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Abstract

One approach for the simulation of metamaterials is to extend an associated continuum theory concerning its kinematic

equations, and the relaxed micromorphic continuum represents such a model. It incorporates the Curl of the nonsymmetric

microdistortion in the free energy function. This suggests the existence of solutions not belonging to H1, such that standard

nodal H1-finite elements yield unsatisfactory convergence rates and might be incapable of finding the exact solution. Our

approach is to use base functions stemming from both Hilbert spaces H1 and H(curl), demonstrating the central role of

such combinations for this class of problems. For simplicity, a reduced two-dimensional relaxed micromorphic continuum

describing antiplane shear is introduced, preserving the main computational traits of the three-dimensional version. This model

is then used for the formulation and a multi step investigation of a viable finite element solution, encompassing examinations

of existence and uniqueness of both standard and mixed formulations and their respective convergence rates.
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1 Introduction

Materials with a pronounced microstructure such as meta-

materials, see e.g. [2,3,7,19], porous media, composites etc.,

activate micro-motions which are not accounted for in clas-

sical continuum mechanics, where each material point is

equipped with only three translational degrees of freedom.

Therefore, several approaches to model such materials can be

found in literature, such as multi-scale finite element methods

[1,10,11] or generalized continuum theories. The latter can

be classified into higher gradient theories [5,17,23,32] and

so called micromorphic continuum theories [30,42]. These

theories extend the kinematics of the material point. Depend-

ing on the extension one obtains for example micropolar

[16,25,26], microstretch [38] or microstrain [13,15] theories.

In its most general setting, as introduced by Eringen und

Mindlin [12,22], a micromorphic continuum theory allows

the material point to undergo an affine distortion independent

of its macroscopic deformation arising from the displacement

field. Consequently, in the micromorphic theory a material

point is considered with 3 + 9 = 12 degrees of freedom,

of which the microdistortion P encompasses 9. The vari-

ous micromorphic theories differ in their proposition of the

free energy functional. While classical theories incorporate
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the full gradient of the microdistortion ∇ P into the energy

function [31], the relaxed micromorphic theory [20,31,33,34]

considers only Curl P . The incorporation of the Curl of

the microdistortion, formally known as the dislocation den-

sity, into the free energy functional relaxes the continuity

assumptions on the microdistortion and enlarges the space

of possible weak solutions, i.e. [H1]3 × H(Curl). Further-

more, the relaxed micromorphic theory aspires to capture

the entire spectrum of mechanical behaviour between the

macro and micro scale of the material. This is achieved via

homogenization of the material parameters and the introduc-

tion of the characteristic length Lc [19,29], which determines

the influence of the dislocation density in the free energy

functional. Specific analytical solutions to the full isotropic

relaxed micromorphic model are presented in [35–37].

For non-trivial boundary value problems, solutions of

continuum theories are approximated via the finite element

method. While the standard Lagrange elements are well

suited for solutions in H1, solutions in H(curl) may require a

different class of elements, depending on the problem at hand.

The lowest class of finite elements in H(curl), sometimes

called edge elements, have been derived by Nédélec [27,28].

Extensions to higher order element formulations can be found

in [8,9,41,44]. In this paper we consider finite element for-

mulations employing either H1 ×[H1]2 or H1 × H(curl) and

investigate their validity in correctly approximating results

in the relaxed micromorphic continuum. Furthermore, we

test both a primal and mixed formulation of the correspond-

ing boundary problem for increasingly large values of the

characteristic length Lc. To that end, we consider a planar

version of the relaxed micromorphic continuum, namely of

antiplane shear [43]. More precisely, the matrix-Curl in 3D

reduces to a scalar-curl of the microdistortion in 2D. How-

ever, the results of our investigation directly apply to the full

three-dimensional version.

The paper is organized as follows: In the following section

we introduce the planar relaxed micromorphic continuum.

Section 3 is devoted to prove solvability of the primal

and mixed problem and discussing properties in the limit

case Lc → ∞, in both the continuous and discrete set-

tings, respectively. In Section 4 we present appropriate base

functions for H(curl), the corresponding covariant Piola

transformation for Nédélec finite elements and the result-

ing stiffness matrices. Finally, we present several numerical

examples to confirm the theoretical results.

2 The planar relaxedmicromorphic
continuum

The free energy functional of the relaxed micromorphic con-
tinuum [29,31] incorporates the gradient of the displacement
field, the microdistortion and its Curl

I (u, P) =
1

2

∫

�
〈Ce sym(∇u − P), sym(∇u − P)〉

+ 〈Cmicro sym P, sym P〉

+ 〈Cc skew(∇u − P), skew(∇u − P)〉

+
μmacro L2

c

2
‖CurlP‖2 − 〈f, u〉 − 〈M, P〉 dX ,

(2.1)

∇u =

⎡
⎣

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎦ , CurlP =

⎡
⎣

(curl
[
P11 P12 P13

]
)T

(curl
[
P21 P22 P23

]
)T

(curl
[
P31 P32 P33

]
)T

⎤
⎦ ,

curlv = ∇ × v , (2.2)

with u : � ⊂ R
3 → R

3 and P : � ⊂ R
3 →

R
3×3 representing the displacement and the non-symmetric

microdistortion, respectively. Here, Ce and Cmicro are stan-

dard elasticity tensors and Cc is a positive semi-definite

coupling tensor for rotations. The macroscopic shear modu-

lus is denoted by μmacro and the parameter Lc ≥ 0 represents

the characteristic length scale motivated by the microstruc-

ture.

From now on, we consider the planar reduction of this

continuum to antiplane shear, still capturing the main mathe-

matical aspects of the three-dimensional version, namely the

additional microdistortion and the curl

I (u, ζ ) =

∫

�

μe‖∇u − ζ‖2 + μmicro‖ζ‖2

+μmacro
L2

c

2
‖ curl2D ζ‖2 − 〈u, f 〉

−〈ζ , ω〉 dX , � ⊂ R
2 , (2.3)

where we employ the two-dimensional definitions of the curl

and gradient operators

curl2D ζ = ζ2,1 − ζ1,2 , ζ ∈ R
2 ,

Dcurl(u) =

[
u,2

−u,1

]
, u ∈ R ,

∇u =

[
u,1

u,2

]
, u ∈ R . (2.4)

In Eq. (2.3) we reduced the displacement to a scalar field

u : � ⊂ R
2 → R and the microdistortion P to a vector field

ζ : � ⊂ R
2 → R

2. The displacement field u is now perpen-

dicular to the plane of the domain. The elasticity tensors Ce

and Cmicro are replaced by the scalars μe, μmicro > 0 and

Cc no longer appears.

Remark 2.1 The simplification of the model to antiplane

shear serves to facilitate the mathematical analysis of the

model and allows for a thorough investigation of the numer-

ical behaviour of finite element solutions in the relaxed
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micromorphic theory. Whether this reduced model can be

applied to real-world metamaterials is unclear at this time.

For applications of the full three-dimensional theory see

[19,20].

In order to find functions minimizing the potential energy I

we calculate the variations with respect to u and ζ

∫

�

2μe〈(∇u − ζ ), ∇δu〉 dX =

∫

�

〈δu, f 〉 dX , (2.5a)

∫

�

2μe 〈(∇u − ζ ), (−δζ )〉 + 2μmicro 〈ζ , δζ 〉

+ μmacro L2
c 〈curl2D ζ , curl2D δζ 〉 dX =

∫

�

〈δζ , ω〉 dX .

(2.5b)

Partial integration of Eq. (2.5a) and Eq. (2.5b) yields the

strong form including boundary conditions (see Appendix A

for more details)

− 2μe div(∇u − ζ ) = f in �, (2.6a)

− 2μe(∇u − ζ ) + 2μmicroζ

+ μmacroL2
c Dcurl(curl2D ζ ) = ω in �, (2.6b)

u = ũ on Ŵu
D , (2.6c)

〈ζ , τ 〉 = 〈̃ζ , τ 〉 on Ŵ
ζ
D , (2.6d)

〈∇u, ν〉 = 〈ζ , ν〉 on Ŵu
N , (2.6e)

curl2D ζ = 0 on Ŵ
ζ
N , (2.6f)

where τ and ν denote the outer tangent and normal vector

on the boundary, see Fig. 1, and with ũ and ζ̃ the displace-

ment and microdistortion fields on Ŵu
D and Ŵ

ζ
D are prescribed.

From a mathematical point of view, it is possible to prescribe

the tangential components of the microdistortion ζ on the

boundary Ŵ
ζ
D . This is used to test our numerical formulation

in Sect. 5. However, from the point of view of physics it is

impossible to control the microdistortion of the continuum

with no direct relation to the displacement u and as such,

the consistent coupling condition 〈ζ , τ 〉 = 〈∇ũ, τ 〉 arises

on the Dirichlet boundary, being common to both u and ζ ,

enforcing the condition Ŵ
ζ
D ⊂ Ŵu

D . Furthermore, Dirichlet

boundary data for the microdistortion ζ are not required for

the existence of a unique solution here, as coercivity in the

appropriate spaces is still determined.

