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Abstract Predicting the tertiary structure of proteins

from their linear sequence is a big challenge in biology.

The existing computational methods are not powerful

enough to search for the precise structure in a huge con-

formational space. This inadequate capability of the com-

putational methods, however, is a major obstacle when

trying to tackle this problem. The observations of some

previous studies have revealed much interest in hybridizing

a local search-based metahuristic algorithm within the

population-based metahuristic algorithm. This study

introduces a hybrid harmony search algorithm (HHSA) as a

means to solve ab initio protein tertiary structure prediction

problem. In HHSA, the iterated local search (ILS) is

incorporated with the harmony search algorithm (HSA) to

empower it so as to find the local optimal solution within

the search space of the new harmony. Furthermore, the

global-best concept of particle swarm optimization (PSO)

is incorporated in memory consideration as a selection

scheme to accelerate the convergence speed. The HHSA

predicts the tertiary structure of a protein giving its

sequence alone (i.e., from scratch). Our algorithm con-

verges faster than the classical harmony search algorithm.

We evaluate our algorithm using two protein sequences.

The results show that our algorithm can find more precise

solutions than other previous studies.

Keywords ab initio protein structure prediction � Protein
folding � Harmony search � Metaheuristic algorithms �
Optimisation � Local search

Abbreviations

AHSA Adaptive harmony search algorithm

HHSA Hybrid harmony search algorithm

HMCR Harmony memory consideration rate

HSA Harmony search algorithm

PAR Pitch adjustment rate

PSP Protein structure prediction

SMMP Simple molecular mechanics for proteins

NMR Nuclear magnetic resonance

1 Introduction

Bioinformatics refers to the field concerned with the

analysis of biological information including link prediction

and classification (Almansoori et al. 2012), detecting dis-

ease (Tang et al. 2012), and others using computers and

statistical techniques. Predicting the three-dimensional

structure of a protein from its linear sequence is currently a

great challenge in computational biology . The problem

can be described as the prediction of the three-dimensional

structure of a protein from its amino acid sequence or the

prediction of a protein’s tertiary structure from its primary

structure. There are two categories of methods for protein
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structure prediction: experimental and computational. The

two main experimental methods available for protein

structure prediction are X-ray crystallography and nuclear

magnetic resonance (NMR). Unfortunately, these methods

are not efficient enough being both expensive and time-

consuming (Abual-Rub and Abdullah 2008). There are

currently three main categories of computational methods

for protein structure prediction. These categories depend

mainly on the percentage of similarity of the input protein

sequence with other existing sequences in the database.

The first is homology modeling—also known as compar-

ative modeling. It is used when there is a similarity

between the target sequence and the sequences that already

exist in protein database (Chothia and Lesk 1986). The

second is fold recognition—also known as protein thread-

ing, which is an inverse of the protein folding problem. It is

based on the fact that the number of the new folded protein

structure is not growing fast compared to the number of

new protein sequences, which leads to the observation that

any new predicted structure will be almost folded to an

existing structure in the database. The third computational

prediction category is ab initio modeling. It seeks to predict

the tertiary structure of a protein from its amino acid

sequence alone—without any knowledge of similar folds.

Ab initio—also known as de novo modeling, free model-

ing, or physics-based modeling (Lee et al. 2009)—is based

on the thermodynamic hypothesis which states that the

tertiary structure of the protein is the conformation with the

lowest free energy (Anfinsen 1973). Ab initio modeling,

however, is challenging for the following reasons. First,

there is a huge number of proteins that have no homology

with any of the known structure proteins. Second, some

proteins which show high homology with other proteins

have different structures. Third, comparative modeling

does not offer any perception of why a protein adopts a

specific structure (Helles 2008). A successful ab initio

method for protein structure prediction depends on a

powerful conformational search method to find the mini-

mum energy for a given energy function. molecular

dynamics (MD), Monte Carlo (MC) and genetics algorithm

(GA) are common methods to explore protein conforma-

tional search space.

A recent meta-heuristic population-based optimization

algorithm, which mimics the improvisation process in the

musical context (Geem et al. 2001), is a harmony search

algorithm (HSA). It has special advantages in comparison

with traditional optimization techniques: it requires fewer

mathematical requirements without initial value settings

for decision variables; it considers all the existing vectors

to generate a new vector, whereas the methods like genetic

algorithm (GA) only considers the two parent vectors, and

HSA does not need to encode and decode the decision

variables into binary strings (Mahdavi and Abolhassani

2009). These advantages enable it to be successfully used

for a wide variety of optimization problems such as RNA

secondary structure prediction (Mohsen et al. 2010),

timetabling (Al-Betar and Khader 2012; Al-Betar et al.

2010a, b, c), Structural Engineering (Saka et al. 2011), and

many others as overviewed by Ingram and Zhang (2009);

Alia and Mandava (2011). Furthermore, the structure and

performance of the HSA are under development to be

adopted for the ongoing challenges. It is hybridized with

other successful optimization techniques such as GA (Nadi

et al. 2010), particle swarm optimization (PSO) (Omran

and Mahdavi, 2008) and Hill climbing (Al-Betar et al.

2012b). Furthermore, its parameter is deterministically

adaptive during the search (Mahdavi et al. 2007; Geem and

Sim, 2010; Pan et al, 2010; Alatas, 2010). Quite recently,

there have been some mathematical analysis studies to

investigate the exploratory power of HSA (Das et al. 2011;

Al-Betar et al 2012a).

The main objective of this paper is twofold: (1) to

adapt HSA for ab initio protein tertiary structure predic-

tion (PPSP) which can be set as an initial study to apply

this algorithm for this problem (henceforth called adap-

tive harmony search algorithm, AHSA), (2) to hybridize

iterated local search (ILS) within the process of the AHSA

to improve its local exploitation and incorporate global-

best concept of PSO in the memory consideration to

improve the convergence speed (henceforth called hybrid

harmony search algorithm, HHSA). Using a well-studied

benchmark established for PPSP, the results show that the

AHSA is, by comparison, able to competitively provide a

good quality solution. Interestingly, HHSA is able to yield

more precise results than those of the comparative

methods.

2 Materials and methods

2.1 Problem description

The PSPP considered in this paper is the ab initio protein

tertiary structure prediction, which predicts the tertiary

structure of a protein from its amino acids sequence alone.

It is based on the thermodynamic hypothesis (Anfinsen

1973) which states that the tertiary structure of the protein

is the conformation with the lowest free energy. Thus, the

PSPP can be formulated as an optimization problem whose

basic objective is to find the conformation that has the

lowest energy of the protein. The most important task in

solving the protein structure prediction problem using an

optimization algorithm is to choose an applicable repre-

sentation of the conformation and a suitable energy func-

tion. The problem modeling is introduced based on these

two factors in the following two sections.

70 M. S. Abual-Rub et al.

123



2.2 Problem modeling

2.2.1 Problem representation

There are many common representations of polypeptide

chains such as (Cutello et al. 2006): Ca coordinates, all-

heavy-atom coordinates, all-atom three-dimensional coor-

dinates, backbone atom coordinates ? side-chain centroid,

and backbone and side-chain torsion angles.

