-order feature quantization step. Despite of the simplicity of the proposed

Table 7. Comparison with existing research in-terms of classification accuracy for RSSCN7 image dataset.

Algorithms Accuracy

VGG16 [57] 87.18±0.94

CaffeNet [57] 88.25±0.62

Deep Filter Banks [58] 90.4±0.6

Anwer et al. [59] 94

Zeng [42] 95.59% ± 0.49

HGSIR 98.89%

https://doi.org/10.1371/journal.pone.0203339.t007

Fig 17. The confusion matrix representing the computed classification accuracy % for the proposed research
while using RSSCN7 dataset.

https://doi.org/10.1371/journal.pone.0203339.g017
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approach, our method provides 18.79% and 16.79% higher accuracy compared to their work.

HGSIR yields 17.89% and 16.39% higher accuracies compared to PIWAH [14] and SPSad [15]

respectively. The experimental results validate the robustness of the proposed approach.

The confusion matrix for MSRC-v2 dataset is shown in Fig 18. It can be seen that the only

confusion occurs between class Grass and Sheep where some instances of Grass are misclassi-

fied in Sheep class. All other classes are correctly classified into their respective semantic

categories.

4.7 Time complexity

This section is about the training and testing time of the proposed research with complemen-

tary approaches. The specifications of the system used to conduct experiments are: Intel(R)

Core i7 (seventh generation) 2.70 GHz CPU, 16 GB RAM while using Windows-10 operating

system. The proposed algorithms are implemented in MATLAB and the experiments are exe-

cuted independently each for Rect, Tri, Cir and HGSIR approaches. It is important to mention

here that the training time is computed as vocabulary construction + training histograms com-

putation + training of classifier. The testing time is computed as histogram computation of

Table 8. Comparison with existing research in-terms of classification accuracy for MSRC-v2 image dataset.

Algorithms Accuracy

Savarese et al. [18] 81.1%

PIWAH [14] 82.0%

Liu et al. [60] 83.1%

SPSad [15] 83.5%

HGSIR 99.89%

https://doi.org/10.1371/journal.pone.0203339.t008

Fig 18. The confusion matrix representing the computed classification accuracy % for the proposed research while using
MSRC-v2 image dataset.

https://doi.org/10.1371/journal.pone.0203339.g018
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test image and classification using a pre-trained model of classifier. The average CPU time (in

seconds) required for HGSIR and the complementary schemes for 15-scene image dataset is

presented in Table 9.

The first observation from Table 9 is that training time increases with the increase in size

of visual vocabulary. The increase in the size of visual vocabulary increases the time for the

computation of cluster centers and directly impacts the size of resultant feature vector,

thereby affecting the overall training time. Same is observed for the testing time, that

increases significantly with increase in size of visual vocabulary. The computation time

(training and testing) for HGSIR is more compared to the Rect, Tri and Cir approaches

owing to the fact, that it involves histogram computation for each of the individual schemes,

which are then combined to create the hybrid representation. But this increase in time can

be compromised for the 4.36%, 3.09% and 2.52% higher accuracy provided by HGSIR over

Rect, Tri and Cir approaches respectively, for the 15-scene image dataset.

Another point of interest is the comparison between training and test time. The number of

training images for 15-scene image dataset is 1500 and there are 2985 test images, for first two

values of visual vocabulary size we observe that testing time is more as compared to training

time. It should be note that the training phase besides histogram construction involves the

visual vocabulary construction and cross-validation that consumes significant fraction of time.

The increase in the size of visual vocabulary significantly increases the training time thereby

limiting the impact of training and test dataset image ratio.

Table 10 shows the training and test time for UCM image dataset for visual vocabulary of

different sizes. It confirms to our observation that the training and test time increase with

increase in the size of visual vocabulary. Here we can see that the training time for HGSIR is

more compared to the complementary approaches, but this time can be easily compromised

for the outstanding performance of HGSIR. The training and test ratio for UCM image dataset

is 0.8:0.2. Hence the training time is more compared to test time for all values of vocabulary

size.

Table 11 provides time comparison for the Caltech-101 image dataset. The training and

test ratio for Caltech-101 iamge dataset is 0.6:0.4. Here again we see that the training cost is

Table 9. Time comparison for 15-scene image dataset. K denotes the size of visual vocabulary.