3 Solvability and limit problems

3.1 Continuous case

In this section we prove the existence and uniqueness of the

weak form of the planar relaxed micromorphic continuum.

Fig. 1 Outer tangent τ and normal vector ν on the boundary of the

domain �

Further, the corresponding mixed formulation is presented,

whose coercivity constant is independent of Lc. Finally, we

study necessary and sufficient conditions such that ∇u = ζ is

guaranteed in the limit Lc → ∞. For simplicity, we assume

homogeneous Dirichlet conditions on the entire boundary

throughout this section, i.e., u = 0 and 〈ζ , τ 〉 = 0 on Ŵu
D =

Ŵ
ζ
D = ∂�, and mention that the proof can be readily adapted

for inhomogeneous and mixed boundary conditions as long

as the Dirichlet boundary for the displacements is non-trivial,

|Ŵu
D| > 0, [14].

We define the following Hilbert spaces and their respective

norms

H1(�) = {u ∈ L2(�) | ∇u ∈ L2(�)2} ,

‖u‖2
H1 = ‖u‖2

L2 + ‖∇u‖2
L2 , (3.1a)

H1
0 (�) = {u ∈ H1(�) | u = 0 on ∂�} , (3.1b)

H(curl,�) = {ζ ∈ L2(�)2 | curl2D ζ ∈ L2(�)} ,

‖ζ‖2
H(curl) = ‖ζ‖2

L2 + ‖ curl2D ζ‖2
L2 , (3.1c)

H0(curl,�) = {ζ ∈ H(curl, �) | 〈ζ , τ 〉 = 0 on ∂�} ,

(3.1d)

which are based on the Lebesgue norm and space

‖u‖2
L2 =

∫

�

‖u‖2 dX

L2(�) = {u : � → R | ‖u‖L2 < ∞} ,

L2
0(�) =

{
u ∈ L2(�) |

∫

�

u dX = 0

}
. (3.2)

Further, we use the product space X = H1
0 (�) ×

H0(curl,�) with the norm

‖{u, ζ }‖X = ‖u‖H1 + ‖ζ‖H(curl) , (3.3)

to define the following minimization problem1: Find {u, ζ } ∈

X such that for all {δu, δζ } ∈ X

1 Note carefully that u and ζ are two independent variables and lead to a

minimization problem despite the resemblance to mixed formulations,

i.e. saddle-point problems.
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∫

�

2μe〈(∇u − ζ ), (∇δu − δζ )〉 + 2μmicro 〈ζ , δζ 〉 + μmacro L2
c 〈curl2D ζ , curl2D δζ 〉 dX

︸ ︷︷ ︸
= a({u, ζ }, {δu, δζ })

=

∫

�

〈δu, f 〉 + 〈δζ , ω〉 dX ,

(3.4)

In order to show the existence of unique solutions we consider

the Lax–Milgram theorem.

Theorem 3.1 If μe, μmicro, μmacro, Lc > 0, then Prob-

lem 3.4 has a unique solution {u, ζ } ∈ X and there holds

the stability estimate

‖{u, ζ }‖X ≤
1

β

(
‖ f ‖L2 + ‖ω‖L2

)
,

with β = β(μe, μmicro, μmacro, Lc) > 0 .

Proof Using Cauchy–Schwarz and triangle inequality yields

the continuity of a(·, ·)

|a({u, ζ }, {δu, δζ })| ≤ 2μe‖∇u − ζ‖L2‖∇δu − δζ‖L2

+ 2μmicro‖ζ‖L2‖δζ‖L2

+ μmacroL2
c‖ curl2D ζ‖L2 ‖ curl2D δζ‖L2

≤ c1

((
‖∇u‖L2 + ‖ζ‖L2

)(
‖∇δu‖L2 + ‖δζ‖L2

)

+ ‖ζ‖L2‖δζ‖L2 + ‖ curl2D ζ‖L2‖ curl2D δζ‖L2

)

≤ 3 c1‖{u, ζ }‖X‖{δu, δζ }‖X , (3.5)

for all {u, ζ }, {δu, δζ } ∈ X with the constant c1 =

max
{
2μe, 2μmicro, μmacroL2

c

}
.

By employing Young’s2 and Poincaré-Friedrich’s3 inequ-

alities we show the bilinear form to be coercive

a({u, ζ }, {u, ζ }) = 2μe

(
‖∇u‖2

L2 + ‖ζ‖2
L2 − 2〈∇u, ζ 〉L2

)

+ 2μmicro‖ζ‖2
L2 + μmacro L2

c‖ curl2D ζ‖2
L2

≥ 2μe

(
‖∇u‖2

L2 + ‖ζ‖2
L2 − ε‖∇u‖2

L2 −
1

ε
‖ζ‖2

L2

)

+ 2μmicro‖ζ‖2
L2 + μmacro L2

c‖ curl2D ζ‖2
L2

≥ c3

(
‖∇u‖2

L2 + ‖ζ‖2
L2 + ‖ curl2D ζ‖2

L2

)

≥
c3

2
min

{
1,

1

1 + c2
F

}
‖{u, ζ }‖2

X , (3.6)

2 Young: −v w ≥ −

(
ε v2

2
+

w2

2ε

)
, ∀ε > 0 , v, w ∈ R

3 Poincaré-Friedrich: ∃cF > 0 : ‖v‖L2 ≤ cF‖∇v‖L2 ,∀v ∈ H1
0 (�)

when the constant ε is chosen as 1 > ε >
μe

μe + μmicro
,

which is possible for μe, μmicro > 0. Consequently, the coer-

civity constant reads

β =
c3

2
min

{
1,

1

1 + c2
F

}
,

c3 = min

{
2μe(1 − ε), 2μe

(
1 −

1

ε

)
+ 2μmicro, μmacro L2

c

}
. (3.7)

This finishes the proof. ⊓⊔

Remark 3.1 Note, that the proof fails when taking instead

X = H1
0 (�) × [H1

0 (�)]2 as a(·, ·) is then no longer coer-

cive in this space because one cannot find a constant c > 0

such that ‖ζ‖2
L2 + ‖ curl2D ζ‖2

L2 ≥ c ‖ζ‖2
H1 , for all ζ ∈

[H1
0 (�)]2. As [H1(�)]2 is dense in H(curl,�), we might

expect convergence for ζ ∈ [H1(�)]2, however, at the cost

of sub-optimal convergence rates in the discretized setting.

We present numerical examples, where the exact solution is

in H(curl,�) but not in [H1(�)]2 observing only slow con-

vergence. If the exact solution is smooth, i.e. ζ is also in

[H1(�)]2, optimal convergence is observed.

An important aspect of the relaxed micromorphic contin-

uum is its relation to the classical continuum theory (linear

elasticity). This relation is governed by the material con-

stants, where the characteristic length Lc plays a significant

role. We are therefore interested in robust computations with

respect to Lc.

The following result characterizes the conditions when a

trivial solution with respect to Lc is expected.

Theorem 3.2 Assume that the requirements of Theorem 3.1

are fulfilled. Further, let ω = ∇r be a gradient field, then,

the microdistortion ζ is compatible, i.e. ζ = ∇χ and the

solution {u, ζ } ∈ X is independent of the parameter Lc.

Proof We make the ansatz ζ = ∇χ , χ ∈ H1(�) and insert

it in Problem 3.4 choosing δu = 0

∫

�

2μe〈∇χ − ∇u, δζ 〉 + 2μmicro〈∇χ, δζ 〉 dX

=

∫

�

〈∇r , δζ 〉 dX for all δζ .
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We can express

∇χ =
1

2(μe + μmicro)
(∇r + 2μe∇u) (3.8)

and inserting into Problem 3.4 choosing δζ = 0 gives the

following Laplace problem for u

∫

�

2μe μmicro

μe + μmicro
〈∇u,∇δu〉 dX =

∫

�

f δu

+
μe

μe + μmicro
〈∇r ,∇δu〉 dX for all δu ,

which is uniquely solvable. Since by Lax–Milgram the solu-

tion is unique, ζ = ∇χ and the resulting u are the only

possible solutions. According to Eq. (3.8) the solution of

Problem 3.4 is given independently of Lc. ⊓⊔

Considering the limit case Lc = 0, the continuity of the

bilinear form a(·, ·) follows automatically from Eq. (3.5).

However, for coercivity to hold, the space for ζ must be

changed to [L2(�)]2, i.e., the regularity of ζ is lost.

