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A hybrid GNA instability
Pralay Kumar Karmakar 1*, Dhrubajit Kalita 1,2 & Ahmed Atteya 3

A semi-analytic admixed model formalism to study the stability effects of the inner crust regions 
against the local collective perturbations in non-rotating neutron stars is proposed. It consists of the 
viscoelastic heavy neutron-rich nuclei, superfluid neutrons, and degenerate quantum electrons. A 
normal spherical mode analysis yields a generalized linear dispersion relation multiparametrically 
mimicking the inner crust features of neutron stars. A hybrid gravito-nucleo-acoustic (GNA) instability 
mode is found to be excited. It is demonstrated that the electron density and the inner crust curvature 
act as its accelerating and antidispersive agents. In contrast, the heavy neutron-rich nucleus and 
neutron densities act as decelerating factors. The heavy nucleus density, electron density, and 
geometric curvature act as its destabilizers. It is only the neutron density that acts as the GNA 
stabilizing agent. The heavy neutron-rich nucleus and neutron densities are found to act as dispersive 
broadening factors to it. The high-K  regions are the more unstable spectral windows indicating 
that the GNA mode plays a dominant role in the inner crust zone towards the local stability. Its fair 
reliability is indicated in light of the recent astronomic observed scenarios. It could be useful to explore 
acoustic mode signatures in non-rotating neutron stars and similar other compact astroobjects.

A neutron star is a seismically active compact astrophysical remnant object composed mainly of degenerate 
nuclear matter in spherically confined geometry1,2. It is formed from the gravitational core-collapse of massive 
stars ( M ∼ (8− 10)M� , M� = 2× 1030 kg is the solar mass). Its organizing energy of the gravitational pull 
is balanced by the disorganizing elastic energy stored in the neutron Fermi-continuum3. The typical physical 
properties of such astroobjects are mass4,5, M ∼ (1.4− 2.14)M� ; size, R ∼ 10− 20  km1,2, temperature2,6, 
T ∼ 106 − 1012 K, and so forth. The internal structure of such stars are revealed by analysing the observed 
spectra of neutron star oscillation. Its interior structure is categorically subdivided into five distinct concentric 
regions on the basis of its compositional matter density (ρ)2,7. These constituent regions are: (1) thin atmosphere 
of light elements surrounding an ocean of superhot liquid iron; (2) an outer crust composed of dense plasma of 
neutron-rich nuclei and quantum degenerate electron gas ( ρ ∼ 107 − 1014 kg m−3); (3) inner crust composed of 
inhomogeneous neutron-rich nuclei, neutron superfluid, and electron quantum fluid ( ρ ∼ 1014 − 1017 kg m−3); 
(4) outer core made of neutrons, non-degenerate protons and muons; and (5) abstract inner core2,7.

The dynamics of the interior of the neutron star is important to understand a rich variety of phenomena, 
such as observed spin glitches, thermal evolution, waves and oscillations, and diversified instabilities8. In this 
regard, the importance of hydrodynamic instabilities in such neutron stars has become a question of considerable 
interest. It may be surprisingly noted that the inner crust region has received only a little research attention as 
of now from the fluidic stability viewpoint. In the inner crust, if ρ = 4.3× 1014 kg m−3, neutrons drip out of the 
neutron-rich nuclei and form a free neutron gas. Above critical density value of ρ = 2.8× 1017 kg m−3, the nuclei 
dissolve so that the protons get unclustered to move freely9,10. Between these two densities, the matter consists of 
neutron-rich-nuclei in a Coulomb lattice (strong coupling), a gas of free neutrons, and a degenerate electron gas 
penetrating the lattice9. In this regime, when the temperature is below 109 K, the free neutrons become superfluid 
by forming isotropic 1S0 Cooper pairs10,11.

It is to be noted here that Epstein has for the first time proposed the superfluidic behaviour of neutrons in 
the constitutive matter of non-rotating and unmagnetized neutron stars to study their bulk acoustic instability 
properties10. The flow of neutron superfluid has been considered both around and through the constitutive 
nuclei. It has been found that the sound phase speed corresponding to the excited shear mode gets enhanced 
as the constituent neutron-rich nuclei are weakly coupled with the outer superfluidic neutrons in the inner 
crust region10. The results are applicable to the wave propagation in a neutron star as long as the perturbation 
wavelength is smaller than the density gradient scale lengths, also termed as spatial inhomogeneity scale lengths10. 
Besides, the main effect of the non-local gravitational field on the sound modes associated with the superfluidic 
matter has also been studied12. Two distinct sound modes have been reported to exist in the superfluid: the first 
sound (density wave) and the second sound (entropy wave). It has generalized the Jeans instability criteria of the 
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sound mode in the normal fluidic counterpart12. It has been found that the Jeans scale length in the superfluid 
is 2/

√
3 times larger than that in the usual case of a normal fluid medium12.