The most detailed representation is the one that includes

all atoms of the protein. It is worth mentioning that rep-

resenting these all atoms with their interactions is compu-

tationally expensive though not essential during the search

process (Chivian et al. 2003). Hence, to reduce the com-

putational time and space, many researchers, such as Levitt

(1976), Abagyan and Maiorov (1988), Hinds and Levitt

(1992), Baker (2000), and Dudek and Objects (2007) used

a simplified representation. This research, likewise, uses a

simplified representation of the polypeptide chain; namely,

backbone and side-chain torsion angles representation

based on the fact that each residue type requires a fixed

number of torsion angles to fix the three-dimensional

coordinates of all atoms.

The protein is represented in this research as a vector of

amino acids, x ¼ ðx1; x2; . . .; xMÞ; where x1 ¼ U1ð1Þ;
ðW1ð1Þ;x1ð1Þ;x1ð1Þ;x1ð2Þ; . . .;x1ðNÞÞ;x2 ¼ ðU2ð1Þ;W2ð1Þ;
x2ð1Þ; x2ð1Þ; x2ð2Þ; . . .; x2ðNÞÞ; . . .; xM ¼ ðUMð1Þ; WMð1Þ;
xMð1Þ; xMð1Þ; xMð2Þ; . . .; xMðNÞÞ: However, AHSA deals

with this vector as a vector of torsion angles xi ¼ ðxð1Þ;
xð2Þ; . . .; xðNÞÞ; where N is the number of torsion angles

in the protein, and each angle (x(i)) in this vector can be

assigned with a value within the range [-p, p]. There-

fore, the solution length is equal to the number of torsion

angles in the protein. The amino acid consists of two

parts: (1) main chain angles (U; W; x) and (2) side chain

angles xi ¼ xið1Þ; xið2Þ; . . .; xMðNÞ). Each amino acid

essentially includes the main chain, while the number of

side chain angles depends on the amino acid type. In

other words, this research deals with the side chain vector

of amino acids each assigned with a particular torsion

angle X ¼ ðxð1Þ; xð2Þ; . . .; xðNÞÞ; where N is the number

of torsion angles in the protein, and each angle (xiðjÞ) in
this vector can be assigned with a value within the range

[�p; p].

2.2.2 Energy function

There are many well-known physics-based force fields

including: CHARMM by Brooks et al. (1983), AMBER by

Weiner et al. (1984), and OPLS by Jorgensen and Tirado-

Rives (1988). Unfortunately, these force field packages are

complex and difficult to modify by user to accommodate

his/her own algorithm (Eisenmenger et al. 2006).

Moreover, many researches need to determine an energy

function that can be easily modified and adapted to specific

needs of the user; such energy function also needs to be

efficient for the evaluation studies. Therefore, the energy

function used in this research is simple molecular

mechanics for proteins (SMMP), which is a modern

package for simulation of proteins. This force field package

has been established by Eisenmenger et al. (2001) and has

been revised by Eisenmenger et al. (2006). This research

uses the revised version.

Arguably, many reasons can be given for such use: First,

the program is fast and may be successfully exploited even

on a single PC. Second, its code is free and has an open

source. Third, the code is simple and can be modified and

adapted by users to meet their specific needs. Fourth, the

program does not contain any machine-dependent routines.

Finally, it has been tested in many simulations of small

peptides and has been proved to be a convenient and

effective tool for numerical investigations of proteins

(Eisenmenger et al. 2006). In SMMP, the protein molecule

is described by the set of internal coordinates, in which the

dihedral angles (U;W;x) that describe rotations around

the chemical bonds in the backbone of the amino acids,

and the dihedral angles Xi in the side chains, are flexible.

A set of energy minimization routines are used based

on ECEPP force field with two different parameter sets

to calculate the internal energy: ECEPP/2 potential and

ECEPP/3 potential.

SMMP used the following energy function (Eisenm-

enger et al. 2001):

min f ðxÞ ¼ ELJ þ Eel þ Ehb þ Etors ð1Þ

where

ELJ ¼
X

j[ i

Aij

r12ij
�
Bij

r6ij

 !

ð2Þ

Eel ¼ 332
X

j[ i

qi � qj

e� rij
ð3Þ

Ehb ¼
X

j[ i

Cij

r12ij
�
Dij

r10ij

 !

ð4Þ

Etors ¼
X

n

Unð1� cosðkn � unÞÞ ð5Þ

where rij refers to the distance in {Å between atoms i and j

while {Aij, {Bij, {Cij, {Dij are the empirical potential

parameters. The two variables qi and qj refer to the partial

charges in the atoms i and j; e is the dielectric constant of

environment; it is recommended to be e ¼ 2: The factor

(332) in (3) used to describe the energy in kcal/mol. Un is

the energetic torsion barrier of rotation about the bound

n, and kn is multiplicity of the torsion angle un: It is
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important to note here that all torsion angles (main chain ?

side chain) contribute to this formula. In the end, energy

function is a function of N torsion angles for a given pro-

tein formula.

2.3 Harmony search algorithm

Harmony search algorithm (HSA) is a soft computing

metaheuristic algorithm inspired by the improvisation

process of musicians. In a musical improvisation process, a

group of musicians play the pitch of their musical instru-

ments seeking a perfect harmony as estimated by esthetics

standard. Similarly, in the optimization context, this pro-

cess is formulated as follows: a set of decision variables

assigned by values seeking for a global optimal solutions as

evaluated by an objective function. More details about

HSA can be found in (Al-Betar and Khader 2012; Al-Betar

et al. 2012b.)

HS procedure has five main steps which will be

described as follows:

Step 1. Initialize the problem and HSA parameters:

The optimization problem can be modeled as:min f ðxÞ
s.t. xðiÞ 2 XðiÞ: where f ðxÞ is the objective function, x ¼
fxðiÞji ¼ 1; . . .;Ng is the set of decision variables, and N is

the number of decision variables. X ¼ fXiji ¼ 1; . . .;Ng
contains all the possible values of each decision variable,

i.e., LBðiÞ�XðiÞ�UBðiÞ; where LB(i) and UB(i) are

lower and upper bound values for x(i).

The parameters of the HSA required to solve the opti-

mization problem are also specified in this step:

• Harmony memory size (HMS) which determines the

number of initial solutions.

• Harmony memory consideration rate (HMCR) which is

used to determine whether the value of a decision

variable is to be selected from the accumulative search

or randomly from its possible range.

• Pitch adjustment rate (PAR) which decides whether the

decision variables are to be adjusted to a neighboring

value or not

• Number of improvisations (NI) which is equivalent to

the number of iterations in other iterative improvement

methods.

Step 2. Initialize the harmony memory.

The harmony memory (HM) is a memory location

which stores all the solution vectors determined by HMS.