K Training Time Testing Time

Rect Tri Cir HGSIR Rect Tri Cir HGSIR

50 285.15 273.47 260.29 652.08 434.46 436.98 434.11 1312.36

100 464.8 484.82 471.85 1283.32 491.32 493.33 490.03 1484

200 1259.718 1419.865 1036.84 2997.223 615.71 621.64 615.34 1867.69

400 1456.66 1691.17 2640.01 3915.19 805.95 814.5 803.77 2440.72

600 3842.55 2946.18 3245.9 5194.86 825.27 827.53 823.58 2476.38

https://doi.org/10.1371/journal.pone.0203339.t009

Table 10. Time comparison for UCM image dataset. K denotes the size of visual vocabulary.

K Training Time Testing Time

Rect Tri Cir HGSIR Rect Tri Cir HGSIR

50 362.48 390.46 393.26 948.729 51.08 50.56 50.2 155.24

100 629.28 692.1 655.415 1693.201 54.62 55.1 54.64 166.65

200 1107.497 1265.183 1582.45 4210.137 92.4 86.44 84.67 261.03

400 2888.65 2969.87 2532.525 9502.425 108.7031 101.3 98.841 301.84

https://doi.org/10.1371/journal.pone.0203339.t010
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significantly higher. The increase in time with respect to vocabulary size is in consistence with

previous experimental results.

Table 12 demonstrates the training and testing time for the RSSCN7 image dataset. It again

confirms the observation that time is directly proportional to vocabulary size. High perfor-

mance of HGSIR is a good compromise over time, compared to complementary approaches.

For RSSCN image dataset the training and test image ratio is 0.5:.5, hence it can give a better

comparison of training and test time. The results confirm to our observation that the training

phase consumes more time compared to testing phase.

The Table 13 shows the time for MSRC-v2 image dataset for a vocabulary of size 100. For

MSRC-v2, the training to test ratio is 0.6:0.4. For each individual scheme the training time is

higher compared to testing time. Though HGSIR consumes more time compared to concur-

rent approaches, but its outstanding and consistent performance on challenging image bench-

marks demonstrate that it is highly beneficial for scene classification.

5 Conclusion and future direction

In this paper, we aim to propose a novel image representation that is based on hybrid geomet-

ric spatial image representation to improve the effectiveness and classification accuracy of BoF

model. The image is represented in the form of visual words histograms that are computed

over the geometric regions based on circular, triangular and rectangular regions. The proposed

histogram representation based on HGSIR contains the semantic information computed over

three different geometric regions. The final histogram constructed through the proposed

research is in a higher dimensional space and this is beneficial for image representation and

classification learning. SVM with hellinger kernel is used for image classification and the

Table 11. Time comparison for Caltech-101 image dataset. K denotes the size of visual vocabulary.

K Training Time Testing Time

Rect Tri Cir HGSIR Rect Tri Cir HGSIR

50 3389.21 4505.369 4461.615 11638.27 1041.31 830.675 820.86 2471.15

100 7711.89 6201.36 5779.3 21103.8 1065.18 980.32 965.62 2931.19

200 9964.58 8225.24 7193.45 29892.538 1464.59 1225.36 1193.17 3670.315

https://doi.org/10.1371/journal.pone.0203339.t011

Table 12. Time comparison for RSSCN7 image dataset. K denotes the size of visual vocabulary.

K Training Time Testing Time

Rect Tri Cir HGSIR Rect Tri Cir HGSIR

50 344.01 341.116 365.354 675.43 273.08 268.44 266.62 805.59

100 502.17 520.78 543.98 1015.494 282.622 277.235 274.615 829.43

200 854.443 911.43 885.903 1784.479 291.01 281.05 278.93 838.66

400 1960.07 2085.336 1987.959 4349.514 301.06 301.25 296.27 902.55

600 4056.7 3201.738 4783.744 7351.356 430.33 334.65 327.011 1001.02

https://doi.org/10.1371/journal.pone.0203339.t012

Table 13. Time comparison for MSRC-v2 image dataset. K denotes the size of visual vocabulary.

K Time Rect Tri Cir HGSIR

100 Training 68.71 64.46 61.03 157.71

100 Testing 62.84 52.33 52.019 103.24

https://doi.org/10.1371/journal.pone.0203339.t013
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proposed HGSIR is evaluated on five standard image benchmarks. The proposed HGSIR

approach outperforms the circular, triangular, rectangular and other state-of-the-art methods

in terms of classification accuracy. In future, we aim to investigate the performance of pro-

posed approach by using a pre-trained deep neural network with transfer learning to evaluate

the geometric spatial features for the large-scale image classification and retrieval.
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