In addition, the analysis of collective excitations of diversified waves, oscillations, and glitches in the neutron 
stars ensures the superfluidic behaviour of their inner crust regions. The occurrence of the spin glitches can be 
manifold from the viewpoint of several authors. The glitches are developed due to the sudden reorganization of 
the neutron star crust (by star-quake). In such models, a neutron star is a two-component structure of a superfluid 
core surrounded by a rigid crust13–15. As already reported elsewhere3, the glitches are due to the sudden release 
of the elastic energy. In such a system, a heavy nucleus is assumed to be a spherical piece of a viscoelastic Fermi-
continuum compressed to the normal nuclear density. In the inner crust regime, superfluid vortices interact with 
the heavy nuclei and pin up with the nuclei in the Coulomb lattice as already mentioned before. The unpinning 
of large-scale vortices from the nuclei can also result in the form of spin glitches well observed in neutron 
stars16–18. Such glitches can also result due to the instability of vortex creeps through the nuclear lattice8,19,20. 
Only a few models have discussed that the interaction of neutron superfluid vortex filaments with the proton 
superconducting flux tubes in the core of the neutron star results in the evolution of glitches21. The glitches can 
also be produced because of the coupling of the crust with the superfluid inside the neutron stars22–24. Recently, 
the glitch formation is explained as a repeated phenomenon from the quasi-period 3P2 neutron superfluid 
B-phase (magnetic moment of 3P2 Cooper pairs aligned with the magnetic field) to A-phase (magnetic moments 
are very chaotic), and then back to B-phase repeatedly, resulting in many repeated glitches with quasi-periods25. 
But, the mechanisms operating behind the origin of such glitches from the simplistic fluidic viewpoint is yet to 
be illuminated as far as seen extensively in the literature.

It is to be noted here that the glitches are the potential agents to excite various collective waves and oscillation 
modes with different periods (τ ) in neutron stars; viz., pressure (p-)mode, gravity (g-)mode, fundamental (f-)
mode, shear (s-)mode, interfacial (i-)mode, torsional (t-)mode, Rossby (r-)mode, and gravitational wave (w-)
mode26. The p-mode is an acoustic mode, like an ordinary sound signal, the propagation of which is dependent 
on the material density and temperature of the stellar media ( τ ∼ 0.1 ms). Besides, the g-mode is completely 
confined to fluid core and caused by the buoyancy acting as a restoring force ( τ ∼ 10− 400 ms) and f-mode 
is a surface g-mode overlying the crust ( τ ∼ 0.1− 0.8 ms). Similarly, the s-mode is a normal mode of velocity 
shear wave present in the solid neutron star crust ( τ ∼ 1 ms − 10 s). The i-mode is a hybrid pattern composed of 
the spectral waves propagating in the solid–fluid interfaces in the neutron star ( τ ∼ 100 ms). The t-mode is the 
torsional motion caused by the tangential motion of the material from the neutron star surface ( τ < 20 ms). 
The r-mode is excited in the rotating structure due to the Coriolis force acts as a restoring force along the surface 
( τ ∼ 1− 100 ms). The w-mode gets generated due to the space–time curvature-induced fluctuations (fully 
relativistic effects). It dissipates energy through the emission of gravitational waves ( τ ∼ 1− 10 µs) as extensively 
seen in the literature26.

We herein perform a systematic theoretic exploration to investigate the stability effects of the inner crust 
properties on the local collective waves and oscillations of nuclear origin excitable in non-rotating neutron 
stars. An important dimension of the key motivation behind the present study is to explore the basic physical 
mechanism for the glitch formation from a modified multi-fluidic perspective for the first time. Accordingly, 
we consider, as a first step in this direction, a three-component fluid model system depicting the inner crust 
region of neutron stars. It consists of the viscoelastic heavy neutron-rich nuclei (strongly correlated), superfluid 
neutrons (uncorrelated), and degenerate quantum electrons (weakly correlated) with polytropic equations of 
state confined in a spherically symmetric geometry. We ignore possible relativistic effects of the constitutive 
electrons for the sake of pure analytic simplicity. It is physically well validated at densities below a critical density 
value27 of 109 kg m−3. The normal mode sensibly supported within our bulk-fluidic model perception here is the 
hybrid gravito-nucleo-acoustic (GNA) instability evolving in the complex inner crust. It is the low-frequency 
acoustic mode excited under a unique action originating from the GNA coupling. The electrostatic influence 
here is caused by all the Coulombic species (electrons + nuclei) and the self-gravitational effect originates from 
the Newtonian species (neutrons + nuclei). The free energy for this instability is sourced in the non-zero finite 
driving currents (elastic, streaming) associated with the electrons and neutrons amid the constitutive nuclei as 
the heavy species (inertial, non-streaming). A periodic interplay between these inertia and elasticity rhythmically 
results in the excitation and in the subsequent propagation of the GNA waves of nuclear origin. The various 
modal accelerating (decelerating) and realistic stabilizing (destabilizing) agencies of the inner crust region are 
semi-analytically explored.