These solution vectors are randomly generated as xjðiÞ ¼

LBðiÞ þ Uð0; 1ÞðUBðiÞ � LBðiÞÞ; 8i 2 ð1; 2; . . .;NÞ and

8j 2 ð1; 2; . . .;HMSÞ; where U(0,1) generate a uniform

random number between 0 and 1. These vectors will be

sorted in ascending order according to their objective

function values [see (6]).

HM ¼

x1ð1Þ x1ð2Þ � � � x1ðNÞ
x2ð1Þ x2ð2Þ � � � x2ðNÞ

.

.

.

.

.

.

.

.

.

.

.

.

xHMSð1Þ xHMSð2Þ � � � xHMSðNÞ

2

6

6

6

4

3

7

7

7

5

ð6Þ

Step 3. Improvise a new harmony:

In this step, the HSA generates (or improvises) a new

harmony vector, x
0 ¼ ðx01; x

0
2; � � � ; x

0
NÞ; based on three

mechanisms: (1) memory consideration, (2) random con-

sideration, and (3) pitch adjustment.

1. Memory consideration: in memory consideration, the

value of the first decision variable x0ð1Þ is randomly

assigned from the historical values stored in HM vectors

such that x0ð1Þ 2 fx1ð1Þ; x2ð1Þ; . . .; xHMSð1Þg: Values of
the other decision variables, ðx0ð2Þ; x0ð3Þ; . . .; x0ðNÞÞ; are
sequentially assigned in the same manner with probabil-

ity of HMCR (HMCR 2 ð0; 1Þ). The operation of this

operator is similar to the recombination operator in other

population-based methods and is a good source of

exploitation (Yang 2009).

2. Random consideration: random consideration is func-

tionally similar to the mutation operator in Genetic

Algorithm (Yang 2009); it is a source of global

exploration in HSA. In random consideration, the

decision variables that are not assigned with values

according to memory consideration are assigned with

random values using random consideration with a

probability of (1-HMCR) according to their possible

range, as illustrated in (7).

x0ðiÞ  
2 fx1ðiÞ; . . .; xHMSðiÞg Uð0; 1Þ�HMCR

2 xðiÞ otherwise

�

ð7Þ

Note that HMCR and PAR are the main parameters used to

control the improvisation process. The HMCR parameter is

the probability of assigning one value of a decision vari-

able, x0i; based on historical values stored in the HM. For

example, if HMCR = 0.80, this means that the probability

of assigning the value of each decision variable from his-

torical values stored in the HM vectors is 80 %, while the

probability of assigning the value of each decision variable

randomly from its possible value range is 20 %.

3. Pitch adjustment: the value of every decision variable

x0i of a new harmony vector, x0 ¼ ðx01; x
0
2; x
0
3; . . .; x0NÞ;

that has been assigned with a value using memory

consideration, is examined to determine whether or not

it should be pitch adjusted with the probability of PAR

(0 B {PAR B 1) as follows:

Adjust x0ðiÞ? 
Yes Uð0; 1Þ� PAR

No otherwise

�

ð8Þ

If the pitch adjustment decision for x0ðiÞ is Yes, the value of
x0ðiÞ is adjusted to its neighboring value as follows:
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x0ðiÞ ¼ x0ðiÞ � Uð0; 1Þ � BW ð9Þ

where BW is a parameter (distance bandwidth) for con-

tinuous optimization problems (e.g., PPSP) which normally

takes a value in advance and remains constant during the

search. The BW = 0.01 is recommended (Omran and

Mahdavi 2008).

Step 4. Update the harmony memory:

If the new harmony vector, x0 ¼ ðx0ð1Þ; x0ð2Þ; . . .; x0ðNÞÞ;
is better than the worst harmony vector in harmony

memory, the new harmony vector replaces the worst har-

mony vector.

Step 5. Check the stop criterion:

HS algorithm will repeat steps 3 and 4 until maximum

number of improvisations determined by NI is met.

Algorithm 1 describes the pseudo-code of HS algorithm.

3 Method

This section provides a description for adapting harmony

search algorithm (AHSA) and how the HMCR and PAR

parameters are iteratively updated. Thereafter, The way of

improving the AHSA is presented by proposing HHSA that

incorporates Iterative local search and global best concept

of PSO in AHSA.

3.1 AHSA for ab initio PSPP

The protein structure is initialized for the harmony search

optimization as follows: For a particular protein sequence

which is picked from the protein data bank, some

parameters are extracted from the data base. These

parameters comprise the number of amino acids (M) and

the number of torsion angles (N). For example, for the two

proteins experimented in this research; the ‘Met-enkepha-

lin’ has 5 amino acids and 24 torsion angles, while ‘1CRN’

has 46 amino acids and 238 torsion angles. The solution is

then represented as a vector of amino acids, x ¼
ðx1; x2; . . .; xMÞ; where x1 ¼ ðU1ð1Þ;W1ð1Þ;x1ð1Þ; x1ð1Þ;
x1ð2Þ;...;x1ðNÞÞ;x2¼ðU2ð1Þ;W2ð1Þ;x2ð1Þ;x2ð1Þ;x2ð2Þ;...;
x2ðNÞÞ;...;xM¼ ðUMð1Þ;WMð1Þ;xMð1Þ;xMð1Þ;xMð2Þ;...;
xMðNÞÞ:However, AHSA deals with this vector as a vector

of torsion angles xi¼(x(1), x(2), …, x(N)), where N is the

number of torsion angles in the protein, and each angle

(x(i)) in this vector can be assigned with a value within the

range [-p, p]. Therefore, the solution length is equal to the

number of torsion angles in the protein.

The Harmony Memory (HM) is initialized with random

vectors as determined by HMS. A different random seed is

used to generate torsion angles randomly within the range

[-p, p]. The objective function f ðxÞ in (1) is utilized to

calculate the energy value for each vector of torsion angles

in HM. The vectors (solutions) in HM are sorted in

ascending order based on their energy values, such as

f ðx1Þ� f ðx2Þ� . . .� f ðxHMSÞ: In improvising a new har-

mony step, the AHSA generates a new harmony vector,

x
0 ¼ ðx0ð1Þ; x0ð2Þ; . . .; x0ðNÞÞ; based on three operators dis-

cussed in Sect. 2.3: (1) memory consideration, (2) random

consideration, and (3) pitch adjustment.

If the new torsion angles vector, x
0 ¼ ðx0ð1Þ;

x0ð2Þ; . . .; x0ðNÞÞ; has better energy than the worst harmony

vector in HM, the new vector replaces the worst one in

HM. This process is repeated until the maximum number of

improvisations is met. At the end of the improvisations, the

AHSA passes the torsion angles of the best vector to a

procedure to represent the structure of this vector that will

be stored in a protein structure data base.

It has to be noted that the HSA iterates toward the

optimal solution using two main parameters, HMCR and

PAR. The optimization process should consider the balance

between exploration and exploitation concepts; memory

consideration is the source of exploitation in HSA while

the random consideration is the source of exploration.

Increasing HMCR leads the search to tend toward exploi-

tation (Yang 2009). On the other hand, the pitch adjustment

operator performs a set of random local changes for the

torsion angles that are assigned by values based on memory

consideration. Therefore, the higher the PAR value is, the

more the search tends toward the exploration.

