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Te fexibility of cloud computing to provide a dynamic and adaptable infrastructure in the context of information technology and
service quality has made it one of the most challenging issues in the computer industry. Task scheduling is a major challenge in
cloud computing. Scheduling tasks so that theymay be processed by the most efective cloud network resources has been identifed
as a critical challenge for maximizing cloud computing’s performance. Due to the complexity of the issue and the size of the search
space, random search techniques are often used to fnd a solution. Several algorithms have been ofered as possible solutions to this
issue. In this study, we employ a combination of the genetic algorithm (GA) and the gravitational emulation local search (GELS)
algorithm to overcome the task scheduling issue in cloud computing. GA and the particle swarm optimization (PSO) algorithms
are compared to the suggested algorithm to demonstrate its efcacy. Te suggested algorithm outperforms the GA and PSO, as
shown by the experiments.

1. Introduction

Cloud computing, established in late 2007, has several ca-
pabilities such as providing fexible and dynamic infra-
structure in the context of information technology, quality
assurance criteria in computing environments, and con-
fgurable software services [1–3]. Because of the novelty and
growth of cloud computing, there is no exact and standard
description that specifes all of the aspects and qualities of
technology, and each of the current defnitions considers
certain elements of this technology [4, 5]. Some of these
defnitions are as follows:

Cloud computing is a payment model for the ability to
use customizable computing resources across shared net-
works such as networks, servers, storage space, applications,
services, and so on. Te payment model is based on the
number of existing requests and the level of access to the
network, which can be provided quickly and with the least

amount of management and intervention from the service
provider users [6, 7].

Cloud computing is a model for distributing data and
computing over a large network of nodes. User PCs, data
centers, and cloud services are examples of nodes. In
reality, a network of nodes is a term used to describe the
cloud [8, 9]. A cloud system is a form of parallel and
distributed system made up of a collection of virtual
machines (VMs) that supply computing resources in
accordance with a service-level agreement (SLA) and via
an agreement between the service provider and clients
[10–12].

Shortly, task scheduling became an important issue in
the cloud computing environment. Te task scheduling
algorithm is the method by which tasks are assigned to
central data sources. Due to the variety of scheduling ob-
jectives, no complete scheduling algorithm with a precise
solution is provided. An ideal scheduler is implemented
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through agreement or, depending on the application, a
combination of scheduling algorithms [13].

Depending on the algorithm used, a scheduling problem
can be solved in seconds, hours, or even years. Te time
required to execute an algorithm is used to assess its per-
formance. Te algorithm’s execution time is proportional to
its input as a function of complexity time. Several time
complexity algorithms are presented in [14]. A problem with
polynomial time complexity is controllable, practical, and
fast enough to run on computing machines. A complexity
class is defned in computational complexity theory as a set
of problems that have the same complexity due to a defnite
source [15, 16].

We intend to solve the problem of task scheduling in
cloud computing with a new combination based on the
genetic algorithm (GA) [17] and the gravitational emulation
local search (GELS) algorithm [18, 19] in this article.

Te novelties of this study are as follows:

(i) Considering new and diferent constraints to sim-
ulate the problem

(ii) It has maximum CPU utilization and execution
time

(iii) Minimizing makespan and maximizing resource
utilization in cloud computing

Te structure of the paper is organized as follows: in
Section 2, the related work is described. In Section 3, the
problem statement is explained. Te proposed algorithm is
fully described in Section 4. Te simulation results and
conclusions are given in Sections 5 and 6, respectively.

2. Related Work

Many techniques have been presented for scheduling tasks
in the cloud. Tis section has covered some ground in ex-
ploring these algorithms. Cloud task mapping is discussed in
[20], where a novel approach is ofered. Te suggested
technique has two primary phases: frst, a modifed hon-
eycomb algorithm is used to prioritize jobs, and then an-
other algorithm is used to organize tasks according to their
relative importance.Te algorithm for scheduling tasks takes
into account the time and money needed to acquire the
necessary resources. As a result of this algorithm’s im-
provements, the ratio between the cost of acquiring re-
sources and the cost of communicating efectively to get
things done has decreased dramatically. Tis algorithm does
not take into account the efciency of its resources or the
time it takes to run.