The entrainment effect induces a flow-flow coupling in the proton fluid around each neutron vortex. It 
generates a local magnetic field (1014 G) due to which the electrons scatter dissipatively28. Thus, the outcome is a 
coupling between the constitutive neutrons and the interpenetrating conglomerate of charged particles. When 
the timescale of the dynamical effects is shorter than the period of the oscillations of the superfluid vortices 
(i.e., < 10−1 s), the quantized superfluid vortices play no dynamical role29. Thus, we expect that, for a small 
amplitude of local oscillations, the dynamics of the vortex oscillations will not change. So, keeping in mind the 
above mentioned facts, we ignore the scattering of electrons via the constitutive lattice phonons and impurities 
sourced in the constitutive nuclei; and hence, subsequent frictional effects30, intrinsic dynamics of the vortices, 
possible pinning effects, and other vortex-vortex interactions29. In this paper, we ignore the superfluid flow 
through the nucleus via the entrainment effects. The constitutive neutrons and nuclei are coupled via the classical 
formalism of the non-local long-range Newtonian gravity. The collective dynamics of the dense electrons and 
quantum Bohm potential arising because of the inhomogeneous wave field curvature effects associated with 
the constitutive quantum particles is included afresh in the stability analysis of the inner crust region of the 
neutron stars.
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Model and formalism.  We consider the inner crust region of neutron stars composed of the viscoelastic 
neutron-rich nuclei, neutron superfluid, and degenerate electrons in a spherically symmetric geometrical 
configuration relative to the centre of the entire stellar matter mass distribution. The main advantage behind 
considering such a symmetric model geometry lies in the simplistic but judicious reduction of the complex 3-D 
problem (with multiple degrees of freedom) into an equivalent simplified 1-D problem (with single degree of 
freedom) without any sensible loss of both generality and reliability. In other words, the non-radial complications 
sourced in the polar and azimuthal angular degrees of freedom are relaxed at the cost of radial symmetry of the 
spherical problem. The model setup includes the effects of electrostatic potential; gravitational force (due to 
neutrons and nuclei); thermal pressure (for nuclei); and quantum effects (degeneracy pressure and Thomas-
Fermi-based Bohm potential)31. Here, the tiny electrons and neutrons are treated as quantum particles as their 
de Broglie wavelengths ( �dB ) have larger value relative to the interparticle separation distance (with super-
populous de Broglie sphere, n�3dB ≥ 1)31. Against this de Broglie super-criticality, the constitutive heavier nuclei 
are considered as classical particles. As a consequence, the quantum effects (i.e., degeneracy pressure and Bohm 
potential) for the electrons and neutrons are taken into account32–35. Again, the Coulomb coupling parameter36 
for the heavy nuclei, ŴCou = (1/4π ε0){(Zd e)2/(a kB T)}= 8× 103 . Thus, ŴCou >> 1 , implying that the nuclei 
are strongly coupled (crystalline). It gives rise to the viscoelastic effects responsible for both the shear mode and 
the bulk mode in the classical heavy nuclear fluid37,38. When the temperature falls below 109 K, the neutrons are 
completely condensed into a superfluid state by forming the 1S0 Cooper pairs. The existence of such states in the 
inner crust of neutron stars has already been confirmed by astronomical observations of giant pulsar frequency 
glitches as already well detected in Vela pulsar7,23.

It is noteworthy further that the local fluidic oscillation period of the inner crust material ( τJ = 1.55× 10−3 s) 
is shorter than that of the superfluid vortex oscillation ( τv = 10−1 s)11. It upholds the ignorance of the dynamics 
involved in quantized superfluid vortices in the local oscillation of the inner crust of the neutron stars. In this 
limit of the charged-superfluid form of the magnetohydrodynamic phase in an ordinary plasma system, the 
electromagnetic forces empower only the electrical charge neutrality on a bulk microscopic scale. As the adopted 
fluid medium is macroscopically neutral one, the presence of electromagnetic forces is ignored herewith11. It 
may be further noteworthy that the neutron star rotation is sourced in the dynamical rotation of the constitutive 
neutron vortices39. As the dynamics of such vortices play no significant role in the overall neutron star dynamics, 
one could ignore the rotational effects of the model neutron star without violating the generality. Moreover, 
cs = 6.18× 105 m s−1 << vacuum speed of light, c = 3× 108 m s−1. It shows that we consider every constitutive 
component of the inner crust of the neutron stars to behave as non-relativistic one. So, it is judiciously expedient 
to consider the simplified multi-component fluid outline in such compact astroenvirons with sub-luminal 
fluctuations of the relevant physical variables in the current model configuration.

The evolution dynamics of the heavy viscoelastic neutron-rich nuclei fluid, neutron superfluid, degenerate 
electron fluid are governed by a continuity equation for flux-density conservation, momentum equation for force-
density conservation, polytropic equation of states, and finally closing the system by the electro-gravitational 
Poisson equations. The principal goal is to analyse the normal mode (GNA instability) evolving in the complex 
inner crust. The electrostatic influence here is caused by the Coulombic species (electrons + nuclei) and the self-
gravitational effect originates from the Newtonian species (neutrons + nuclei).

The basic governing equations of viscoelastic heavy nucleus (h) fluid are continuity equation and momentum 
equation in spherically symmetric geometry in a coordination space (r, t) with all the usual generic notations 
given below respectively as

here τm is the viscoelastic relaxation time36. Zh , ρh , and mh are the proton number, material density, and mass, 
respectively, of the neutron-rich heavy nucleus. vh is the flow velocity of heavy nucleus fluid. χ = (ς + (4

/

3)η) 
is the generalized effective viscosity (with shear-bulk contributions). Ph is the thermal pressure due to the heavy 
nucleus37. φ and ψ are the electrostatic and gravitational potentials developed due the charge and mass density 
fields, respectively.