In optimization, previous theories indicated that the

search should concentrate on the exploration in the early

stage of search, while at the final stage, it should concen-

trate on the exploitation (Blum and Roli 2003). This is

the very same idea upon which simulated annealing
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metaheuristic algorithm is built. In the searching process,

the simulated annealing algorithm accepts not only better

but also worse neighboring solutions with a certain prob-

ability based on two factors: the energy value of the current

solution and the temperature (Wang et al. 2001). During the

search, simulated annealing reduces the chance of accepting

the worse solution until reaching the final stage of search by

reducing the value of temperature parameter linearly. In the

final stage of search, simulated annealing concentrates on the

search space of current solution by means of accepting only

the downhill (or better) moves. This idea of simulated

annealing is utilized in the proposed AHSA.

In HSA shown in Sect. 2.3, the HMCR and PAR are

assigned their values in advance while remaining constant

during the search process. However, HMCR and PAR help

the algorithm find globally and locally improved solutions,

respectively (Lee and Geem 2005). After applying the

AHSA to protein structure prediction problem, and after

testing different values of HMCR and PAR, it has been

observed that when the value of HMCR is high (i.e., 0.99),

the AHSA obtains good results and fast convergence rate,

because the probability to select the new value from the har-

mony memory (which has already improved values) will be

high. However, this will cause the HSA, most often, to get

stuck in local optima because the power of exploration is low.

On the other hand, a smaller HMCR value can avoid a pre-

mature convergence, but the search will be slow. Moreover,

for PARparameter, it is clear thatwhen the PARvalue is high,

the value selected from harmony memory will be adjusted

with greater chance; while when the PAR value is less, the

probability to change this value will be less. Therefore, when

the PAR value is small, the results will be better but will also

cause the HSA to get stuck in local optima. Moreover, if the

value of HMCR is small (i.e., 0.50) and the value of PAR is

high (i.e., 0.50), the HSA will not obtain good results.

These observations lead this research to propose a new

mechanism for controlling the values of HMCR and PAR.

The new mechanism is to update the values of HMCR and

PAR dynamically during the search process, rather than fix

them in the initial step. After a series of experiments, this

study has identified the following assumptions:

• Assigning a small value to HMCR and a high value to

PAR in the first stage of the search increases the power

of exploration of the search space and increases

diversity of the solutions in HM.

• Increasing the value of HMCR and decreasing the value

of PAR gradually during the search process increases

the exploitation. Note that exploration is useful in the

first stage of search, while exploitation is more useful in

the final stage of search.

The AHSA proposes using two values of HMCR;

HMCRmin (minimum value of HMCR that the AHSA starts

with) and HMCRmax (maximum value of HMCR that the

AHSA ends with), and two values of PAR; PARmin (min-

imum value of PAR that the AHSA ends with) and PARmax

(maximum value of PAR that the AHSA starts with).

However, all these four parameters are initialized in the

first step of the AHSA.

Then, the AHSA updates the values of HMCR and PAR

dynamically during the search process as follows.

HMCRiþ1 ¼ HMCRi þ ð1� HMCRiÞ � 1� e
ð�
jðf ðxbestÞj

ti
Þ

� �

ð10Þ

PARiþ1 ¼ PARi � e
�
jðf ðxbestÞj

ti

� �

ð11Þ

where i is the iteration number, xbest is the best solution in

HM that has the lowest energy value (lowest is best), ti is a

variable equivalent to the temperature in simulated

annealing; this variable is reduced linearly by a control

variable, a, such that:

tiþ1 ¼ ati

where a is a control parameter small but close to 1.

The two previous equations change the values of both

HMCR and PAR slowly because they use the best energy

value (which is decreased by iterations) in the exponential

function. This means that the value of exponential function

depends on the best energy of the previous iteration.

Therefore, if the value of the best energy is high, the value

of the exponential function will be low which means faster

change in PAR parameter. When the search proceeds, the

energy value will decrease which leads to slower decrease

in PAR. However, for HMCR, the change will be slow

because the equation uses 1-HMCR to multiply the expo-

nential function. It is important to highlight that the energy

starts with very high values for long protein and low values

for the short protein. Therefore, to guarantee a slow change

in both HMCR, and PAR values, we need to adjust the

value of ti in the denominator of the fraction; the value of ti
is set to a high value for long protein and a smaller value

for short protein. This also applies to the value of a, where

selecting this value to be a high fraction (close to 1) leads

to a slow decrease in ti, thus, a slow change in both PAR

and HMCR.

The above two equations, (10) and (11), are derived

based on the experiments and after observing the change of

PAR and HMCR values during the optimization process.

This way of updating the values of HMCR and PAR

throughout the search process is inspired by the Monte

Carlo acceptance rule of simulated annealing approach

(Kirkpatrick et al. 1983).

Applying the previous way of controlling the values of

PAR and HMCR dynamically enables the AHSA to

74 M. S. Abual-Rub et al.

123



concentrate more on the exploration in the early stages of

search by assigning a large value for PAR and a small

value of HMCR. Then, during the search, the value of

HMCR will be increased exponentially while the value of

PAR will be decreased exponentially leading the search to

concentrate on exploitation.

In (10), the value of HMCRmin is increased exponen-

tially with iteration number until it reaches the value

HMCRmax and in (11), the value PARmax is decreased

exponentially every iteration until it reaches the value

PARmin. Algorithm 2 shows the pseudo code of AHSA

steps.

3.2 HHSA for ab initio PSPP

In the AHSA, the memory consideration is responsible for

the global improvement. The new harmony can be

improved by focusing on the good solutions stored in

Harmony Memory by means of the natural selection prin-

ciple of the ‘survival of the fittest’. Additionally, the source

of local improvement in HSA is the pitch adjustment operator

that adjusts the value of the variables (i.e., torsion angles) to

their neighboring values locally, with the hope to affect the

energy function positively. Recall, the pitch adjustment per-

forms a random adjustment that is not guided by energy

function. Due to the complex nature of PSPP, the random

adjustment cannot be guaranteed to improve the newharmony

solution to reach the local optimal solution. This shortcoming

in the AHSA has led this research to propose hybridizing a

local search method within the AHSA, which is a population-

based method. The observations of some previous studies

have revealed much interest in hybridizing a local search-

based algorithmwithin the population-based algorithm (Blum

and Roli 2003).

Therefore, a HHSA is proposed in this research with two

modifications to the AHSA; first, the ILS is incorporated

with the AHSA to help find the local optimal solution

within the search space of the new harmony. Second, the

global-best concept of PSO is incorporated with memory

consideration as a selection concept to select the values

from the best vector in the harmony memory instead of

random selection. These two concepts, ILS and global best

of PSO, have enhanced the local exploitation capability

and the speed of convergence of AHSA, respectively.

The process of hybridizing the ILS with the AHSA is

explained in Sect. 3.2.1 while the global-best memory

consideration is explained in Sect. 3.2.2.