Theorem 3.3 If μe, μmicro > 0 and Lc = 0 Problem 3.4 has

a unique solution {u, ζ } ∈ H1
0 (�)×[L2(�)]2. Further, if the

right-hand side ω = ∇r is a gradient field with r ∈ H1(�),

the microdistortion ζ results in a gradient field ζ = ∇χ

with χ ∈ H1(�). Especially, there holds the regularity result

ζ ∈ H(curl,�).

Proof The proof of existence and uniqueness follows exactly

the same lines as the proof of Theorem 3.1. If ω = ∇r we can

conclude as in the proof of Theorem 3.2 that ζ is a gradient

field. ⊓⊔

Remark 3.2 Using Theorem 3.2 and assuming ω = 0, we can

reformulate Eq. (2.6b) to retrieve ζ from the known field u

ζ = ∇χ =
μe

μmicro + μe
∇u . (3.9)

Furthermore, we can condensate Eq. (2.6a) into the Poisson

equation

− div

(
2μe μmicro

μe + μmicro
∇u

)
=

(
−2μe μmicro

μe + μmicro

)

︸ ︷︷ ︸
=−2 μmacro


u

= −2 μmacro 
u = f , (3.10)

where the homogenization of the material constants follows

as in [29]. We notice, that Theorem 3.2 and Theorem 3.3

imply the field u is always independent of the microdistortion

ζ in this setting. In the condensed state, the relation of the

model with antiplane shear for membranes is apparent.

Remark 3.3 We note that the previous result does not hold in

the full three-dimensional relaxed micromorphic continuum,

i.e. the absence of external moments does not automatically

imply P = ∇χ for χ ∈ [H1(�)]3.

Having considered the limit of the characteristic length

Lc → 0, we reformulate Problem 3.4 as an equivalent mixed

formulation in order to examine its limit for Lc → ∞. We

start by introducing the new variable

m = μmacro L2
c curl2D ζ ∈ L2

0(�), (3.11)

and constructing a new bilinear form by multiplying it with

a test function

∫

�

〈curl2D ζ , δm〉 −
1

μmacro L2
c

〈m, δm〉 dX = 0

for all δm ∈ L2
0(�) . (3.12)

The restriction to m ∈ L2
0(�) follows from the Stoke’s theo-

rem

∫

�

curl2D ζ dX =

∮

∂�

〈ζ , τ 〉 ds = 0 for all ζ ∈ H0(curl, �) .

(3.13)

We introduce the (bi-)linear forms

a({u, ζ }, {δu, δζ }) =

∫

�

2μe〈(∇u − ζ ), (∇δu − δζ )〉

+ 2μmicro 〈ζ , δζ 〉 dX , (3.14a)

b({u, ζ }, δm) =

∫

�

〈curl2D ζ , δm〉 dX , (3.14b)

c(m, δm) =

∫

�

〈m, δm〉 dX , (3.14c)

d({δu, δζ }) =

∫

�

〈δu, f 〉 + 〈δζ , ω〉 dX , (3.14d)

and the resulting mixed formulation reads: find ({u, ζ }, m) ∈

X × L2
0(�) such that

a({u, ζ }, {δu, δζ }) + b({δu, δζ }, m) = d({δu, δζ })

for all {δu, δζ } ∈ X , (3.15a)

b({u, ζ }, δm) −
1

μmacro L2
c

c(m, δm) = 0

for all δm ∈ L2
0(�) , (3.15b)

where the Lagrange multiplier m has the physical meaning

of a moment stress tensor.
The limit case lim Lc → ∞ of Eq. (3.15) is well-defined,

resulting in the problem: Find ({u∞, ζ∞}, m∞) ∈ X×L2
0(�)
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such that

a({u∞, ζ∞}, {δu, δζ }) + b({δu, δζ }, m∞)

= d({δu, δζ }) for all {δu, δζ } ∈ X , (3.16a)

b({u∞, ζ∞}, δm) = 0 for all δm ∈ L2
0(�) . (3.16b)

Consequently, at the limit lim Lc → ∞ we have curl2D ζ =

0.

We now show existence and uniqueness of both mixed

problems and that in the limit case Lc → ∞ the solution

of Eq. (3.15) converges to the solution of Eq. (3.16) with

quadratic convergence rate in Lc.

Theorem 3.4 For μe, μmicro, μmacro, Lc > 0 Eq. (3.15) has

a unique solution ({u, ζ }, m) ∈ X × L2
0(�) satisfying for

(μmacroL2
c)

−1 ≤ 1 the stability estimate

‖{u, ζ }‖X + ‖m‖L2 ≤ c1

(
‖ f ‖L2 + ‖ω‖L2

)
, (3.17)

where c1 is independent of Lc. Further, let ({u∞, ζ∞}, m∞) ∈

X × L2
0(�) be the unique solution of Eq. (3.16). Then, we

have the estimate

‖{u∞ − u, ζ∞ − ζ }‖X + ‖m∞ − m‖L2

≤
c2

L2
c

(
‖ f ‖L2 + ‖ω‖L2

)
, (3.18)

where c2 does not depend on Lc.

Proof Existence and uniqueness follows from the extended
Brezzi theorem [6, Thm. 4.11]. The continuity of a(·, ·),
b(·, ·), c(·, ·) and non-negativity of a(·, ·) and c(·, ·) are obvi-
ous. Therefore, we have to prove that a(·, ·) is coercive on
the kernel of b(·, ·)

ker(b) =
{
{u, ζ } ∈ X | b({u, ζ }, δm) = 0 for all δm ∈ L2

0(�)
}

=
{
{u, ζ } ∈ X | curl2D ζ = 0

}
. (3.19)

However, we already know from Theorem 3.1 that

a({u, ζ }, {δu, δζ })+
∫
�
〈curl2D ζ , curl2D δζ 〉 dX is coercive.

This leaves us with the Ladyzhenskaya–Babuška–Brezzi

(LBB) condition to be satisfied

∃ β2 > 0 : sup
{u,ζ }∈X

b({u, ζ }, m)

‖{u, ζ }‖X

≥ β2 ‖m‖L2

for all m ∈ L2
0(�) . (3.20)

We choose u = 0 and ζ such that curl2D ζ = m with ‖ζ‖L2 ≤

c‖m‖L2 leading to

b({u, ζ }, m)

‖{u, ζ }‖X
=

∫
�〈m, curl2D ζ 〉 dX

‖ζ‖L2 + ‖ curl2D ζ‖L2

≥ c
‖m‖2

L2

‖m‖L2

= c ‖m‖L2 ,

(3.21)

where the construction of ζ is according to [18]4. Thus, there

exists a unique solution independent of Lc satisfying the sta-

bility estimate Eq. (3.17).

With the (classical) Brezzi-Theorem also the existence and

uniqueness of Eq. (3.16) follows immediately and estimate

Eq. (3.18) due to the continuous dependence of the solution

with respect to the parameter Lc, [6, Cor. 4.15]. ⊓⊔

Remark 3.4 As mentioned in [18] the space for m must be

chosen as L2
0(�), where its mean is zero, if Dirichlet data are

prescribed on the whole boundary Ŵ
ζ
D = ∂�. This follows

from Eq. (3.13)

∫

�

m dX = μmacroL2
c

∫

�

curl2D ζ dX

= μmacroL2
c

∫

∂�

〈ζ , τ 〉 ds = 0 for all ζ ∈ H0(curl,�).

(3.22)

If also Neumann data is prescribed for ζ , the appropriate

function space for m is L2(�).

Remark 3.5 In the full micromorphic continuum, where the

gradient takes the place of the curl of the microdistortion

∫

�

2μe〈(∇u − ζ ), (∇δu − δζ )〉 + 2μmicro 〈ζ , δζ 〉 + μmacro L2
c 〈∇ζ , ∇δζ 〉 dX

︸ ︷︷ ︸
= agrad({u, ζ }, {δu, δζ })

=

∫

�

〈δu, f 〉 + 〈δζ , ω〉 dX , (3.23)

4 The construction is derived directly from the 2D Stokes LBB condi-

tion with H(div)-conforming elements and applies here since the curl2D

operator is a rotated divergence operator in two dimensions.
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existence and uniqueness follow similarly with the space

X = H1(�) × [H1(�)]2. However, the limit case Lc → ∞

yields ∇ζ = 0 and consequently ζ = const ., for which non-

trivial boundary conditions cannot be considered, compare

also Section 5.7 for a numerical example.

To conclude this section we investigate the necessary and

sufficient conditions such that in the limit Lc → ∞ the solu-

tion satisfies ∇u = ζ . This state represents a zoom into the

microstructure in the three-dimensional theory with micro-

scopic stiffness given by μmicro [29]. In Theorem 3.2 we

found sufficient conditions to obtain a gradient field for the

microdistortion, which, however, does not have to be ∇u.

The following theorem states that only for a zero right-hand

side f , but arbitrary ω, the desired behaviour is achieved.