In a similar way, the governing equations of the superfluid neutron (n) with all the usual symbols are given 
respectively as

here vn is the neutron superfluid flow speed. µn is the neutron chemical potential. ρn and mn are the neutron 
material density and mass, respectively. γ = (D − 2)/(3D) is a Bohmian quantum correction prefactor for the 
Fermions; where D is the dimension of the system31,34. The reduced Planck constant signifying the step unit of 
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non-local quantum action variation is given as –h = 1.054× 10−34 J s. Here, in the momentum equation (Eq. 4), 
the convective term does not occur in the LHS. Instead, there arises a kinetic term, v2n

/

2 , termed here as the 
kinetic potential in correlation with other types of involved potential. The reason behind such terms is in the fact 
that the superfluid streams without viscosity with no exchange of collisional momentum with other component 
fluids12,40 in the composite fluid system adopted here.

The similar governing equations for the constitutive degenerate electron fluid (e) in spherically symmetric 
geometry in the coordination space (r, t) are respectively cast as

here ve is the electron flow speed. µe is the electron chemical potential. me is the electronic mass. ρe is the electron 
material density of the electronic fluid. It may be noted here that the quantum effects are considered in the above, 
but viscous effects are ignored because of the asymptotically small me-value.

In our description of the considered neutron star model, Eqs. (4), (6) are the momentum balance equations 
of the quantum fluid of neutrons (superfluid) and of electrons (normal fluid), respectively. The last terms therein 
stand for their respective quantum potentials, termed originally as the de Broglie-Bohm potentials, which arise 
because of the inhomogeneous wave field curvature associated with these constitutive particles. In other words, 
the quantum potential depends on the spatial curvature of the particle wavefunction amplitude. It physically 
signifies the potential energy (self-energy) function of the matter wave field associated with the particles. It gives 
rise to the quantum trajectories followed by the quantum particles41. It facilitates the transference of energy 
from the wave field to particle and back again which accounts for energy conservation in isolated quantum 
system42. The value of quantum potential does not give (in a non-stationary quantum state) the total energy, 
but it represents an amount of energy in the wave field that is available to the particle at its specific position in 
the field. It is also found that, more pronounced the change of wave shape, the greater the amount of energy 
exchanged between particle and the wave field42. The change of shape of the wave-field is an important ingredient 
in determining energy transfer and storage process. These factors clearly imply that the mechanism of energy 
transfer and storage processes here is completely different from the corresponding classical cases and it cannot 
be wavefunction amplitude-dependent42.

A few points on the nature of the viscoelastic fluid momentum equations may be relevant in this context. As 
already seen conventionally, the fluid system would behave as a hyperbolic model (wave propagatory) if there is 
no viscosity. It would behave as a parabolic one (diffusive or dissipative) if the fluid viscosity is taken into account. 
It would play as an elliptic system depicting steady state or equilibrium processes if the basic conservation rules 
are nicely obeyed in the absence of such dissipative agents.

Against this backdrop, the generalized polytropic equation of state of the composite system describing various 
thermodynamical processes in a compact form43 is given as

here Kα is the polytropic constant, γα = (1+ n−1
α ) is the polytropic exponent, and nα is the corresponding 

polytropic index. The polytropic equation of state is valid for both non-relativistic and extremely relativistic 
limits. But, in the non-relativistic approach, γα = 5/3 ; and in the extreme-relativistic approach, γα = 4/3 with 
different value of Kα in both the limits44. In our considered model, for electrons (α = e) and neutrons (α = n) , 
γα = 5/3 with Kα =

[
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]

 . This represents the electron degeneracy pressure and neutron degeneracy 
pressure of quantum mechanical origin in the non-relativistic limit. For the classical heavy nuclei, α = h , 
Kh = ZhkbT/mh = c2s  , and γh = 1 ; where, cs is the isothermal sound speed in the bulk fluid. In this case, the 
polytropic equation takes the form: Ph = c2s ρh , which is the well-known isothermal equation of state in the 
non-relativistic regime. It is noteworthy that Pα is not the effective system pressure. It is the pressure due to the 
individual constitutive species.

The electrostatic Poisson equation coupling the diverse constitutive charged species with the help of the 
electrostatic potential (φ) distribution sourced in their charge density fields reads as

here ∈0= 8.85× 10−12 F m−1 is the absolute permittivity of the free space (vacuum) characterizing the dense 
fluid exactly45.

Finally, we close the extreme fluid model system with the help of the self-gravitational Poisson equation 
relating the gravitational potential (ψ) distribution with the constitutive sourced material density fields given 
in the customary notation46 as

here G = 6.67× 10−11 N kg−2 m2 is the Newtonian gravitational coupling constant signifying the strength of the 
non-local gravitational interactions undergone by gravitating matter.
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The principal goal of the presented study is to develop a theoretical model to investigate the GNA instability 
dynamics evolving in the complex inner crust of non-rotating neutron stars. All the relevant physical parameters 
(F) describing the composite fluid are assumed to undergo small-scale linear perturbations (F1) relative to their 
corresponding hydrostatic homogeneous equilibrium values ( F0 ) in the presence of active geometrical curvature 
modulation effects (via r−1 ). Thus, such homology perturbations grow in the harmonic form of spherical 
spatiotemporal waves given in the generic notations45,47 as

where ω is the angular frequency, k is the angular wavenumber of the collective fluctuations and the constitutive 
species subscript, i = e, n, h.