3.2.1 Hybridizing with iterated local search

Algorithm 3 illustrates how the ILS is incorporated within

the AHSA; the ILS is called after the improvisation step of

the adaptive HSA and works as a new operator to fine-tune

the new harmony in each improvisation to the local optimal

solution in the region to which the HSA converges. The

initial solution for ILS is the new harmony solution x
0

generated by the adaptive HSA operators (i.e., memory

consideration, random consideration and pitch adjustment).

The pseudo-code of the ILS function is described in

Algorithm 4. During the improvement loop in Line 2, the

function ExploreðN ðx0ÞÞ navigates the neighboring solu-

tions Nðx0Þ of x
0
; and moves to the first neighboring
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solution x
00 2 Nðx0Þ which has an equal or lower energy

value, i.e, f ðx00Þ� f ðx0Þ: This process is repeated until no

further improvement is obtained.

The function ExploreðN ðx0ÞÞ explores the search space

of x0 using the following criteria:

x0ðiÞ ¼ x0ðiÞ � a; 8i 2 ð1; 2; . . .;NÞ

where a = the value of bw 9 U*(0, 1), bw is an arbitrary

distance bandwidth for the continuous variable; and

U*(0,1) generates a uniform distribution number between

0 and 1. Note that bw takes a static value within the range

[-p, p]. This is how the ILS provides a guided method for

local exploitation.

3.2.2 Hybridizing with global-best memory consideration

The HHSA has incorporated a new parameter called particle

swarm rate (PSR) to control the global best memory consid-

eration (GBMC) proposed in HHSA. The GBMC has

enhanced the way of selecting the torsion angles values from

the solutions stored in HM, and subsequently, enhancing the

performance of theHHSA.During the optimization process of

HHSA, the new value is selected from either thememorywith

a probability of HMCR, or randomly with a probability of 1-

HMCR.The newparameter PSR is usedwithin the probability

of selecting the new value from the harmony memory (i.e.,

within HMCR). So, instead of picking the value randomly

from any vector in the harmony memory, as usual in the

classical harmony search, it will be rather selected either from

any vector in the harmony memory with a probability of PSR

or from the best solution in harmony memory with a proba-

bility of (1-PSR); Algorithm 5 describes this procedure within

thememory consideration operation of the improvisation step.

This new operation has increased the capability of HHSA in

terms of the convergence rate.

4 Results and discussion

4.1 Benchmark

The AHSA and HHSA have been evaluated using two

protein sequences publicly available at ‘www.pdb.org’; the

first protein sequence is called ‘Met-enkephalin’ (or 1 PLW

as in PDB). It has been first identified from the enkephalin

mixture of brains,and is involved in a variety of physio-

logical processes. This sequence is one of the most used

model peptides; it has a short residue sequence of five

amino acids: Tyr1-Gly2-Gly3-Phe4-Met5 consists of 75

atoms described by 24 independent backbone and side chain

dihedral angles. It is, therefore, used to evaluate many state-

of-the-art methods to which the three algorithms proposed in

this thesis will be compared. Although it is a small peptide,

Met-enkephalin needs a complex conformational space with

a total number of more than 1011 local minima (Li and

Scheraga 1988). Met-enkephalin has been extensively stud-

ied computationally and has been regarded as a benchmark

model,and has also been used frequently for testing simula-

tion methods in recent years because of the complexity in its

configuration space and the short sequence allowing signifi-

cant computational studies (Zhan et al. 2006).

The second sequence, namely ‘1CRN’, is a plant seed

protein which has 46 amino acids consisting of 238 angles.

4.2 Experimental design

A series of experiments have been conducted to measure

the influence of different parameters on the performance of

the proposed HHSA. Twelve cases of different parameter

settings have been selected, as indicated in Table 1. Each

case has been repeated for 30 runs for both benchmark

protein sequences. The first six cases have smaller HMS

values than the last 6. This is to show the impact of HMS

on the behavior of HHSA.

The HMCRmin is selected in different cases with large

(i.e., 0.90) and small (i.e., 0.50) values. Recall, the HMCR

is the rate of selecting the solution from the harmony

memory. The more the value of HMCR is, the more the

exploitation increases and the exploration decreases. When

HMCRmin has a small value, the algorithm considered the

exploration with minimal exploitation at the initial stage of

search. In contrast, large HMCRmin leads to better exploi-

tation in the initial stage of search.

PAR is the rate of using pitch adjustment operator. The

values of PARmin and PARmax are fixed throughout the

whole convergence cases. The PARmax initially takes a

high value and is decreased exponentially to reach a high

exploitation power at the final stage of search. PARmin is

fixed to 0.05 and PARmax is fixed to 0.25 for all the 12

convergence cases.
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The PSR is the rate of selecting the value of the angles

either from the best vector having the lowest energy value

in harmony memory, or randomly from any vector in

harmony memory. Three different values of PSR have been

experimented with: low (i.e., 0.10), medium (i.e., 0.50),

and high (i.e., 0.90). The PSR of value = 0.10 means that

the memory consideration will select the value of an angle

randomly from any solution in harmony memory with a

probability of 10 %, and from the best vector in harmony

memory with a probability of 90 %.

As for the number of improvisations (NI), it is fixed in

all the 12 cases to NI = 100,000 and HMCRmax = 0.99.

4.3 Experimental results

Table 2 shows the best, average, worst, and standard

deviation of the energy values obtained of both ‘Met-

enkephalin’ and ‘1CRN’ for the 12 cases after 30 runs for

each case. The best results are highlighted in bold while the

best averages are highlighted in italic.

The boxplots in Figs. 1 and 2 visualize the distribution

of the energy values obtained in the 30 runs of the 12

convergence cases for both ‘Met-enkephalin’ and ‘1CRN’,

respectively. The boxplot summarizes the following sta-

tistical measures: median, upper and lower quartiles, and

minimum and maximum energy values. In the boxplot, the

larger the range of the first and third quartile are, the worse

the searching accuracy of the convergence case is.

4.4 Discussion

The experimental results in Table 2 and the Boxplots in

Figs. 1 and 2 describe the behavior of the HHSA during the

search process for all the 12 convergence cases. This sec-

tion provides a discussion of the behavior of the HHSA

based on Table 2 and Figs. 1, 2.

Cases 7–12 are similar to cases 1–6 with different HMS

values; while the HMS in the first six cases is set to a small

value (i.e 10), it is set to 50 in the last six cases; this is

meant to show the impact of HMS on the behavior of the

algorithm. In general, the cases with HMS = 10 have

obtained better results than those with HMS = 50 while

fixing the other parameters. The experiments also show

that for the short protein, ‘Met-enkephalin’, the cases with

PSR = 0.10 have recorded better results than those with

PSR = 0.50 or 0.90. Whereas, for the longer protein,

‘1CRN’, the cases with PSR = 0.90 have recorded better

results than those with PSR = 0.10 or 0.50. Recall, PSR =

0.10 means that the torsion angle is selected from the best

solution in harmony memory with a probability of 90 %.