Liu et al. describe a cloud computing scheduling tech-
nique in [21]. Workfow compression is used in the pro-
posed technique to minimize runtime and cost depending
on user input information, which the user provides into the
system at any time. Resource optimization is not taken into
account in this method.

Scheduled tasks using the parameters of EFT, which
represents the closest fnish time of a task in a resource, are
presented in [22]. ERT, which indicates the remaining time
to perform a task, and EST, which provides the closest start

time for a work, are considered in this research. Experiment
fndings show that, in addition to improving execution time,
this approach may help raise or reduce the amount of re-
sources consumed during execution. Cost considerations
and resource optimization are not taken into account in this
approach. Te research presented by Wu et al. [23] involves
both service-level and task-level scheduling. Service-level
scheduling is accomplished by allocating work to services,
while task-level scheduling is accomplished by optimally
allocating jobs to VMs in cloud data centers. Tis method
focuses on resource optimization while ignoring imple-
mentation time and cost.

In [24], an ant nest algorithm optimization is used to
propose a service fow scheduling model in cloud computing
based on several service quality variables. Tis method fo-
cuses on reducing the program’s execution time while ig-
noring requirements for efcient resource and cost
allocation. Te key step of the algorithm in [25] is the se-
lection of tasks and resources from the public cloud, as well
as the development of a hybrid cloud, while the scheduler
determines which processes will use public cloud resources
to minimize runtime. Te new timetable places a premium
on determining performance and implementation costs. Te
source optimization criteria are ignored in this model. Te
major goal of task coordination and allocating work is
provided in [26–28] to the service in line with the executive
requirements in order to perform the correct thing and
observe their priority. Tis approach assigns tasks to mul-
tiple levels and maps each level of task to resources with the
capability of processing them.

Chiang et al. [29] proposed a BCSV scheduling algo-
rithm to improve task scheduling in cloud computing. Te
main idea of the BCSV algorithm is to use the smallest
sufrage value (SSV), the largest sufrage value (LSV), and the
criteria sufrage value (CSV) as the scheduling factors to
increase the job dispatch performance. According to the test
results, the proposed BCSV algorithm can achieve better
load balance and lifetime than the existing algorithms under
the heterogeneous network environment of HiHi, HiLo,
LoHi, and LoLo. In other words, the proposed BCSV al-
gorithm can obtain better results in task scheduling while
considering the load balancing problem.

Liu [10] has designed an adaptive task scheduling al-
gorithm for cloud computing based on the ant colony al-
gorithm (ACO) in order to solve the shortcomings of the
ACO in solving scheduling problems. Based on the poly-
morphic ACO, the convergence speed of the algorithm is
improved and efectively prevents the emergence of local
optimal solutions. Te objective of the improved algorithm
is to solve a distribution scheme with shorter execution time,
lower cost, and a balanced load rate based on tasks submitted
by users. Experimental data showed that the improved
adaptive ant colony algorithm (IAACO) was able to quickly
fnd the optimal solution for the cloud computing resource
scheduling problem, shorten the task completion time, re-
duce the execution cost, andmaintain the load balance of the
entire cloud system center.

Manikandan et al. [14] have proposed a new hybrid
whale optimization algorithm (WOA) based on the MBA
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algorithm in order to solve the multiobjective task sched-
uling in cloud computing. In the combined WOA-based
MBA algorithm, multiobjective behavior minimizes lifetime
by maximizing resource utilization. Te output of the
random double adaptive whale optimization algorithm
(RDWOA) is increased by using the jump operator of the
Bees algorithm. Performance evaluations are performed and
compared with other algorithms using the CloudSim toolkit
platform for various measures such as completion, time, and
computational cost. Te results are analyzed for perfor-
mance measures such as build time, execution time, resource
usage, and computational cost. Te proposed algorithm
performs better than other algorithms such as the improved
whale optimization algorithm (IWC), modifed ant lion
optimization (MALO), bat algorithm with ant-bee colony
optimization algorithm (BA-ABC), and modifed genetic
algorithm combined with greedy strategy (MGGS).