Application of Eqs. (10)–(13) in Eqs. (1)–(9) transform the fluidic system to evolve in the Fourier space (k,ω) 
against the earlier coordination space (r, t) . Thus, the involved linear differential operators get autotransformed in 
the new space (k,ω) as: ∂
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This is to note further that, in obtaining Eqs. (17) and (19), we use the “Gibbs–Duhem relation”, which clearly 
relates the perturbed pressure with the perturbed chemical potential in the isothermal fluid condition46 given as

Now, the perturbed pressure term after Eq. (7), as used in Eqs. (15), (17), and (19), is expressed as
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We now apply the standard method of algebraic elimination and simplification so as to decouple Eqs. (24)–(28) 
into a generalized linear dispersion relation describing the ultra-low-frequency hybrid GNA instability given 
explicitly as

The various multiparametric symbols appearing in Eq. (29) are respectively given as
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In order for executing a scale-invariant analysis, a standard astronomical normalization scheme45,47 is adopted 
to normalize Eq. (29) as

here ωJ = (4π Gρh0)
1/2 is the Jeans frequency corresponding to constitutive heavy nuclei. � = ω/ωJ is the 

Jeans-normalized fluctuation frequency. The Jeans-normalized radial distance and wavenumber are ξ = r/�J 
and K = k/kJ , respectively. The values of the Jeans angular frequency, ωJ = 6.48× 102  s−1, the Jeans time, 
τJ = 1.55× 10−3  s ∼ 1  ms, the Jeans wavenumber kJ ∼ 1  mm−1, the Jeans wavelength, �J ∼ 103  m, and 
cs ∼ 105 m s−1.

The resulting various symbols of physical relevance, appearing in Eqs. (30)–(42) for the fluctuation dynamics 
get accordingly auto-normalized, respectively presented as

It is clearly evident that the dispersion properties of the low-frequency GNA fluctuations (governed by Eq. 43) 
excited in the inner crust region of neutron stars are basically dictated by the multiparametric dispersion windows 
featuring the interior of neutron stars (described judiciously by Eqs. 44–56).
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Results and discussions
In the proposed semi-analytic work, we study the collective excitation of radial waves and oscillations in the 
inner crust region of neutron stars in the strategic framework of generalized hydrodynamic model in an assumed 
spherically symmetric geometry. The inner crust is composed of degenerate electrons, superfluid neutrons, 
and heavy neutron–rich nuclei inconclusively coupled via the gravito-electrostatic Poisson formalism. The 
small-amplitude spherical normal mode analysis yields a linear dispersion relation (Eq. 43), modulated by an 
atypical set of coefficients (Eqs. 44–56), multiparametrically dependent on the diversified inner crust features. 
It is numerically analysed to explore the various instability properties (Figs. 1, 2, 3, 4, 5, 6, 7 and 8). The various 
reliable inputs10,11,27,34,48 used herein are: me = 9.1× 10−31 kg, mn = 1.67× 10−27 kg, mh = 1.3× 10−25 kg, 
ρe0 = 1× 109  kg  m−3, ρn0 = 1× 1017  kg  m−3, ρh0 = 5× 1014  kg  m−3, Zh = 36 , T = 108  K, τm = 10−3  s, 
χ = 1010 kg m−1 s−1, and γ = −1/3.

In Fig. 1, we show the Jeans-normalized (a) Real frequency (�r) , (b) Imaginary frequency (�i) , (c) Phase 
velocity (vp) , and (d) Group velocity (vg ) of the fluctuations in the reciprocal wave space defined by the 
Jeans-normalized wavenumber (K) . The distinct lines herein link to ρh0 = 5× 1014 kg m−3 (blue solid line), 
ρh0 = 7× 1014 kg  m−3 (red dashed line), and ρh0 = 9× 1014 kg  m−3 (black dotted line), respectively. The 
normalized heavy nucleus density is herewith scaled down as ρ∗

h = ρh0 × 10−14 = nh0mh × 10−14 with the 
rescaling factor taken to be 10−14 ; where, nj0 is the equilibrium concentration of the species-j, with j = e, n, h . 
It is seen that, with increase in ρ∗

h , �r increases and shifts towards the high-K regime, and vice-versa (Fig. 1a). 
We further see that the fluctuations are highly dispersive in nature in the quasi-acoustic domain against the 
gravitational one. It means that the short-wavelength acoustic mode are excited in the high-K regime, and vice-
versa. Again, it is seen that, both the �r-value (Fig. 1a) and the �i-value (Fig. 1b) increase with increase in ρ∗

h , 
and vice-versa. This implies that with the increase in ρ∗

h , the inward gravitational force increases, weakening 
the radially outward non-gravitational counter-force. It results in an enhancement of the harmonic oscillations 
executed by the inner crust region; thereby, finally, leading to the inner crust collapse if there exists no fuel to 
counter the inward self-gravity. It is seen that the minimum decay separation corresponding to the ρ∗

h-variation 
occurs in a narrow-K region at around K = 0.17 (Fig. 1b). Both before and after this K-region, the wave decay 
rates are flattened in the K-space. It is further seen that, both vp (Fig. 1c) and vg (Fig. 1d) decrease with ρ∗

h , and 
vice-versa. The negative value of vp (Fig. 1c) implies that the wave is propagating towards the centre of the neutron 
star core. It is attributed that the decrease in both vp (Fig. 1c) and vg (Fig. 1d) is due to an enhanced viscosity of 
the constituent heavy nuclear matter fluid. It hereby implies that the acoustic wave fluctuations slow down as 
this move radially inward to a stability point in the inner crust region. This result is contrary to that obtained by 
Epstein, where the sound phase speed is enhanced as the neutron rich nuclei are weakly coupled to the neutron 