Both Table 2 and the Boxplot in Fig. 1 indicate that

cases 4 and 5 have obtained the best results for the ‘Met-

enkephalin’ protein. Although cases 1, 7, and 10 have

Table 1 Cases used to evaluate the HHSA convergence ability

Cases HMS HMCRmin PSR

Case 1 10 0.50 0.10

Case 2 10 0.50 0.50

Case 3 10 0.50 0.90

Case 4 10 0.90 0.10

Case 5 10 0.90 0.50

Case 6 10 0.90 0.90

Case 7 50 0.50 0.10

Case 8 50 0.50 0.50

Case 9 50 0.50 0.90

Case 10 50 0.90 0.10

Case 11 50 0.90 0.50

Case 12 50 0.90 0.90

Table 2 Results of HHSA for 30 runs of the 12 cases

Cases Met-enkephalin 1CRN

Best Avg. Worst SD Best Avg. Worst SD

Case 1 212.43 -11.00 -10.12 0.40 -139.08 -109.41 -47.30 27.71

Case 2 -11.27 -10.94 -10.12 0.32 -176.29 -140.71 -118.37 14.58

Case 3 -11.27 -10.89 -10.58 0.25 -161.39 -146.31 -130.48 7.28

Case 4 212.43 -11.28 -9.86 0.78 -164.33 -110.82 131.29 52.23

Case 5 212.43 -11.41 -10.60 0.50 -201.56 -139.15 -102.30 16.68

Case 6 -12.41 -10.87 -10.11 0.44 2204.81 -156.83 -141.42 16.85

Case 7 212.43 -11.02 -10.60 0.43 -149.46 -124.95 -91.16 13.49

Case 8 -12.38 -11.12 -10.57 0.49 -159.41 -140.31 -105.15 10.82

Case 9 -11.46 -10.73 -10.45 0.32 -147.76 -136.17 -125.35 5.83

Case 10 212.43 -11.21 -10.12 0.62 -138.28 -116.09 -81.60 15.64

Case 11 -12.42 -10.99 -10.11 0.48 -153.67 -138.03 -113.91 9.50

Case 12 -12.25 -10.79 -10.52 0.41 -149.63 -138.74 -128.18 6.02
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obtained the lowest energy recorded for the Met-enkeph-

alin, the boxplot indicates that cases 4 and 5 are better

because most of the energy values are within the range

-11.3 and -12, and there are not many extreme values far

from the average value; Besides, both cases 4 and 5 have

obtained better averages with an advantage of case 5 over

case 4. For ‘1CRN’, both Table 2 and the Boxplot in Fig. 2

indicate that cases 5 and 6 have obtained the best energy

values with an advantage of case 6 over case 5; the dis-

tribution of case 6 is better than case 5 because most of the

energy values are within the range -140 and -170;

besides, the average of case 6 is better than the average of

case 5.

Figures 3 and 4 show the convergence behavior of the

HHSA of the 12 convergence cases for ‘Met-enkephalin’

during the first 10,000 improvisations. Note that the energy

values of each case are obtained using a random run out of

the 30 runs. X axis shows the number of iterations, Y axis

shows the energy values of each case, and the trends rep-

resent the experimented cases. It is apparent that the con-

vergence rate is very fast in the initial iterations as the trend

is reduced sharply for almost all cases. However, the

convergence rate is gradually reduced throughout the

10,000 improvisations until the equilibrium state is

reached. Note that the cases 6, 10, and 11 have obtained the

most desired results, and they have almost converged to a

similar point in the plot.

Figures 5 and 6 show the convergence behavior of the

HHSA of the 12 convergence cases for the longer protein,

‘1CRN’, during the first 10,000 improvisations. The con-

vergence rate is very fast in the initial iterations because

the initial energy values are obtained randomly. However,

the convergence rate is gradually reduced in the early

improvisations until the equilibrium state is reached. For

this long protein, cases 5 and 6 have converged faster to the

lowest energy values and that is because they have high

HMCR values (i.e., 0.90). Comparing cases 5 and 6 with

cases 11 and 12 shows the impact of HMS on the behavior

of the HHSA; although cases 5 and 6 differ from cases 11

and 12 in HMS only (while they have same HMCR and

PSR values), cases 5 and 6 have converged faster to the

lowest energy than cases 11 and 12, respectively. This

proves that selecting a smaller value of HMS has obtained

better results than a larger HMS.

5 Comparative results

5.1 Comparison between AHSA and HHSA

This section provides a comparison between the results of

AHSA and HHSA. Cases 3, 4, 7, and 8 of AHSA and cases

4, 5, 10, and 11 of HHSA are used in this comparison.

These cases are chosen because they have almost the same

parameter design. In Table 3, the best, average, worst, and

standard deviation of the energy values are recorded for the

30 runs of every case. The best energy obtained is high-

lighted in bold.

It is clear from Table 3 that only case 3 of AHSA is able

to obtain the best energy value for the small protein, while

in HHSA, cases 4, 5, and 10 are able to obtain the best
Fig. 2 Boxplot showing the distribution of the results for 30

experiments done for each convergence case for 1CRN

Fig. 1 Boxplot showing the distribution of the results for 30

experiments done for each convergence case for Met-enkephalin
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energy value, and case 11 is also very close to best energy

value. However, for the longer protein, ‘1CRN’, all the

four cases of HHSA have obtained better energy values

with comparison to those of AHSA.

Moreover, a t test has been performed to find out whe-

ther the results of the adaptive HSA and HHSA are sig-

nificantly different or not. Tables 4 and 5 summarize the p

values of the t test for ‘Met-enkephalin’ and ‘1CRN’,

respectively. It is clear that for both the ‘Met-enkephalin’

and ‘1CRN’ proteins, the results of the HHSA and the

AHSA approaches are statistically different in favor of

HHSA.

5.2 Comparison between HHSA and other studies

Tables 6 and 7 show the results of HHSA in comparison

with some previous studies. The proposed HHSA is able

to record the best results obtained until now which are

E = -12.43 by Zhan et al. (2006) based on ECEPP/3 force

field and E = -12.91 by Zhan et al. (2006), Meirovitch

et al. (1994), and Li and Scheraga (1987) based on ECEPP/

2 force field. Moreover, two new global optima energy

values of the Met-enkephalin protein has been recorded by

HHSA based on ECEPP/3 and ECEPP/2 force fields with x

= 180�; the current energy optimum based on ECEPP/3

force field with x = 180� is E = -10.90 kcal/mol by Zhan

et al. (2006) while HHSA records a new energy value,

E = -11.26 kcal/mol. Furthermore, based on ECEPP/2

force field with x = 180�, the current lowest energy is

E = -10.72 kcal/mol, while the HHSA obtains E =

-11.57 kcal/mol.