Guo [15] proposed a cloud computing multiobjective
task scheduling optimization based on the fuzzy self-defense
algorithm, presented the shortest time, degree of resource
load balance, and multiobjective task completion as the goal
of cloud computing multiobjective task scheduling, and
established a mathematical model to measure the efect of
multiobjective task scheduling. It showed that the cloud
computing multiobjective task scheduling optimization
method based on the fuzzy self-defense algorithm can im-
prove the performance of the maximum multiobjective
completion time, the deadline violation rate, and the use of
VM resources.

Manikandan et al. [30] proposed a solution for the main
problem in computing, which is scheduling and resource
allocation: a solution with hybrid algorithms of fuzzy
C-means clustering to use black widow optimization for task
scheduling and fsh swarm optimization (FSO) for efcient
allocation of resources to reduce cost, energy, and use the
resources provided. Tere was no proper method or tech-
nique to improve task scheduling and resource allocation.
Previous methods used VM instances for scheduling. Te
main drawback of using VM instances was that it took a lot
of setup time and all the resources to do the work.

Shukri et al. [31] have proposed an enhanced version of
the multiverse optimizer (EMVO) as a superior task
scheduler in this feld in order to solve the task scheduling
problem and minimize the execution time and cost. Te
main multiverse optimizer (MVO) and particle swarm
optimization (PSO) algorithms are compared in cloud en-
vironments. Te results show that EMVO signifcantly
outperforms both MVO and PSO algorithms in terms of
achieving minimum construction time and increasing re-
source utilization.

Arzoo [32] presented the ant particle swarm genetic al-
gorithm (APSGA) which is a combination of PSO-ACO-GA to
solve the task scheduling problem. PSO is inspired by the
movement of the bird, ACO is based on the behavior of ants,
and GA works on the complementary process. For this al-
gorithm, there are tasks such as PSO, the frefy algorithm (FA),
ACO, and GA. Te proposed APSGA algorithm decreases
PSO, ACO, andGA by 27.1%, 19.45%, and 21.24%, respectively
to achieves maximum CPU utilization and runtime.

Khan and Santhosh [33] have presented a work
scheduling method based on a hybrid optimization algo-
rithm that has improved parameters such as waiting time,
total production time, execution time, efciency, and uti-
lization. In terms of performance, this scheduling method is
superior to the scheduling algorithms based on the opti-
mization of PSO and ACO.

Mangalampalli et al. [34] introduced the cat swarm
optimization algorithm (CSOA), which addresses the pa-
rameters makespan, migration time, energy consumption,
and total power cost at data centers.Te implementation was
performed using the CloudSim simulator, and the input to
the algorithm was randomly generated from CloudSim for
the total energy cost; the parallel workloads of HPC2N and
NASA were used as the input of the algorithm. Tis pro-
posed algorithm was able to reduce energy consumption and
minimize immigration by a signifcant percentage.

Amer et al. [35] presented a modifed Harris Hawks
optimizer (HHO) called the elite learning Harris Hawks
optimizer (ELHHO), in relation to multiobjective sched-
uling. Tis paper showed the performance of ELHHO
compared to conventional HHO and service quality in terms
of minimizing schedule length, execution cost, and maxi-
mizing resource utilization.

3. Problem Statement

Scheduling tasks in a cloud computing environment is a
major concern. Any user may access data stored in the cloud.
Hundreds of digital tools are at your disposal for any activity.
It is not feasible for the user to delegate tasks to virtual
resources. Cloud computing is used so that service providers
may reduce the money they spend on resource use while
increasing the money they make supporting client appli-
cations. Te scheduling system manages the numerous
cloud-based jobs to boost completion times, resource pro-
ductivity, and ultimately, computing power. Clouds may be
seen as digitally equivalent to tree trunks and branches. Tat
is why [1], we should all care about how jobs are scheduled
across heterogeneous physical devices.