Figure 1.   Profile of the Jeans-normalized (a) real frequency (�r) , (b) imaginary frequency (�i) , (c) 
phase velocity (vp) , and (d) group velocity (vg ) of the fluctuations with variation in the Jeans-normalized 
wavenumber (K) for the different ρh0-values. The distinct lines link to ρh0 = 5× 10

14 kg m−3 (solid blue line), 
ρh0 = 7× 10

14 kg m−3 (red dash-dash line), and ρh0 = 9× 10
14 kg m−3 K (black dotted line), respectively.
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Figure 2.   Same as Fig. 1, but for ρh0 = 5× 10
14 kg m−3 (fixed). The different lines link to 

ρn0 = 1× 10
17 kg m−3 (solid blue line), ρn0 = 2× 10

17 kg m−3 (red dash-dash line), and ρn0 = 3× 10
17 kg m−3 

(black dotted line), respectively.

Figure 3.   Same as Fig. 1, but for ρh0 = 1× 10
15 kg m−3 (fixed). The different lines link to ρe0 = 1× 10

9 kg m−3 
(solid blue line), ρe0 = 2× 10

19 kg m−3 (red dash-dash line), and ρe0 = 3× 10
9 kg m−3 (black dotted line), 

respectively.
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Figure 4.   Same as Fig. 1, but for ρh0 = 5× 10
14 kg m−3 (fixed). The different lines link to different Jeans-

normalized radial space coordinates as ξ = 0.1 (solid blue line), ξ = 0.2 (red dash-dash line), and ξ = 0.3 (black 
dotted line), respectively.

Figure 5.   Spectral profile of the Jeans-normalized (a) real frequency (�r) , (b) imaginary frequency (�i) , (c) 
phase velocity (vp) , and (d) group velocity (vg ) of the GNA fluctuations in a colour phase space functionally 
defined by the Jeans-normalized angular wavenumber (K) and the rescaled heavy nuclear material density (ρ∗

h ).
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Figure 6.   Same as Fig. 5, but showing the ρ∗
n-variation with a fixed ρ∗

h.

Figure 7.   Same as Fig. 5, but showing the ρ∗
e-variation with a fixed ρ∗

h.
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in the crust10. The difference is due to the Epstein consideration of the neutron superfluid flow through the 
constitutive nuclei. In contrast, we consider that the constitutive neutron and heavy nuclear fluids are coupled 
via the long-range non-local gravitational force. The GNA mode propagation is indeed a two-step process in 
the monochromatic picture (Fig. 1c). It means that the bulk mode under consideration behaves as a dispersive 
g-mode in the K-space defined by 0 < K < 0.5 . Beyond this, the mode undergoes a quasi-linear transformation 
into a non-dispersive acoustic p-mode in the K-space. It is evident now that the bulk mode propagation is a 
three-step process in the polychromatic wave-packet modal picture (Fig. 1d) against the previous monochromatic 
portrayal (Fig. 1c). It means that the modal spectral components move inward in a dispersive fashion in the 
K-space defined by 0 < K < 0.1 . After this limit, the bulk mode moves radially outward in a quasi-dispersive 
manner. A close comparison between the velocity profiles allows us to draw a common inference that ρ∗

h acts as 
a deceleration agency to the propagatory GNA mode. At the same time, a single monochromatic pulse and its 
equivalent group counterpart significantly differ in terms of the propagatory features (Fig. 1c–d). The basic 
physics behind is in the incoherent phase and amplitude coordination among the background constitutive 
spectral components (via coherence and decoherence). It allows us to infer that ρ∗

h acts as a decelerating and 
destabilizing agency to the considered fluctuations towards the neutron star core.

In Fig. 2, we display the same as Fig. 1, but for a fixed ρh0 = 5× 1014 kg m−3 and for different rescaled values 
of ρ∗

n = ρn0 × 10−17 = nn0 mn × 10−17 . Here, the density rescaling factor, 10−17 , is used to produce smooth 
profiles. It is seen that, as ρ∗

n increases, the magnitude of the �r-peak remains unchanged; but, only gets shifted 
towards the high-K regime (Fig. 2a). It implies that, the hybrid GNA waves get highly dispersive with enhanced 
ρ∗
n . It hereby implicates that the short-wavelength acoustic modes are excited against the inhomogeneous 

gravity-induced modes. Thus, it supports the fact that superfluidic modes are predominately acoustic in nature 
and the superfluidity prevents the g-modes to behave pulsationally49. In other words, the non-local gravito-
acoustic coupling is significantly opposed, thereby, resulting in the non-pulsating g-modes as a new natural 
phenomenology. As a result, it can be herewith inferred that ρ∗

n plays as a dispersive broadening agency to 
the GNA mode. It is found further that, as ρ∗

n increases, �i decreases in the particular K-range defined by 
0.05 ≤ K ≤ 0.45 (Fig. 2b). It means that the neutron degeneracy pressure increases with ρ∗