Theorem 3.5 Let � be simply connected and Ŵu
D = Ŵ

ζ
D =

∂�. Then there holds for the solution {u, ζ } ∈ X of Prob-

lem 3.4

‖ζ − ∇u‖H(curl) ≤
c

L2
c

, (3.24)

if and only if f = 0, where c does not depend on Lc.

Proof From the limit solution {u∞, ζ∞} ∈ X of Eq. (3.16)

we have that ζ∞ ∈ H0(curl,�) and curl2D ζ∞ = 0. This

implies the existence of � ∈ H1
0 (�) such that ζ = ∇� ∈

ker(curl2D). Inserting this into Eq. (3.16a), where δζ = 0 is

chosen, yields

∫

�

2μe〈∇u − ∇�,∇δu〉 dX =

∫

�

〈δu, f 〉 dX

for all δu ∈ H1
0 (�).

Thus, u = � ∈ H1
0 (�) is the unique solution if and only

if f = 0 and correspondingly {u∞, ζ∞} = {�,∇�}. The

claim follows with the triangle inequality, Eq. (3.18) and the

equivalence of the mixed and primal problem

‖ζ − ∇u‖H(curl) ≤ ‖ζ − ζ∞‖H(curl) + ‖ ζ∞ − ∇u∞︸ ︷︷ ︸
=0

‖H(curl)

+‖∇u∞ − ∇u‖L2 ≤
c

L2
c

.

⊓⊔

Remark 3.6 We can weaken the assumptions of Theorem 3.5

to Ŵu
D = Ŵ

ζ
D �= ∅. Further, also non-homogeneous Dirich-

let data can be considered, provided the consistent coupling

condition 〈ζ , τ 〉 = 〈∇ũ, τ 〉 on Ŵ
ζ
D holds.

From the proof of Theorem 3.5 we obtain from the exis-

tence of a potential such that ζ = ∇�. Thus, ζ is expected

to be in H(curl,�) as in general ∇� /∈ [H1(�)]2 for

� ∈ H1(�).

3.2 Discrete case

Motivated by the de’ Rham complex (see Fig. 2) we formulate

a finite element combining base functions from both H1(�)

and H(curl,�) (and L2(�) for the mixed formulation) setting

uh, δuh ∈ V h ⊂ H1(�) , ζ h, δζ h ∈ Uh ⊂ H(curl,�) ,

mh, δmh ∈ Qh ⊂ L2(�) . (3.25)

Throughout this work we will use meshes consisting of

quadrilaterals. On each element we denote the set of quadri-

lateral polynomials by Qn,m = span{xk y j | 0 ≤ k ≤ n, 0 ≤

j ≤ m}, compare also Eq. (4.5), and further the set of Nédélec

ansatz functions by

Pk =

[
Qk−1,k

Qk,k−1

]
. (3.26)

We start with the Lax–Milgram setting by defining Xh =

V h ×U h . We note that solvability of the discretized problem

follows directly from the continuous one as Xh ⊂ X. Using

Cea’s lemma for the quasi-best approximation

‖{u, ζ } − {uh, ζ h}‖X ≤
α

β
inf

{δuh ,δζ h }∈Xh
‖{u, ζ } − {δuh, δζ h}‖X ,

(3.27)

we can generate convergence estimates a priori.

Lemma 3.1 Assume a smooth exact solution {u, ζ } ∈ X.

Further, if on each element Qk,k ⊂ V h and Pk ⊂ U h , then

the discrete solution {uh, ζ h} ∈ Xh converges with the opti-

mal convergence rate

‖{u, ζ } − {uh, ζ h}‖X ≤ c(L2
c, μe, μmicro, μmacro) hk .

(3.28)

Fig. 2 The de’ Rham complex in two dimensions depicting Hilbert

spaces and approximation spaces connected by differential and inter-

polation operators. The kernel of one differential operator is exactly the

range of the previous differential operator on its space and the differen-

tial and projection operators commute
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Proof By inserting the interpolation operators associated

through the commuting diagram we find

‖{u, ζ } − {uh, ζ h}‖2
X ≤ c inf

{δuh ,δζ h}∈Xh
‖{u, ζ } − {δuh, δζ h}‖2

X

≤ c
(
‖u − gu‖2

H1 + ‖ζ − cζ‖2
L2

+ ‖ curl2D ζ − curl2D cζ‖2
L2

)

= c
(
‖u − gu‖2

H1 + ‖ζ − cζ‖2
L2

+ ‖(id − 0) curl2D ζ‖2
L2

)

≤ c h2k
(
|u|2

Hk+1 + |ζ |2
Hk + | curl2D ζ |2

Hk

)
, (3.29)

where | · |Hk denotes the standard Sobolev semi-norm. ⊓⊔

Note that the constant c in Eq. (3.28) depends on Lc. One

may prove robust estimates in this setting. We, however, test

for robustness with respect to Lc in the context of mixed

methods and use the equivalence of both.

In general the solvability of the discretized mixed prob-

lem does not follow from the continuous one. However,

thanks to the commuting property of the de’ Rham complex,

the discrete kernel coercivity and the LBB condition follow

immediately. Thus, we obtain the quasi-best approximation

error

‖{u, ζ } − {uh, ζ h}‖X + ‖m − mh‖L2

≤ c inf
({δuh ,δζ h},δωh)∈Xh ×Qh

(
‖{u, ζ } − {δuh, δζ h}‖X

+ ‖m − δmh‖L2

)
, (3.30)

where c is independent of Lc.

Lemma 3.2 Assume that the exact solution ({u, ζ }, m) ∈

X × L2(�) of Eq. (3.15) is smooth and that on each ele-

ment Qk,k ⊂ V h , Pk ⊂ U h , and Qk−1,k−1 ⊂ Qh . Then

the discrete solution ({uh, ζ h}, mh) ∈ Xh × Qh satisfies the

optimal convergence rate independent of Lc

‖{u, ζ } − {uh, ζ h}‖X + ‖m − mh‖L2 ≤ c hk . (3.31)

Additionally, with {u∞, ζ∞} the (smooth) solution of the limit

problem we obtain

‖{u∞, ζ∞} − {uh, ζ h}‖X + ‖m∞ − mh‖L2 ≤
c1

L2
c

+ c2 hk .

(3.32)

Proof Using the interpolation operators g , c, and 0

gives estimate Eq. (3.31). Inequality Eq. (3.32) follows

immediately by adding and subtracting the solution of the

corresponding continuous solution ({u, ζ }, m) ∈ X × L2(�)

for a fixed Lc, using triangle inequality, Eq. (3.18) and

Eq. (3.31). ⊓⊔

Inequality Eq. (3.32) states that, as long as the discretiza-

tion error is not reached, we have quadratic convergence to

the limit case lim Lc → ∞. Due to the equivalence of the

primal formulation Problem 3.4 and the mixed Eq. (3.15) we

can deduce that the solution of Problem 3.4 is also robust with

respect to Lc. As we will see in the numerical examples, the

mixed formulation is better suited for extremely large values

of Lc due to rounding errors.

4 Finite element formulations

4.1 Appropriate base functions

In the following we demonstrate the construction of the

hybrid element in the linear case. The finite elements for

the mixed formulation are employed directly using the open

source finite element library NETGEN/NGSolve5 [39,40].

For the mapping of x and y, see Fig. 3, we make use of

linear quadrilateral Lagrange nodal base functions

N1(ξ, η) =
1

4
(ξ − 1)(η − 1) ,

N2(ξ, η) =
1

4
(ξ + 1)(1 − η) ,

N3(ξ, η) =
1

4
(ξ + 1)(η + 1) ,

N4(ξ, η) =
1

4
(1 − ξ)(η + 1) , (4.1)

x =

n⋃

e=1

[
N1 N2 N3 N4

]
︸ ︷︷ ︸

H(ξ, η)

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦

︸ ︷︷ ︸
x̄e

, y =

n⋃

e=1

Hye ,

x =
[
x y
]T

, (4.2)

where n is the number of finite elements in the mesh. As

shown in Fig. 3, the elements are mapped via

x : � �→ �, � = [−1, 1] × [−1, 1] ,

� =

n⋃

e=1

�e ⊂ R
2 . (4.3)

We approximate u according to the isoparametric concept

uh
e = H ūe , uh =

n⋃

e=1

uh
e . (4.4)

5 www.ngsolve.org

123

www.ngsolve.org


Computational Mechanics (2021) 68:1–24 9

Fig. 3 Element mapping from the parametric space into the physical

space

However, for ζ we make use of linear Nédélec base func-

tions of the first type for quadrilaterals [4,21,27,44]. These

functions are built around approximations of the curl oper-

ator. The corresponding spaces are those of quadrilateral

polynomials

p(ξ, η) =

( n∑

k=0

ckξ
k

)( m∑

j=0

d jη
j

)
∈ Qn,m . (4.5)