Tables 6 and 7 show the results of HHSA in comparison

with some previous studies. The proposed HHSA is able

to record the best results obtained until now which are

E = -12.43 by Zhan et al. (2006) based on ECEPP/3 force

field and E = -12.91 by Zhan et al (2006), Meirovitch et al

Fig. 4 The best energy values against the number of iterations for the

last six convergence cases of Met-enkephalin

Fig. 3 The best energy values against the number of iterations for the

first six convergence cases of Met-enkephalin

Fig. 6 The best energy values against the number of iterations for the

last six convergence cases of 1CRN

Fig. 5 The best energy values against the number of iterations for the

first six convergence cases of 1CRN
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(1994), and Li and Scheraga (1987) based on ECEPP/2

force field. Moreover, two new global optima energy val-

ues of the Met-enkephalin protein has been recorded by

HHSA based on ECEPP/3 and ECEPP/2 force fields with x

= 180�; the current energy optimum based on ECEPP/3

force field with x = 180� is E = -10.90 kcal/mol by

Zhan et al. (2006) while HHSA records a new energy

value, E = -11.26 kcal/mol. Furthermore, based on

ECEPP/2 force field with x = 180�, the current lowest

energy is E = -10.72 kcal/mol, while the HHSA obtains

E = -11.57 kcal/mol.

The barcharts in Figs. 7 and 8 describe the best energies

obtained by HHSA based on ECEPP/3 with x relaxed, and

ECEPP/3 with x = 180�, respectively. With comparison to

other studies, the barcharts indicate that HHSA obtains the

same optimal energy recorded by Zhan et al. (2006), while

it outperforms others. Moreover, based on ECEPP/3 with x

= 180�, HHSA obtains a new energy value and outper-

forms the previous lowest energies obtained by Zhan et al.

(2006) and Eisenmenger and Hansmann (1997).

The barcharts in Figs. 9 and 10 describe the best ener-

gies obtained by HHSA based on ECEPP/2 with x relaxed,

Table 3 Comparison results between AHSA and HHSA for the two proteins

Protein AHSA HHSA

Case 3 Case 4 Case 7 Case 8 Case 4 Case 5 Case 10 Case 11

Met-enkephalin

Best 212.43 -11.52 -11.17 -4.13 212.43 212.43 212.43 -12.42

Average -9.1 -4.5 -7.7 -2.3 -11.3 -11.4 -11.2 -11.0

Worst -7.2 -2.6 -6.2 -1.3 -9.9 -10.6 -10.1 -10.1

SD 1.4 0.1 1.1 0.7 0.8 0.5 0.6 0.5

1CRN

Best -155.6 -184.9 -134.1 -134.5 -164.3 2201.6 -138.3 -153.7

Average -115.8 -130.3 -54.5 281.4 -110.8 -139.2 -116.1 -138.0

Worst 89.9 -52.6 518.3 8829.9 131.3 -102.3 -81.6 -113.9

SD 56.9 31.9 129.1 1645.1 52.2 16.7 15.6 9.5

Table 4 Independent samples test for ‘Met-enkephalin’

Levene’s test

for equality

of variances

t test for equality of means

F Sig. t df Sig. (2-tailed) Mean difference Std. error difference 95 % confidence

interval of the

difference

Lower Upper

Equal variances assumed 2.183 0.145 -9.123 58 8.32E-13 -2.484 0.2723 -3.029 -1.939

Equal variances not assumed -9.123 47.561 8.32E-13 -2.484 0.2723 -3.032 -1.937

Table 5 Independent samples test for ‘1CRN’

Levene’s test for

equality of

variances

t test for equality of means

F Sig. t df Sig. (2-tailed) Mean difference Std. error difference 95 % confidence interval

of the difference

Lower Upper

Equal variances

assumed

7.804 0.007 -3.55 58 7.72E-04 -10.196 2.87218 -15.945 -4.4464

Equal variances

not assumed

-3.55 46.208 7.72E-04 -10.196 2.87218 -15.976 -4.4149
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and ECEPP/2 with x = 180�, respectively. With compari-

son to other studies, the barcharts indicate that HHSA

obtains the same optimal energy recorded by Zhan

et al. (2006) and Meirovitch et al. (1994), while it

outperforms others. Furthermore, based on ECEPP/2 with

x = 180�, HHSA obtains a new energy value and

outperforms the previous lowest energies obtained by Zhan

et al. (2006) and Eisenmenger and Hansmann (1997).

The coordinates of the lowest energies of the ‘Met-

enkephalin’ protein for the results obtained in this study by

HHSA and the results obtained in some of the previous

studies are indicated in Table 8. The labels E/2 and E/3

mean that the configurations are obtained based on ECEPP/

2 and ECEPP/3 force fields, respectively. If the label has a

subscript p, it means that the angle x is fixed at 180�. The

lowest is the energy, the more stable is the protein. Table 8

shows the internal coordinates of lowest energy for Met-

enkephalin in this study and some previous studies, those

coordinates show the values of the torsion angles of the

amino acids after the energy is stable on the lowest value.

Moreover, HHSA results are compared to the recent study

of Nicosia and Stracquadanio (2009) who have studied some

proteins, including ‘Met-enkephalin’, ‘1CRN’, ‘1E0L’, and

‘1IGD’ based on ECEPP/3 force field with explicit solvent

term. HHSA has obtained better energy values than the three

proteins, ‘Met-enkephalin’, ‘1CRN’, ‘1E0L’, but could not

obtain the same energy value for the longer protein 1IGD as

can be seen in Table 9 and Fig. 11.

However, for the protein ‘1CRN’, HHSA has obtained a

value of RSDM = 6 Å which is considered a successful

prediction based on CASP6, where the most successful

ab initio methods have presented values of RSMD ranging

from 4 to 6 Å for the proteins of length less than 100

residues (Dorn et al. 2008).

It is worthy to mention that all the methods in our

comparison are ab initio methods as we cannot compare

Fig. 7 Barchart showing the results obtained for Met-enkephalin

using ECEPP/3 force field

Fig. 9 Barchart showing the results obtained for Met-enkephalin

using ECEPP/2 force field

Fig. 10 Barchart showing the results obtained for Met-enkephalin

using ECEPP/2 with x = 180�

Fig. 8 Barchart showing the results obtained for Met-enkephalin

using ECEPP/3 with x = 180�

Table 6 The lowest energies of Met-enkephalin (in kcal/mol)

obtained by HHSA compared with previous studies based on ECEPP/

3 force fields

Source Force field Energy

Androulakis et al. (1997) ECEPP/3 -11.70

Zhan et al. (2006) ECEPP/3 -12.43

HHSA ECEPP/3 -12.43

Eisenmenger and Hansmann (1997) ECEPP/3 x = 180� -10.85

Lixin Zhan (2006) ECEPP/3 x = 180� -10.90

HHSA ECEPP/3 x = 180� -11.26

Table 7 The lowest energies of Met-enkephalin (in kcal/mol)

obtained by HHSA compared with previous studies based on ECEPP/

2 force field

Source Force field Energy

Meirovitch et al (1994) ECEPP/2 -12.91

Lixin Zhan (2006) ECEPP/2 -12.91

HHSA ECEPP/2 -12.91

Lixin Zhan (2006) ECEPP/2 x = 180� -10.72

Eisenmenger and Hansmann (1997) ECEPP/2 x = 180� -10.72

HHSA ECEPP/2 x = 180� -11.57
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with other methods for two reasons: first, in the comparison,

the energy function should be same as different energy func-

tions give different energy values, and the energy function

used in our research is for ab initio methods so we cannot

compare with other methods. Second, the ab initio methods

predict the tertiary structure of protein from scratch, without

any prior knowledge about sequence, while othermethods use

prior knowledge of protein so no way to compare.