n ; thereby, opposing 
the inward pull caused by the non-local gravitational and Bohm potentials. The inward core-centric direction 
of the quantum mechanical Bohm potential is due to ρ∗

n > 0 ; thus, making the Bohm potential negative41. As 
a result, the curvature of the neutron density modulus is upward in this classically forbidden region and wave 
function is decreasing rapidly. It is further speculative that the maximum decay separation corresponding to the 
ρ∗
n-variation occurs in a short-K regime around K = 0.17 (Fig. 2b). It is attributable to the high sensitivity of the 

neutron degeneracy pressure of non-gravitational origin against the quasi-linear coupling of the gravito-acoustic 
triggering effects. In addition, the patterns of vp (Fig. 2c) and vg (Fig. 2d) vary similarly as before (Fig. 1c–d). 
Thus, ρ∗

n introduces a decelerating and stabilizing influence to the said instability in the range 0.05 ≤ K ≤ 0.45.
In Fig. 3, we portray the same as Fig. 1, but for a fixed ρh0 = 5× 1014 kg m−3 and for different rescaled 

values of ρ∗
e = ρe0 × 10−9 = ne0 me × 10−9 . Here, the density rescaling factor is 10−9 for smooth variations. 

Figure 8.   Same as Fig. 5, but showing the ξ-variation with a fixed ρ∗
h.
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It is seen further that, with increase in ρ∗
e  , the magnitude of the �r-peak value does not change; but, it shifts 

towards the low-K value, and vice-versa (Fig. 3a). It implies that, in the inner crust region only electrons 
facilitate the long-wavelength gravitational fluctuations (K → 0) to undergo resonance growth on the grounds 
of atypical gravito-electrostatic interplay mechanism. As a result, it can be herewith inferred that ρ∗

e  plays as 
an anti-dispersive narrowing agency. In contrast, the �i-value increases in the K-range defined by 0 ≤ K ≤ 0.3 
(Fig. 3b). It implicates that, an enhancement in the electronic concentration intensifies the electron degeneracy 
pressure, thereby, reducing the neutron degeneracy pressure. This situation is realizable if negative beta decay 
(n → p+ e− + νe) occur in the regime 0 ≤ K ≤ 0.3 . As a result, anti-neutrinos are emitted from this regime of 
the neutron stars. It is further noticed that the maximum decay separation in the K-space corresponding to the 
ρ∗
e -variation occurs in a short-K regime around K = 0.07 (Fig. 3b). It is attributable to the high (low) sensitivity 

of the electron (neutron) degeneracy pressure of non-gravitational origin against the quasi-linear coupling of 
the gravito-acoustic triggering effects. The vp-patterns (Fig. 3c and vg-patterns Fig. 3d) are just reversed with 
respect to the previous cases (Fig. 2c–d), but now with higher respective magnitudes. It indicates that ρ∗

e  acts 
as a speeding-up factor for the waves travelling core-wards of neutron stars. That is to say, interestingly, that ρ∗

e  
acts as an accelerating and destabilizing agent to the collective hybrid GNA instability dynamics in the inner 
crust region of neutron stars.

As in Fig. 4, we portray the same as Fig. 1, but for a fixed ρh0 = 5× 1014 kg m−3 and for different values of ξ . 
It is seen that the instability spectral patterns vary in a correlative and similar consistent fashion with increase 
in ξ , as in Fig. 3, with arrangement in ρ∗

e  . It means that, as the geometrical curvature of the inner crust region 
increases, the magnitude of the Bohm potential increases core-wards. As a result, the resultant inward pressure 
force overcomes the resultant pressure counterpart. It is further noted that the maximum decay separation in 
the K-space corresponding to the ξ-variation occurs in a short-K regime at around K = 0.05 (Fig. 4b). Thus, it 
can be conjectured that ξ acts as an accelerating destabilizer to the GNA fluctuations.

Clearly, Figs. 5, 6, 7 and 8 depict the same as Figs. 1, 2, 3 and 4, but in a more precise way describing the 
variation of �r , �i , vp , and vg with K using a colour spectral analysis in a defined colour phase space. The blue and 
red represent the least and most effectiveness of the parameter of concern in a particular regime of K , respectively. 
A common instability feature found in Figs. 5, 6, 7 and 8 is that �r , �i , and vp are strongly dominated in the 
high-K regime; whereas, vg is in the low-K regime. In addition, it is interesting to note that the high-K regime 
is the most unstable zone indicating the fact that acoustic mode plays a dominant role in the outer inner crust 
regime. All other features are very similar to the corresponding line profile depictions (Figs. 1, 2, 3 and 4). As a 
result, it could herewith be conjectured that the scale invariance of the basic physical insights behind the GNA 
instability features could be established in the compact astroenvirons of the neutron star family.