The weak form of the curl in the 2D space is formulated via

Greens’ formula6

∫

�

q curl2D ζ dX =

∮

∂�

〈q ζ , τ 〉 ds +

∫

�

〈ζ , Dcurl q〉 dX

for all q ∈ C1(�, R) . (4.6)

Therefore, the curl in � is fully determined by its interface

and inner rotation field. Consequently, we can decompose the

two terms, such that the elements’ dofs determine the inter-

polated field completely. This can be confirmed by setting all

dofs to zero, checking for a vanishing field. The correspond-

ing dofs and degrees of the polynomial spaces have been

defined by Nédélec [27]. The element’s boundary has been

decomposed as ∂� = �1 ∪ �2 ∪ �3 ∪ �4. The dofs read

4k edge dofs: fi j (ϑ) =

∫

� j

qi 〈ϑ, ς j 〉 d�

ϑ ∈ Pk(�) for all qi ∈ P
k−1(� j ) ,

2k(k − 1) cell dofs: fi (ϑ) =

∫

�

〈ϑ, qi 〉 d� ,

ϑ ∈ Pk(�) for all qi =

[
q1

q2

]
,
q1 ∈ Qk−2,k−1(�)

q2 ∈ Qk−1,k−2(�)
,

(4.7)

6 curl2D(q ζ ) = div(R (q ζ )) = q curl2D ζ − 〈ζ , Dcurl q〉 , R =[
0 1

−1 0

]
.

ϑ1 ϑ2

ϑ3 ϑ4

Fig. 4 Nédélec base functions from Eq. (4.10) in the parametric space

where Pk and Q are according to Eq. (3.26) and Eq. (4.5), and

P
k is the space of polynomials of order k. Since we employ

linear Nédélec base functions with k = 1, no inner dofs

occur. The ansatz for the base function reads

ϑm(ξ, η) =

[
d0 + d1η

c0 + c1ξ

]
, ϑm(ξ, η) ∈ P1(�) ,

m =
{

1, 2, . . . , dim(P1) = 4
}

. (4.8)

Applying the dofs along all edges with the variable basis

qi = 1

fi j (ϑm) =

∫

� j

qi 〈ϑm, ς j 〉 d� = δi j , (4.9)

we find our base functions

ϑ1 =
1

2

[
1 − η

0

]
, ϑ2 =

1

2

[
0

1 + ξ

]
,

ϑ3 =
1

2

[
−1 − η

0

]
, ϑ4 =

1

2

[
0

ξ − 1

]
. (4.10)

The factor 1/2 is chosen instead of the resulting 1/4 as to sim-

plify prescription on the Dirichlet boundary. The functions

are depicted in Fig. 4.

For the mixed formulation involving m ∈ L2(�) the

corresponding finite element space is given by piece-wise

constants, N0(ξ, η) = 1. To enforce zero mean value, i.e.

m ∈ L2
0(�), a Lagrange multiplier λ ∈ R has to be used,

leading to one additional equation in the final system.
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Using higher polynomial orders, we can achieve faster

convergence rates and better approximations. The finite ele-

ment software NGSolve offers the use of hierarchical high

order base functions for H1, H(curl), and L2 spaces [44]. We

employ NGSolve in our investigation of the mixed formula-

tion with higher order base functions.

4.2 Covariant Piola transformation

In the previous section we formulated our base functions for

the curl in the parametric space. In order to preserve the prop-

erties of the base function ϑ j acting on the curve’s tangents

ς (see Fig. 3), namely

∫

�i

〈ϑ j , ς〉 d� =

∫

Ŵi

〈θ j , τ 〉 ds = δi j , (4.11)

where θ j is the base function in the physical space and

∂�e = Ŵ1 ∪Ŵ2 ∪Ŵ3 ∪Ŵ4, the so called covariant Piola trans-

formation is required [24]. The transformation is achieved by

considering the push forward of the boundaries’ normal vec-

tors

〈v, ν〉 = det J 〈v, J
−T ̺〉 , (4.12)

where J is the Jacobi matrix of the element mappings. In

two dimensions the normal vectors on the element boundary

̺ and ν are the 90◦ rotation of the tangent vectors given by

̺ = Rς , ν = Rτ , R =

[
0 1

−1 0

]
. (4.13)

Using Eq. (4.13) in Eq. (4.12) results in

〈v, Rτ 〉 = det J 〈v, J
−T

Rς〉 , (4.14)

finally yielding the definition of a transformation preserving

integration along the tangent

v0 = det J R
T

J
−1

R v , v =
1

det J
R

T
J R

︸ ︷︷ ︸
J

−T

v0 . (4.15)

The transformation in Eq. (4.15) alone cannot guarantee the

aligned orientation of base functions on the edges of neigh-

bouring elements [44]. In order to achieve conformity we

introduce a topological correction function ψ j based on the

global orientation of edges given by node collections as

demonstrated in Fig. 5. The drawings in Fig. 5 show the

different roles of the mapping functions:

1. The covariant Piola transformation scales the projection

onto the edge tangent.

2. The topological correction function sets a consistent ori-

entation.

Thus, the final form of our edge base functions reads

θ j = ψ j J
−T θ j , ψ j =

{
1 orientation is equal

−1 else
.(4.16)

Using Eq. (4.16) for the approximation of the microdistortion

ζ yields

ζ h
e =

[
θ1 θ2 θ3 θ4

]
︸ ︷︷ ︸

�

⎡
⎢⎢⎣

ζ1

ζ2

ζ3

ζ4

⎤
⎥⎥⎦

︸ ︷︷ ︸
ζ̄ e

, ζ h =

n⋃

e=1

ζ h
e . (4.17)

For vectors undergoing a covariant Piola transformation, the

transformation of the curl operator simplifies to

curl2Dx θ j =
1

det J
ψ j curl2D θ j . (4.18)

4.3 Element stiffness matrices

For ease of presentation we consider only the Lax–Milgram

setting. The mixed formulation follows directly with simple

adaptations.

With the approximations in Eq. (4.4) for the displacement

field u and in Eq. (4.17) for the microdistortion ζ the weak

form in Problem 3.4 results in

n⋃

e=1

(K e + K micro + K macro)e

[
ūe

ζ̄ e

]
=

n⋃

e=1

[
f̄e

ω̄e

]
, (4.19)

where K e, K micro and K macro are the element stiffness matri-

ces employing the base function matrices H and � according

to Eq. (4.17) and Eq. (4.2), respectively

K e = 2μe

∫

�

[
(∇ H)T ∇ H −(∇ H)T �

−�T ∇ H �T �

]
det J d� ,

(4.20a)

K micro = 2μmicro

∫

�

[
O O

O �T �

]
det J d� , (4.20b)

K macro = μmacroL2
c

∫

�

[
O O

O (curl2D �)T curl2D �

]
det J d� ,

(4.20c)

123



Computational Mechanics (2021) 68:1–24 11

Global edge
orientation array︷ ︸︸ ︷⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
2 3
3 6
4 1
4 5
5 6
5 2
3 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1 edge array E1︷ ︸︸ ︷⎡
⎢⎢⎣

1 2
2 5
5 4
4 1

⎤
⎥⎥⎦

A2 edge array E2︷ ︸︸ ︷⎡
⎢⎢⎣

5 2
2 3
3 6
6 5

⎤
⎥⎥⎦

ψj(E1)︷ ︸︸ ︷⎡
⎢⎢⎣

ψ1 = 1
ψ2 = −1
ψ3 = −1
ψ4 = 1

⎤
⎥⎥⎦

ψj(E2)︷ ︸︸ ︷⎡
⎢⎢⎣

ψ1 = 1
ψ2 = 1
ψ3 = 1

ψ4 = −1

⎤
⎥⎥⎦

Fig. 5 Covariant Piola transformation and topological correction func-

tion ψ j mapping of Nédélec base functions from the parametric space

into the physical space

with O ∈ {0}4×4. The finite element has 8 degrees of free-

dom. The right-hand side reads

f̄e =

∫

�

H
T f det J d� , (4.21)

ω̄e =

∫

�

�T ω det J d� . (4.22)

In order to compare our formulation, we also derive a nodal

H1-finite element

ζ =

n⋃

e=1

[
N1 I N2 I N3 I N4 I

]
︸ ︷︷ ︸

N

⎡
⎢⎢⎢⎣

ζ1

ζ2

...