Cloud computing involves n dependent tasks that must
be processed by m virtual dependent sources.
T � (t1, t2, . . . , t3) is a set of work that may depend on the
work tj for which the cost of communication is considered,
and also, D � (d1, d2, . . . , dn) is the total number of re-
sources available in the case of communication and the
source of the cost of communication. Te goal of scheduling
in a cloud computing environment is to minimize total cost.
Te following are some of the constraints of the task
scheduling issue in the context of cloud computing that are
discussed in this work:

(i) Each case runs on only one resource
(ii) All resources are available in zero time
(iii) Maximum number of resources with minimum

power consumption is used to schedule tasks
(iv) Scheduling is scalable, meaning it responds to any

size of task input in the system for timing
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4. The Proposed Method

Te GA excels at exploring the problem space, but it
struggles with stability and local search. In this work, we
employ the combination of GA and GELS to address the job
scheduling problem in cloud computing. Te suggested
algorithm’s goal is to integrate the GA’s general search
capabilities with those of a more localized GELS. In the
proposed algorithm (GAGELS), the goal is to reduce the
total cost of performing all tasks. To better understand the
problem, the scheduling of six tasks across fve sources is
shown in the form of a visual diagram in Figures 1 and 2.

Dependent tasks are represented as a graph whose
vertices represent the tasks and whose edges show the cost of
communication between related tasks. Te cost of com-
munication is received as an N × N matrix as input.

Te general steps of the proposed algorithm are shown in
Figure 3. As can be seen in this fowchart, the GA frst tries to
produce better chromosomes by genetic operators, and then
these chromosomes are improved by the GELS and returned
to the population. In fact, in this algorithm, the purpose of
using GELS is to locally improve the solutions produced by
the GA.

4.1. Chromosome Structure. Each chromosome in the
GAGELS represents a possible solution to the problem and is
a vector � (d1, d2, . . . , dn); it is shown that n is equal to the
total number of tasks. Te values of d are represented as TR,
where T represents the task number and R represents the
source number. Figure 4 shows an example of a chromo-
some with 7 genes. For example, in this fgure, the second
gene is 23, which means that the second task is processed at
source three.

4.2. Fitness Function. Te goal of task scheduling in a cloud
computing environment is to minimize the total cost, and
this goal will be achieved if the restrictions are met. Costs
include migration costs, operating costs, and communica-
tion costs.Tese restrictions are obtained by satisfying them.
Te competence of chromosomes is based on the cost of
servicing tasks. In the proposed algorithm, equation (1) is
used to obtain the competence of chromosomes:

F(x) � Cm + CE + Cc. (1)

In this equation, Cm,CE, and CC are defned as migration
cost, operation cost, and communication cost in a schedule,
respectively.

4.3. Parental Selection. In the GAGELS, the ranking method
is used to select the parent. Selection by the ranking method
is such that all chromosomes are ranked according to
equation (2) based on ftness:

Chri1≤i≤n
� Max − Fiti( 􏼁 + 1, (2)

where Chri is the chromosome rank i, Max is the greatest
competency, that is, the worst competency, and Fiti is the
competence of the i chromosome. Te best chromosome is

ranked Max − (Fit + 1), and the worst chromosome is
ranked 1. In this way, in this method of selecting parents, all
chromosomes will have a chance to be selected.

4.4. Crossover Operator. Te GAGELS uses a single-point
exchange operator. In this operator, after selecting 2 parents
for the exchange operator, a random number from the range
of 1 to n (which is n number of operators) is selected, and the
chromosome is divided into several parts equal to the se-
lected random number. Te genes in each section are then
taken from the frst and second parents, respectively, and
copied into the ofspring. Also, only one child is produced in
each exchange operation.Te purpose of using this exchange
method is to create diferent children and escape from the
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Figure 1: Illustration of the relationship of tasks as a weighted
graph. t represents a task and C is the cost of communication
between related tasks.

d

d

d
d

d d d

dd

t1, t2

t3, t4

t5 t6

t2

DC5

DC2

DC1

DC3

DC4

Figure 2: Display of the relationship of resources as a weighted
graph. In this fgure, t is a work and DC is the number of data
centers in a node.