Conclusions
We propose a theoretic generalized model development describing a three-component semi-analytic formalism 
to investigate the modal stability behaviours of the inner crust properties of non-rotating neutron stars in terms of 
the locally excitable collective GNA instability waves and oscillations. The adopted model consists of viscoelastic 
heavy neutron-rich nuclei, superfluid neutrons, and degenerate quantum electrons treated in a spherically 
symmetric geometry. The assumed symmetric geometry transforms the complex 3-D spherical problem into 
the corresponding simple 1-D radial problem free from the polar and azimuthal degrees of freedom. A normal 
spherical mode analysis yields a generalized linear dispersion relation, which has a unique set of dispersion 
coefficients, multiparametrically dependent on the inner crust features of neutron stars. It principally aims to 
analyse the most relevantly supported normal mode, the GNA modal wave and associated instability, evolving 
in the complex inner crust. The electrostatic influence arises here from all the Coulombic (charged) species 
(electrons + nuclei) and the self-gravitational effect from the Newtonian (gravitating) species (neutrons + nuclei). 
A judicious numerical analysis explores the various active accelerating/decelerating and stabilizing/destabilizing 
agencies of the inner crust region. It is connected that the acoustic (GNA) mode, analogously to the case of 
p-mode, plays a dominant role towards the crustal stability features before being fully collapsed up due to the 
dearth of nuclear fuel to counter the inward non-local self-gravity pressure effects.

In addition to the above qualitative reliability flavours, we now explore astronomical observational supports 
towards the investigated results. In this context, it seems noteworthy that, in the analysis of Rossi X-ray Timing 
Explorer (RXTE) data from the 2004 December hyperflare from SGR 1806 + 20, the global oscillation mode 
frequency has been found to be 625 Hz50. It has been interpreted that such detections link to the presence of, 
at least, one radial mode in the neutron star crust. This observed frequency is consistent with our analytically 
calculated Jeans critical frequency ( ωJ = 648 Hz). Thus, it provides a strong support and reliability to the 
presented GNA modal analysis. The famous space missions, CoRoT and Kepler51, have found mixed p-g modes 
in the red giants and revealed their deep internal structure. The p-mode depends on the properties on the 
envelope surrounding the core (outer) and the g-mode depends on the properties of the core structure (inner). 
It is believed that such space missions can detect the presence of p-mode, and hence, the GNA mode, in the 
neutron star “inner crust” region, subject to the achievement of required ultracam detection resolutions and 
refinements51. It may be conjectured that the semi-analytic model formalism presented here could enable us to 
identify and characterize the diversified stabilization/destabilization factors, significantly regulating the interior 
crustal behaviours of neutron stars and other compact astroobjects in a novel superfluidic instability perspective.

It may be noteworthy further that the instability dynamics associated with a compact spherical stellar 
structure, as considered herein in the GNA pattern, can undergo both the radial (central) and the non-radial 
(angular) oscillations relative to the reference equilibrium point. The oscillations having only the radial degrees 
of freedom (caused by the radial expansions and contractions) are widely termed as the stellar pulsations. It 
clearly means that the radial pulsations preserve the spherical geometric shape of the source object, irrespective 
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of radial range. In other words, the original shape of the stellar structure remains free from any kind of non-radial 
geometric distortion factors, such as magnetic field, rotation, tidal force field, deformity effects, and so forth. It 
would certainly result in a pure picture of the GNA mode. Thus, it is widely seen that the spherical stellar objects 
remain stable and symmetric against the radial perturbations against the defined equilibrium. It is admitted 
herewith that a complete analysis, which is bolstered by both the polar and azimuthal coordinates describable 
with the help of spherical (solid) harmonics, is indeed needed in the presence of the mentioned realistic shape-
complicating distortion agencies of the non-radial source52.

We divulge summarily that the proposed model formalism has some facts and faults, which could, 
indeed, be refined in our future investigations. This analysis could be appropriately extended to investigate 
the GNA instability, probing the interior crustal structure of neutron stars under the dynamic action of 
several realistic factors yet to be well considered. A number of such important active factors are the: (1) 
Electromagnetic forces and vortex interactions are to be properly included8,11; (2) Effects of the Coriolis rotations 
( �C ∼ 9.42− 2.53× 104 rad s−1) need inclusion11,53, and strong magnetic spinning ( B ∼ 1011 − 1012 G)11,53; 
(3) Analysis is carried out here only in the low-frequency regime, the higher-order modes being auto-ignored; 
thereby, paving the intriguing way for inclusive refinements in the futuristic studies; (4) Relativistic dynamical 
effects54 are to be well considered; (5) Neutron superfluidic flow, both around and through the constitutive 
nuclei10, is yet to be well simulated; (6) Averaged (mean-fluidic) small-scale perturbation response characteristics 
are only revealed; thereby, opening an active chapter for a kinetic formalism55; (7) Assumed spherically symmetric 
geometry (gravity dominant) needs to include both the polar and azimuthal counterparts through spherical 
harmonics56; (8) Role of neutrino in the coupled modal stability is yet to be incorporated57; (9) Entropy wave 
(second sound due to superfluidity) is to be regarded well12; (10) Hard-core simulation platform to see the 
temporal evolution of the GNA instability is to be illustrated; (11) Vital possibility for a global (non-local) 
stability analysis with the diversified equilibrium inhomogeneities and gradient fields inclusively relevant for 
a fully integrated stability description is herewith opened, and so forth. At the last, we strongly believe that an 
appropriate comprehensive model refinement in the direction of the proposed investigation of neutron star crust 
characterization is needed. Inclusion of the above active factors in the model setup could elaborately depict the 
realistic inner crustal stability behaviours of neutron stars and similar compact  astroobjects in the complex 
superfluidic fabric of a unique type possibly in the years yet to come.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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