5.3 Structures predicted by HHSA compared

to the native structures

This section shows the graphical representation of the

structures obtained by the HHSA for the four proteins,

‘Met-enkephalin’, ‘1CRN’, ‘1E0L’, and ‘1IGD’, compared

to the graphs of the native structure of the same proteins in

PDB. Figures 12, 13, 14, and 15 show the graphical rep-

resentation of the native and predicted structures of the

proteins Met-enkephalin, 1E0L, 1CRN, and 1IGD,

respectively. The figures show the similarity between the

predicted protein and native one using the same rotation

angle, they show the effectiveness of HHSA for proteins up

Fig. 11 The lowest energies obtained based on ECEPP/3 force field

with explicit solvent

Table 8 Internal coordinates of lowest energy for Met-enkephalin in this study and some previous studies

Torsion E/2 E/2p E/3 E/3p E/2(a) E/2 (a)p E/3 (a) E/3 (a)p E/3 (b) E/3 (b)p

Tyr1 x1 -172.60 -172.81 -173.20 -171.95 -172.60 -179.80 -173.20 59.90 -173.20 -174.20

x2 78.70 76.19 79.30 93.43 -101.30 68.60 -100.70 94.10 -100.50 -85.20

x6 -165.90 -154.90 -166.30 -176.93 14.10 -34.70 13.70 -21.30 13.60 2.80

/ -85.80 -81.51 -83.10 -162.80 -85.80 -86.30 -83.10 168.10 -83.50 -162.70

w 156.20 155.87 155.80 -40.53 156.20 153.70 155.80 0.90 155.80 -41.70

x -176.90 180.00 -177.10 180.00 -176.90 180.00 -177.10 180.00 177.20 180.00

Gly2 / -154.50 -156.36 -154.20 64.70 -154.50 -161.50 -154.20 126.80 -154.30 65.80

w 83.60 81.08 85.80 -89.86 83.70 71.10 85.50 -21.20 86.00 -87.00

x 168.60 180.00 168.50 180.00 168.60 180.00 168.50 180.00 168.50 180.00

Gly3 / 83.70 87.31 83.00 -152.59 83.70 64.10 83.00 83.70 83.00 -157.30

w -73.80 -69.25 -75.00 34.17 -73.90 -93.50 -75.00 -61.60 -75.10 34.90

x -170.10 180.00 -170.00 180.00 -170.10 180.00 -170.00 180.00 -169.90 180.00

Phe4 x1 58.80 57.53 58.90 52.19 58.80 179.80 58.90 58.60 58.80 52.40

x2 -85.40 -86.41 94.50 -97.20 -85.40 -100.00 -85.50 92.90 -85.50 -96.00

/ -137.00 -141.91 -136.80 -155.66 -137.00 -81.70 -136.80 -128.20 -136.90 -158.80

w 19.30 17.48 19.10 159.89 19.30 -29.20 19.10 18.80 19.10 159.50

x -174.10 180.00 -174.10 180.00 -174.10 180.00 -174.10 180.00 -174.10 180.00

Met5 x1 52.80 57.09 52.90 -66.73 52.80 -65.10 52.90 55.70 52.90 -66.10

x2 175.30 174.07 175.30 -180.00 175.30 -179.20 175.30 -178.60 175.30 -179.60

x3 180.00 -178.95 180.00 180.00 -179.80 -179.30 -179.90 177.00 -179.90 -179.90

x4 -178.60 63.01 -58.60 59.94 61.40 -179.90 -178.60 -179.30 -178.60 60.10

/ -163.60 -164.10 -163.40 -79.27 -163.60 -80.70 -163.40 -162.10 -163.40 -82.40

w 160.40 171.13 160.80 130.95 160.40 143.50 160.80 7.50 160.80 134.10

x -179.70 180.00 180.00 180.00 -179.70 180.00 -179.80 180.00 -179.80 180.00

Energy (kcal/mol) -12.91 -11.57 -12.43 -11.26 -12.91 -10.72 -12.43 -10.90 -11.71 -10.85

Table 9 The lowest energies (in kcal/mol) obtained for benchmark

sequences based on ECEPP/3 force fields with explicit solvent

Protein Nicosia HHSA

Met-enkephalin -24.84 -31.42

1E0L -233.02 -235.47

1CRN -225.22 -244.03

1IGD -584.26 -556.41

82 M. S. Abual-Rub et al.

123



to 50 residues. The figures were generated using PyMol

DeLano (2002), as used by Zhan et al. (2006). Moreover, a

root mean square deviation (RMSD) is calculated for the

three proteins, 1E0L, 1CRN, and 1IGD, to validate the

similarity between the native and predicted structures. The

HHSA has obtained a value of RMSD = 4.5 Å for the

protein 1E0L, RMSD = 6 Å for the protein 1CRN, and

RMSD = 6.9 Å for the protein 1IGD. A value of RMSD = 6

Å is considered a successful prediction based on CASP6,

where most successful ab initio methods have presented

values of RMSD ranging from 4 to 6 Å for the proteins of

length less than 100 residues (Dorn et al. 2008).

6 Conclusions and future work

This paper has presented a HHSA for ab initio protein

tertiary structure prediction (PSPP). Initially, the harmony

search is adapted to PSPP, called AHSA. AHSA is the

basic HSA (Geem et al. 2001) with adaptive HMCR and

PAR. The adaptation takes into consideration the explo-

ration and exploitation concepts of the search space. The

HHSA is the AHSA hybridized with ILS to improve the

local exploitation and global best concept of PSO to

improve the convergence rate.

A parameter sensitivity analysis for HHSA has been

conducted using 12 convergence cases each of which

having a particular parameter setting. The results show

that, in general, using larger values of HMCR and PSR

increases the performance of HHSA. A comparative study

between AHSA and HHSA has been carried out; the

comparative evaluation shows that the HHSA achieves

better results than AHSA. Interestingly, two new best

results were obtained by HHSA in comparison with the

comparative methods using the same benchmark.

Hybridizing ILS as a local optimizer and global best as

convergence accelerator with AHSA as a global optimizer

produced a superior method for PSPP. More testing

benchmarks can be investigated in future to further inves-

tigate the successful performance of HHSA.
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(a) (b)

Fig. 14 Comparison between native and predicted structures of

1CRN. a Native structure, b predicted structure

(a) (b)

Fig. 13 Comparison between native and predicted structures of

1E0L, a Native structure, b predicted structure

(a) (b)

Fig. 12 Comparison between native and predicted structures of Met-

enkephalin. a Native structure, b predicted structure

(a) (b)

Fig. 15 Comparison between native and predicted structures of

1IGD. a Native structure, b predicted structure
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