ζ8

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ζ̄ e

, I =

[
1 0

0 1

]
. (4.23)

In contrast to the hybrid element, the approach in Eq. (4.23)
requires 8 dofs per element for the microdistortion. Using
Eq. (4.23) we obtain the following stiffness matrices for the
nodal element

K e = 2μe

∫

�

[
(∇ H)T ∇ H −(∇ H)T N

−NT ∇ H NT N

]
det J d� ,

(4.24a)

K micro = 2μmicro

∫

�

[
O OT

a

Oa NT N

]
det J d� , (4.24b)

K macro = μmacroL2
c

∫

�

[
O OT

a

Oa (curl2D N)T curl2D N

]
det J d� ,

(4.24c)

with Oa ∈ {0}8×4. Consequently, ω̄e changes to

ω̄e =

∫

�

N
T ω det J d� . (4.25)

In conclusion, we compare the hybrid element having 8

degrees of freedom in total with the nodal element having 12

degrees of freedom. The difference in the overall degrees of

freedom results from the vectorial approach to the microdis-

tortion in the hybrid element.

5 Numerical examples

In following examples we construct analytical solutions by

imposing predefined displacement and microdistortion fields

and calculating the resulting right-hand side. The predefined

fields are the analytical solutions to the resulting right-hand

side along with the derived Dirichlet boundary conditions

(for a full derivation see Appendix B). Further, in all subse-

quent examples the domain and the flux field ζ lie in the x −y

123



12 Computational Mechanics (2021) 68:1–24

plane and the displacement u is parallel to the z-axis. Corre-

spondingly, for figures of u we provide a three-dimensional

perspective and figures of ζ are aerial views of the x − y

plane. The examples have the mechanical interpretation of a

membrane antiplane deformation.

5.1 Benchmark for an imposed vanishing
microdistortion

We impose the predefined fields

ũ(x, y) = 4 −
x2

8
−

y2

8
+ x y , ζ̃ (x, y) = 0 . (5.1)

In order to constrain the numerical solution to that of our

proposed fields in Eq. (5.1), we set the following Dirichlet

boundary conditions

u(x, y)

∣∣∣∣
∂�

= ũ(x, y)

∣∣∣∣
∂�

,

〈ζ (x, y), τ 〉

∣∣∣∣
∂�

= 〈̃ζ (x, y), τ 〉

∣∣∣∣
∂�

. (5.2)

In the following example we set for simplicity

μe = μmicro = μmacro = Lc = 1 , (5.3)

and extract the resulting force and moment (the right-hand

side)

f = 1 , ω =

⎡
⎢⎣

x

2
− 2y

y

2
− 2x

⎤
⎥⎦ . (5.4)

Our simulations consider the domain � = [−4, 4]× [−4, 4]

with irregular meshes under h-refinement, as shown in Fig. 7.

Both element formulations converge towards the analytical

solution, see Fig. 6. The microdistortion field ζ displayed in

Fig. 8 approaches zero with each refinement, satisfying the

imposed field. We notice faster convergence in the hybrid

element.

5.2 Benchmark for a non-vanishing imposed
microdistortion

In the following step in our investigation we test our finite ele-

ment formulations for a non-vanishing microdistortion field

ζ , specifically a rotation field, as to determine the conver-

gence behaviour of the nodal element with respect to the curl

stiffness. We set � = [−4, 4] × [−4, 4], μe = μmacro =

μmicro = Lc = 1 and the fields

ũ(x, y) = xy

(
y2

16
−

x2

16

)
− 1 ,

ζ̃ (x, y) =

⎡
⎢⎢⎣

−y(
x2

8
− 2)(

y2

8
− 2)

x(
x2

8
− 2)(

y2

8
− 2)

⎤
⎥⎥⎦ (5.5)

with the corresponding Dirichlet boundary conditions

u(x, y)

∣∣∣∣
∂�

= ũ(x, y)

∣∣∣∣
∂�

,

〈ζ (x, y), τ 〉

∣∣∣∣
∂�

= 〈̃ζ (x, y), τ 〉

∣∣∣∣
∂�

. (5.6)

The following force and moment are extracted, for details

see Appendix B,

f = −
x y

2

(
y2

8
−

x2

8

)
, (5.7)

ω =

[
−(x2 y3)/16 + (25x2 y)/16 + (7y3)/8 − 18y

(x3 y2)/16 − (7x3)/8 − (25xy2)/16 + 18x

]
.(5.8)

Consequently, the curl term is neither explicitly nor implic-

itly omitted. We compare the displacement u and the error

‖̃ζ −ζ‖L2 for both element formulations on an irregular mesh

undergoing refinement, see Figs. 9, 10 and 11.

As shown in Fig. 10, both elements converge towards the

analytical solution. However, we notice differences in the

convergence rates, namely the nodal element converges faster

in ζ .

5.3 Solutions in H(curl)

As H(curl) is a larger space than [H1]2, we have the relation

[H1]2 ⊂ H(curl). Consequently, we can envision solutions

belonging to H(curl) and not [H1]2. Such solutions fulfill the

continuity of tangential components along element edges of

H(curl), but not the continuity of the normal component.

Elements living in [H1]2 require the continuity of both com-

ponents.

In the domain � = [−4, 4] × [−4, 4] with Ŵu
D = ∂�

and Ŵ
ζ
D = ∅ we set μe = μmacro = μmicro = Lc = 1, the

boundary conditions and external forces

u(−4, y) = u(4, y) = 0 , u(−2, y) = u(2, y) = −2 ,

u(0, y) = 2 , f = 0 , ω = 0 , (5.9)
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Fig. 6 Convergence behaviour of element formulations under mesh refinement

(a) Analytical solution (b) 336 elements (c) 1344 elements

Fig. 7 Displacement u of the analytical and finite element solutions

for which the analytical solution reads

ũ(x, y) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 4 − x for −4 ≤x ≤ −2

2 + 2x for −2 <x ≤ 0

2 − 2x for 0 <x ≤ 2

x − 4 for 2 <x ≤ 4

,

ζ̃ =
∇ũ

2
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
−0.5 0

]T
for −4 ≤x ≤ −2

[
1 0
]T

for −2 <x ≤ 0
[
−1 0

]T
for 0 <x ≤ 2

[
0.5 0

]T
for 2 <x ≤ 4

, (5.10)

where ζ̃ follows from Eqs. (2.6a) and (2.6b). Note that

the boundary data of ζ̃ jumps and is therefore not in

H
1/2(ŴD). Consequently, the problem cannot be posed with

ζ ∈ [H1(�)]2 if we set Ŵ
ζ
D = ∂�, see Remark 3.1. For

ζ ∈ H(curl,�) the problem could be posed as 〈̃ζ , τ 〉 ∈

L2(∂�) ⊂ H
−1/2(∂�).

We test both elements on an irregular mesh undergoing

refinement Fig. 12. We note the hybrid element finds the

exact solution immediately with a coarse mesh, whereas the

nodal element requires a much higher level of refinement

in order to deliver a viable approximation. The nodal ele-

ment localizes the error due to the discontinuity further with

each refinement as seen in Fig. 13. The convergence graph

in Fig. 14 depicts the slow sub-optimal convergence of the

nodal element, compare Eq. (3.28). Note, the error in the

hybrid element for the same meshes is always at a factor

10−15 for both u and ζ . Due to the higher continuity condi-

tions of the nodal element, it could never find the analytical

solution, but would converge further towards it with each

refinement.

We present a second example allowing us to compare

the convergence rates for both formulations. Let � =

[0, 1] × [0, 1], μe = μmacro = μmicro = Lc = 1, and

Ŵu
D = Ŵ

ζ
D = ∂�. For the given exact solution {̃u, ζ̃ } ∈

H1
0 (�) × H0(curl �)

ũ(x, y) = exp(1 − x)y(1 − y)

{
x for x ≤ 0.5

1 − x for x > 0.5
,

ζ̃ = ∇ũ , (5.11)

the corresponding boundary conditions and external forces
result in

u(x, y)

∣∣∣∣
∂�

= 0, 〈ζ , τ 〉

∣∣∣∣
∂�

= 0, f = 0, ω = 2̃ζ . (5.12)
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(a) 84 hybrid elements (b) 336 hybrid elements (c) 1344 hybrid elements

(d) 84 nodal elements (e) 336 nodal elements (f) 1344 nodal elements

Fig. 8 Decay of the microdistortion ζ according to Eq. (5.1) on irregular meshes undergoing refinement. The intensity of the microdistortion

approaches zero with each refinement. This is seen here in a decrease of the flux vectors

(a) Analytical solution (b) 256 elements (c) 1024 elements

Fig. 9 Displacement u of the analytical and finite element solutions
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Fig. 10 Convergence behaviour of element formulations under mesh refinement

(a) Analytical flux solution (b) 256 elements (c) 1024 elements

Fig. 11 Microdistortion ζ of the analytical and finite element solutions on unstructured grids according to Eq. (5.5)

(a) Analytical displacement solution (b) Solution with 46 hybrid elements (c) Example mesh with 184 elements

(d) Solution with 46 nodal elements (e) Solution with 184 nodal elements (f) Solution with 736 nodal elements

Fig. 12 Analytical solution and finite element front view (x − z plane) for solutions of Eq. (5.10)
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(a) Microdistortion with 46 hybrid

elements

(b) Microdistortion with 184 hybrid

elements

(c) Microdistortion with 736 hybrid

elements

(d) Microdistortion with 46 nodal el-

ements

(e) Microdistortion with 184 nodal

elements

(f) Microdistortion with 736 nodal

elements

Fig. 13 Finite element solutions of the microdistortion for Eq. (5.10) for both formulations
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Fig. 14 Convergence behaviour of element formulations under mesh refinement

Here, the boundary conditions are compatible with ζ ∈

[H1(�)]2, but the exact solution is only in H(curl,�), not

in [H1(�)]2. We use structured quadrilateral meshes (see

Fig. 16) resolving the interface at x = 0.5, where the nor-

mal component of the exact solution of ζ jumps, with linear,

quadratic and cubic polynomials for the nodal elements.