4 Mathematical Problems in Engineering



local optimality. Figure 5 shows how two diferent children
from 2 parents are produced by the crossover operator.

4.5. Mutation Operator. For mutation, after selecting a
parent chromosome, a gene is randomly selected, and the
source of that gene is randomly changed. Tis type of
mutation operator ensures that all possible scheduling so-
lutions are considered according to the structure of the
chromosome; in other words, the entire problem search
space is covered. Figure 6 shows the actions of the mutant
operator.

4.6. Local Search with the GELS Algorithm. Before the GELS
algorithm is used to choose the chromosomes to be passed
on to the next generation, a portion of the present pop-
ulation’s chromosomes is optimized and added as new
ofspring. In the suggested technique, a number of chro-
mosomes are picked, and the GELS algorithm is invoked for
them in an iterative loop. In each iteration, the GELS al-
gorithm identifes one of the population chromosomes as the
current solution (CU) and optimizes it by applying its
operators in many phases. In the proposed GELS algorithm
to search the issue space in this manner, the CU neigh-
borhood space is formed frst, and then a mixture of the frst
and second approaches is used to compute the gravitational

Input: Initialization on the
parameters of GA, GELS

Create Initialize population and
calculate ftness

Crossover and mutation

Select new population

Termination
criteria of GA

No

No

Yes

Yes

GA module

Output: present the best overall
solution as the result of GAGELS 

Termination
criteria of GELS

Create CA and accept if it’s better
than CU

Set each chromosome in new
population as CU

GELS module

Figure 3: General steps of the proposed algorithm (GAGELS) [36].

15 23 32 41 54 62 71

Figure 4: Illustration of a sample chromosome.
15 23 32 41 54 62 71

32 24 11 55 71 63 45

15 23 32 41 55 71 63

32 24 11 55 41 62 71

Parent 1

Parent 2

Child 1

Child 2

Figure 5: An example of the exchange operator for two sample
chromosomes.

15 23 32 41 55 71 63

15 23 32 42 55 71 63

Parent

Child

Figure 6: An example cation of the mutation operator to the
sample chromosome.
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force, with 10% of the frst case and 90% of the second case
being used. In addition to single and multiple, a mixture of
the two is also utilized to search the search space. In the
GELS algorithm, the neighborhood is defned as follows:
frst, the whole candidate solution (CA) is inspected from
beginning to fnish, and the candidate with the shortest idle
time is chosen; next, by altering the sequence of its actions,
an efort is made to generate a better solution. Finally, the
GELS algorithm provides the best solution (BS), its optimal
response to the GA. In order to optimize the chromosome as
much as feasible, the optimal number of neighbors is de-
termined. Tis method will be applied to every chromosome
in the current population.

4.7. Selection. In the proposed algorithm, the chromosome
selection operator for the next generation is a process of
choosing from various sources. Tis algorithm frst selects
chromosomes based on merit and duplicate chromosomes,
then removes 10 percent of the more suitable chromosomes,
and selects the remaining chromosomes randomly for the
next generation population.

4.8. Termination Condition. In the GAGELS, the termina-
tion condition is to limit the number of generations. Tat is,
if the number of generations reaches the desired number, the
best chromosome is displayed and the algorithm ends;
otherwise, we go to step 2.

5. Experimental Results

We evaluated the proposed GAGELS algorithm against both
the GA and the PSO technique to measure its efcacy. In our

experiments, the algorithms were implemented using
CloudSim software on a desktop computer with a 2.30GHz
CPU and 4GB of RAM. Table 1 lists the cloud system pa-
rameters tested in our experiments.

For more accurate testing and comparison of algorithms,
the proposed algorithm (GAGELS), GA, and PSO are tested
on the same test data (Data_N_M). Every algorithm was run
10 times independently, and the average result was used to
determine which algorithms scored the best.

Table 2 shows the total cost of the GAGELS, GA, and
PSO algorithms with 500 iterations for the algorithm.
According to the results, the proposed algorithm performed
better than the other two algorithms.