We observe that higher polynomial degrees do not increase

the convergence rate and only sub-optimal root-convergence

is achieved (see Fig. 15). For linear and quadratic ansatz

functions in the primal H(curl) method we observe optimal

convergence rates.

5.4 Convergence for Lc → 0

As mentioned in Section 3, the characteristic length Lc repre-

sents an important term in the relaxed micromorphic theory.

This scalar governs the relation of the relaxed micromor-

phic continuum to the standard Cauchy continuum. In the

previous examples we have been able to generate stable

results for the case Lc = 1. In this example we consider

the limit Lc → 0, which can be interpreted as a highly

homogenous material. In the Lc = 0 setting, the relaxed
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Fig. 15 Convergence rates of the microdistortion on both element

formulations across multiple polynomial degrees undergoing mesh

refinement

micromorphic continuum retrieves the results of the classi-

cal Cauchy continuum, no external moments ω occur and the

microdistortion ζ lives in [L2(�)]2. This results in the emer-

gence of a single Poisson equation for u (see Remark 3.2),

being an analogue of the standard membrane partial differen-

tial equation. We define the domain � = [−5, 5] × [−5, 5]

with μe, μmicro = 1, Lc = 0 and the imposed displacement

ũ(x, y) = 2 − sin(x)2 + cos(x)2 − sin(y)2 + cos(y)2 .

(5.13)

We use ũ to recover the analytical solution for ζ̃

ζ̃ =
μe

μmicro + μe
∇ũ =

[
−2 cos(x) sin(x)

−2 cos(y) sin(y)

]
, (5.14)

and the resulting right-hand side

f = 4 (cos(x)2 + cos(y)2 − sin(x)2 − sin(y)2) . (5.15)

Note, since we require ζ ∈ [L2(�)]2, no boundary condi-

tions can be prescribed for ζ . The microdistortion field ζ

can always be approximated using either H(curl) or [H1]2

elements. However, the direct use of discontinuous [L2]2 ele-

ments for ζ requires less computation and can also capture

gradient fields. With Theorem 3.3 we have for ω = 0 the

regularity result that ζ is in fact a gradient field and thus ζ ∈

H(curl,�), which confirms to use Nédélec elements with-

out risk of sub-optimal convergence rates, compare Sect. 5.3.

The finite element solution converges towards the analytical

solution as expected with optimal rate, see Figs. 17 and 18.

5.5 Robustness in Lc

The upper limit of the characteristic length Lc is defined

to be infinity. In this example we prove the robustness of

our computations for Lc → ∞. The analytical solution on

� = [−4, 4] × [−4, 4] with homogeneous Dirichlet data on

∂� and μe = μmacro = μmicro = 1 is given by

(a) Displacement analytical solution (b) Displacement with 256 hybrid el-

ements

(c) Displacement with 256 nodal el-

ements

(d) Microdistortion analytical solu-

tion

(e) Microdistortion with 256 hybrid

elements

(f) Microdistortion with 256 nodal

elements

Fig. 16 Analytical and finite element solutions of the displacement and microdistortion fields according to Eq. (5.11)
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(a) Displacement analytical solution
(b) Displacement with 180 hybrid el-

ements

(c) Displacement with 2880 hybrid

elements

(d) Microdistortion analytical solu-

tion

(e) Microdistortion with 180 hybrid

elements

(f) Microdistortion with 2880 hybrid

elements

Fig. 17 Analytical solutions and finite element solutions on unstructured grids of the displacement and microdistortion fields according to Eqs. (5.13)

and (5.14)
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Fig. 18 Convergence behaviour of the hybrid element formulation under mesh refinement for the case Lc = 0

ũ(x, y) = cos
(π x

8

)
(y2 − 16) exp

(
x + y

100

)
, (5.16a)

ζ̃ (x, y) = 2

[
x(y2 − 16)

y(x2 − 16)

]

+
1

L2
c

(
x2

8
− 2

)(
y2

8
− 2

)[
−y

x

]
, (5.16b)

from which we can extract the resulting force fields according

to Eqs. (2.6a) and (2.6b). We test for convergence using linear

elements.

As expected from the theory, we observe uniform con-

vergence up to the point where rounding errors occur in the

primal method for very large Lc terms. The convergences

of the mixed formulation remains stable for all values of Lc

as it is not affected by rounding errors, cf. Fig. 19. Using

lowest order linear nodal elements for ζ leads to non-robust

behaviour in Lc in terms of immense locking. Considering

quadratic Lagrange elements overcomes this locking phe-

nomena, however, at the cost of more dofs.
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Fig. 19 Convergence behaviour for fixed Lc on 1 × 1, 2 × 2, 4 × 4, 8 × 8, 16 × 16, 32 × 32, and 64 × 64 structured quadrilateral grids for the

primal and mixed hybrid methods
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Fig. 20 Convergence behaviour for Lc → ∞ for fixed 4 × 4, 16 × 16, 32 × 32, 64 × 64 and 128 × 128 grids
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Fig. 21 Convergence behaviour of the difference ∇u − ζ and curl2D ζ for Lc → ∞ with primal hybrid method
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Fig. 22 Energy convergence in the relaxed and full micromorphic models according to Eq. (5.18)

To test the convergence depending on Lc, Eq. (3.18), for

the case Lc → ∞ we use quadratic elements - i.e., quadratic

H1 and Nédélec elements, and linear L2 elements for m in

the mixed formulation - in NGSolve and four different struc-

tured grids. The same domain as in the previous example is

considered and for the limit solution Eq. (5.16) is used, with

Lc → ∞ in Eq. (5.16b). Again, the primal methods suffers

for large values of Lc from rounding errors, whereas for the

mixed method we observe the expected quadratic conver-

gence rate up to the discretization error, compare Eq. (3.32)

and Fig. 20.

5.6 Convergence for Lc → ∞

We prove the theoretical result of Theorem 3.5, with the same

domain, boundary conditions, and material constants as in the

previous example, by setting the external force and moments

f = 0 , r = (16 − x2)(16 − y2)(xy − y2) ,

� = x3 y2 − xy2(1 − x) −
256

9
, ω = ∇r + Dcurl(�) ,

(5.17)

and testing for convergence ‖∇u − ζ‖H(curl) = O(L−2
c ) for

Lc → ∞ using NGSolve with linear base functions.

The results are computed using the primal method. By

staying within the rounding precision bounds retrieved from

our investigation of the robustness in Lc, we are able to find

results converging quadratically to the previously derived

expectations, see Fig. 21.

5.7 The consistent coupling condition

We conclude our investigation by considering the consistent

coupling condition on both the full and relaxed micromorphic

continuum models using NGSolve with the primal method.

We set the domain � = [−4, 4] × [−4, 4] with the material

parameters μe, μmicro, μmacro = 1, the boundary conditions

u(x, y)

∣∣∣∣
∂�

= y2 − x2,

〈ζ , τ 〉

∣∣∣∣
∂�

= 〈∇u, τ 〉

∣∣∣∣
∂�

=
〈[

−2x 2y
]T

, τ
〉 ∣∣∣∣

∂�

, (5.18)

and the external forces

f = 0 , ω =
[
−y x

]T
, (5.19)

and test for convergence in both micromorphic formulations

with increasing characteristic lengths Lc.

As observed in Fig. 22, the relaxed micromorphic con-

tinuum converges towards a finite energy, whereas the

non-trivial boundary conditions on the full micromorphic

continuum lead to boundary-layers and consequently, ever-

increasing energy for Lc → ∞. The result is consistent with

the problematic mentioned in Remark 3.5.

6 Conclusions and outlook

The relaxed micromorphic continuum theory introduces the

Curl operator in the formulation of the free energy functional.

As a result, the solution of the weak form lies in the combined

space H1 × H(curl). The Lax–Milgram theorem confirms

this result by assuring existence and uniqueness for the com-

bined space. Our benchmarks with a completely nodal finite

element show its capacity to approximate solutions in the

combined space. However, the tests also show its inability

to find the exact solution for discontinuous microdistortion

fields and the corresponding sub-optimal convergence. A
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comparison between the linear nodal and hybrid element

formulations also reveals the difference in the arising ele-

mental stiffness matrices, namely K nodal ∈ R
12×12 and

K hybrid ∈ R
8×8, resulting in slower computation times for

the nodal element. In contrast, the hybrid element yields

stable approximations and convergence rates for all tested

scenarios, being capable of finding the exact solution also

for discontinuous microdistortion fields. The relaxed micro-

morphic theory aims to capture the mechanical behaviour of

metamaterials, highly homogeneous materials and the entire

spectrum in between. To that end, the characteristic length Lc

takes the role of a weighting parameter, determining the influ-

ence of the energy from the dislocation density (the energy

depending on the curl operator). The range of the characteris-

tic length Lc is an open topic of research into metamaterials.

However, from a theoretical point of view, it may vary

between zero and infinity. Our tests reveal the arising insta-

bility of convergence where increasingly large Lc parameters

are concerned and emergence of locking effects if linear

nodal elements are chosen to approximate the microdistor-

tion. For the case of the hybrid element, lost precision can

be recovered via the formulation of the corresponding mixed

problem. Locking effects in the nodal version of the microdis-

tortion can be alleviated via higher order polynomials at the

cost of increased dofs. In addition, also in Lc = 0 setting,

where the external moment ω vanishes, we recognize the

optimality of using H(curl)-elements for the computation of

the microdistortion, seeing as it is in fact the natural space

for the microdistortion in this setting. Lastly, we recognize

the advantage of the relaxed micromorphic continuum with

regard to its ability to generate finite energies as Lc → ∞

for arbitrary boundary conditions.

These findings build the basis for the extension of the

formulation to the fully three-dimensional or a statically

condensed two-dimensional version of the full relaxed micro-

morphic continuum.
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A Derivation of the strong form

In order to find the strong form of the Euler-Lagrange equa-

tions to Problem 3.4 we start with the most general setting

Ŵu
D ∩ Ŵu

N = ∅, Ŵu
D ∪ Ŵu

N = ∂� and Ŵ
ζ
D ∩ Ŵ

ζ
N = ∅,

Ŵ
ζ
D ∪Ŵ

ζ
N = ∂�. The Dirichlet and Neumann boundary parts

of u and ζ and assume that |Ŵu
D| > 0 (for Lax–Milgram solv-

ability). We assume smooth fields such that we can integrate

by parts. Using the Green identity

∫

�

div q v dX =

∮

∂�

〈q ν, v〉 ds −

∫

�

〈∇q, v〉 dX ,

v ∈ C1(�, R
2) , q ∈ C1(�, R) , (A.1)

where ν is the normal vector on the boundary, and splitting

the boundary terms of the first weak form Eq. (2.5a), we find

∫

�

2μe〈(∇u − ζ ), ∇δu〉 − 〈δu, f 〉 dX

=

∫

Ŵu
D

δu〈(∇u − ζ ), ν〉 ds +

∫

Ŵu
N

δu〈(∇u − ζ ), ν〉 ds

−

∫

�

〈div(∇u − ζ ) − f , δu〉 dX = 0

for all δu ∈ C1(�, R) . (A.2)

As the Dirichlet data is directly incorporated into the space

we have δu = 0 on Ŵu
D and thus, for given Dirichlet data ũ,

we obtain the strong form

−2μe div(∇u − ζ ) = f in �,

u = ũ on Ŵu
D ,

〈∇u, ν〉 = 〈ζ , ν〉 on Ŵu
N . (A.3)

For the second weak form Eq. (2.5b) we employ another

Green identity

∫

�

λ curl2D q dX =

∮

∂�

〈λ q, τ 〉 ds +

∫

�

〈Dcurl λ, q〉 dX ,

λ ∈ C1(�, R) , q ∈ C1(�, R
2) , (A.4)
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and split the boundary, obtaining for all δζ ∈ C1(�, R
2)

∫

�

2μe 〈(∇u − ζ ), (−δζ )〉 + 2μmicro 〈ζ , δζ 〉

+ μmacro L2
c 〈curl2D ζ , curl2D δζ 〉 − 〈δζ , ω〉 dX

=

∫

�

2μe 〈(∇u − ζ ), (−δζ )〉 + 2μmicro 〈ζ , δζ 〉

+ μmacro L2
c〈D

curl(curl2D ζ ), δζ 〉 − 〈δζ , ω〉 dX

+

∫

Ŵ
ζ
D

μmacro L2
c curl2D(ζ )〈δζ , τ 〉 ds

+

∫

Ŵ
ζ
N

μmacro L2
c curl2D(ζ )〈δζ , τ 〉 ds = 0 . (A.5)

Again, the Dirichlet data is incorporated into the space, such

that the following strong formulation arises

− 2μe(∇u − ζ ) + 2μmicroζ + μmacroL2
c Dcurl(curl2D ζ )

= ω in �,

curl2D ζ = 0 on Ŵ
ζ
N ,

〈ζ , τ 〉 = 〈̃ζ , τ 〉 on Ŵ
ζ
D . (A.6)

The complete boundary value problem is given by Eqs. (A.3)

and (A.6).

B Constructing analytical solutions

The predefined fields are given by ũ and ζ̃ . We redefine the

variables of the strong form u∗ = u − ũ and ζ ∗ = ζ − ζ̃ and

insert them into the partial differential equation

− 2μe div(∇(u − ũ) − (ζ − ζ̃ )) = 0 , (B.1a)

− 2μe(∇(u − ũ) − (ζ − ζ̃ )) + 2μmicro(ζ − ζ̃ )

+ μmacroL2
c Dcurl curl2D(ζ − ζ̃ ) = 0 , (B.1b)

yielding compositions of additive terms. Therefore, we can

rearrange the equations

2μe div(∇u − ζ ) = 2μe div(∇ũ − ζ̃ ) ,

− 2μe(∇u − ζ ) + 2μmicroζ + μmacroL2
c Dcurl(curl2D ζ )

= −2μe(∇ũ − ζ̃ ) + 2μmicroζ̃

+ μmacroL2
c Dcurl(curl2D ζ̃ ) . (B.2a)

It is clear that the solutions of the PDE must be u = ũ and

ζ = ζ̃ . Since both ũ and ζ̃ are known a priori, their insertion

in the PDE can be calculated. We define the calculated fields

f := −2μe div(∇ũ − ζ̃ ) ,

ω := −2μe(∇ũ − ζ̃ ) + 2μmicroζ̃

+ μmacroL2
c Dcurl(curl2D ζ̃ ) . (B.3)

The strong forms with the newly found right-hand sides are

multiplied with the corresponding test functions

∫

�

2μe〈div(∇u − ζ ), δu〉 dX = −

∫

�

〈 f , δu〉 dX , (B.4a)

∫

�

−2μe〈(∇u − ζ ), δζ 〉 + 2μmicro〈ζ , δζ 〉

+ μmacroL2
c〈D

curl(curl2D ζ ), δζ 〉 dX =

∫

�

〈ω, δζ 〉 dX .

(B.4b)

Employing Greens’ identities Eqs. (A.1 and (A.4) we find

∮

∂�

2μe δu〈(∇u − ζ ), ν〉 ds −

∫

�

2μe〈(∇u − ζ ), ∇δu〉 dX

= −

∫

�

〈 f , δu〉 dX , (B.5a)

∫

�

−2μe〈(∇u − ζ ), δζ 〉 + 2μmicro 〈ζ , δζ 〉

+ μmacro L2
c 〈curl2D ζ , curl2D δζ 〉 dX

− μmacroL2
c

∮

∂�

curl2D ζ 〈δζ , τ 〉 ds

=

∫

�

〈ω, δζ 〉 dX . (B.5b)

The latter integrations generate terms for transmissions on the

boundary ∂�. As the Dirichlet data is directly incorporated

into the space and the natural Neumann boundary conditions

Eqs. (2.6e) and (2.6f) hold, we observe

∫

Ŵu
N

2μe δu〈(∇u − ζ ), ν〉 ds = 0 ,

∫

Ŵ
ζ
N

curl2D ζ 〈δζ , τ 〉 ds = 0 , (B.6)

allowing us to find the original weak formulation with the

corresponding force and moment

∫

�

2μe〈(∇u − ζ ), ∇δu〉 dX =

∫

�

〈 f , δu〉 dX ,

∫

�

−2μe〈(∇u − ζ ), δζ 〉 + 2μmicro 〈ζ , δζ 〉

+ μmacro L2
c 〈curl2D ζ , curl2D δζ 〉 dX =

∫

�

〈ω, δζ 〉 dX .

(B.7)
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