As shown in Table 2, the numerical diference in the
costs obtained from the implementation of the GAGELS
of GA is less than the GAGELS and PSO because the
GAGELS is based on GA and uses a GELS algorithm to
optimize the answers. On the other hand, the PSO al-
gorithm is a local search algorithm (LSA), and the
probability of stopping at its local optimization is high, so
it does not reach the desired answers compared to other
dual algorithms.

Figure 7 shows the time required to run the algorithms.
As can be seen, the proposed algorithm (GAGELS) requires
more time to run than the other two algorithms. One of the
reasons for the time-consuming algorithm proposed is the
combination of the GA and GELS algorithms. In fact, in the
GAGELS, to fnd better answers, we used the idea of
combining the GA with an LSA based on the results of the
algorithm implementation. It was suggested that this idea led
to better results, but due to the combination with an LSA
compared to the other two algorithms, it requires more time
to run, which is the disadvantage of the GAGELS.

Table 1: Cloud system parameters.

Parameters Values
Total number of tasks 10–100
Task processing time 5–10
Memory required 50–100
Number of data centers 5–10
Total memory 250–500
Number of data exchanges between diferent tasks 1–10
Number of data exchanges of diferent centers 1–10

Table 2: Comparison of the results of GAGELS, PSO, and GA algorithms based on total cost.

Test data GA PSO GAGELS
1 Data_10_5 491 1240 382
2 Data_20_5 7829 8428 7505
3 Data_30_10 11931 12710 11505
4 Data_40_10 25493 26631 25164
5 Data_50_15 40346 41117 40038
6 Data_60_15 47713 49321 47607
7 Data_70_20 56186 58325 56012
8 Data_80_20 68018 70149 67923
9 Data_90_20 73990 74511 73858
10 Data_100_20 87113 88789 86833
N: number of tasks; M: number of resources.
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Figure 8 shows the maximum number of sources used
by the total tasks after the completion of each load algo-
rithm, which shows the repetition of the algorithm 200
times. Figure 8 also shows the maximum number of re-
sources used by the total tasks after completing the exe-
cution of the algorithm with 500 repetitions. According to
the fgure, it can be seen that the GAGELS is more efcient
than the other two algorithms in allocating resources to
tasks.

In the following, we compared the GAGELS with the GA
and PSO algorithms based on the parameters in Table 3. Table 4
shows the simulation results of theGAGELSwith PSO andGA.
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Figure 8: Number of resources allocated to the total tasks after 500 repetitions of GAGELS, GA, and PSO algorithms.

Table 3: PSO parameters [37].

Parameters Values
Number of iterations 100
Population size 70
Velocity bounds [− 1, 1]
Inertia factor ω 0.9–0.2
Acceleration constants c1 and c2 2

Table 4: Comparison of the results of GAGELS and PSO based on
total cost.

Test data GA PSO GAGELS
1 Data_10_5 482 978 382
2 Data_20_5 7705 7854 7505
3 Data_30_10 11585 11692 11505
4 Data_40_10 25197 25258 25164
5 Data_50_15 40338 40511 40038
6 Data_60_15 47727 47869 47607
7 Data_70_20 56222 56370 56012
8 Data_80_20 68129 68237 67923
9 Data_90_20 74012 74114 73858
10 Data_100_20 87298 87456 86833
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6. Conclusion

In this article, we provide a novel method that solves the
problem of task scheduling in cloud computing by com-
bining the GA and GELS algorithms. In fact, the proposed
algorithm (GAGELS) combines the local search capability of
GELS with the GA, resulting in better efciency in reaching
the best solution. Te proposed algorithm’s performance is
evaluated by comparing its results to those of the GA and
PSO algorithms. Te experimental fndings reveal that
GAGELS is very efcient in addressing task scheduling is-
sues and provides better outcomes. Additionally, GAGELS
has 10% and 30% superiority over the GA and PSO algo-
rithms, respectively, but it takes longer to execute. To im-
prove the execution time of the proposed algorithm, it is
feasible to assess the interaction of GA with other LSA. Te
infuence of various GA settings on the quality of the results
may be examined in future studies.
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