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Abstract

This paper is motivated by the observation that different
methods to compute the weights of nodes and edges when
scheduling DAGs onto heterogeneous machines may lead to
significant variations in the generated schedule. To mini-
mize such variations, the paper presents a novel heuristic
for DAG scheduling, which is based upon solving a series
of independent task scheduling problems. A novel heuris-
tic for the latter problem is also included in the paper. Both
heuristics compare favourably with other related heuristics.

1. Introduction

Task scheduling for heterogeneous systems is a well
studied problem, a consequence of its significance on appli-
cation performance. Applications are typically represented
by means of a directed acyclic graph (DAG) and a num-
ber of heuristics have been proposed to schedule the nodes
(or tasks; the terms are used interchangeably throughout the
paper) of the DAG onto the heterogeneous machines (see,
for instance, [11, 14] for an extensive list of references).
Heuristics based on list scheduling are among those that
provide good quality schedules at a reasonable cost.

In a recent study [16], it was observed that the per-
formance of a commonly cited list scheduling heuristic,
HEFT [14], is affected significantly by the approach fol-
lowed to assign weights to the nodes and edges of the graph.
In an extreme case, the makespan that HEFT returned for
a certain graph was 47.2% worse than the makespan that
would be obtained if a different approach to compute the
weights of the nodes and edges of the graph was cho-
sen [16]. Note that the heterogeneous setting allows for a
variety of different approaches to compute the weights; for
instance, the weight of a node could be obtained as the aver-

age of its corresponding execution time across all machines,
or the median, or the smallest value, etc.

In this paper, carrying this study further, we observed
that other DAG scheduling heuristics exhibit a similar be-
haviour too; some results are included here in Section 2. Al-
though it has long been known that the approach followed
to rank the nodes of a graph may affect the quality of the
schedule produced by list scheduling, we believe that this
is exacerbated in heterogeneous environments as a result of
the heterogeneity. The resulting variations in the makespan
may be so significant that it can be difficult to determine
the baseline behavior of a heuristic. More importantly, the
sensitivity that the heuristics exhibit, with respect to the ap-
proach used to compute the weights, indicates that there is
scope for improvement in their design.

These observations motivated the work presented in this
paper. The main contributions are:

e A novel heuristic for DAG scheduling on hetero-
geneous machines, which compares favourably with
other related heuristics and shows less sensitivity to
different approaches for weighting nodes/edges. We
call this heuristic hybrid, because it uses list schedul-
ing to break the whole problem to subproblems where
heuristics for scheduling independent tasks can be ap-
plied.

e A novel heuristic for scheduling independent tasks
on heterogeneous machines, which outperforms other
known heuristics.

The remainder of the paper is organized as follows. Sec-
tion 2 provides some background, describes related work
and presents some results on the impact of different ap-
proaches to compute the weights of nodes, a motivation for
the work that follows. Section 3 forms the main body of the
paper, describing two novel heuristics, for DAG scheduling
and for independent task scheduling, and illustrating them
with an example. The two heuristics are evaluated in Sec-
tion 4. Finally, Section 5 concludes the paper.



2. Background

The application model we consider in this paper is a di-
rected acyclic graph (DAG). Each node in the graph rep-
resents an executable task. Each directed edge represents
a precedence constraint (or simply a dependence) between
two tasks; the sink node cannot start execution until the
source node has finished and the transmission of the re-
quired amount of data from the source node to the sink node
has been completed. We assume that the DAG has always a
single entry node (i.e., a node with no parents) and a sin-
gle exit node (i.e., a node with no children). The target
environment consists of a set of heterogeneous machines,
which are fully connected; a data transfer cost is given for
each pair of machines. A task can execute on any available
machine; the execution cost of each task on each machine
is also given. The task scheduling problem is to allocate
tasks for execution onto machines in such a way that prece-
dence constraints are respected and the overall execution
time (makespan) is minimized. It is assumed that only one
task can execute on a machine at a time and once a task has
started execution on a machine it cannot be preempted.

There is a vast amount of literature related to heuris-
tics for DAG scheduling on heterogeneous systems [4, 5,
12, 15]. An important family of heuristics is based on list
scheduling (e.g., [13, 14]). In list scheduling, a weight
is assigned to each node and edge of the graph; these
weights are used to prioritize the nodes, which are sub-
sequently assigned in this order to machines. Other fam-
ilies of heuristics are based on grouping nodes into clus-
ters which are then considered for assignment to machines
(e.g., [5]), task duplication (e.g., [12]), scheduling the crit-
ical path first (e.g., [14]), or scheduling by dividing the
DAG into levels (e.g., [6]). In our study, we focus on
five heuristics with good performance characteristics: Dy-
namic Level Scheduling (DLS) [13]; Heterogeneous Ear-
liest Finish Time (HEFT) [14]; Critical Path On a Pro-
cessor (CPOP) [14]; Fastest Critical Path (FCP) [9]; and
Levelized-Min Time (LMT) [6].

In [16], it was observed that different methods for com-
puting the weights of the nodes and edges of the DAG
may have a significant impact on the schedule produced by
HEFT. Note that in a homogeneous system an appealing ap-
proach to assign weights to nodes and edges is to use task
computation and communication costs, respectively. How-
ever, in a heterogeneous setting these costs may vary across
different machines and one could use these costs in different
ways to compute a weight; for instance, one could take the
average value, the smallest value, etc... Extending the study
in [16] we noticed that different methods for computing the
weight make a significant impact on the schedule produced
by other heuristics too. The different methods we used in
our study are those also used in [16], that is:

e mean value (denoted by M) is based on the average
computation cost of each task across all machines (to
assign a weight to a node) and the average communi-
cation cost between two tasks (to assign a weight to an
edge).

e median value (denoted by ME) is based on the median
value respectively.

e worst value (denoted by W) is based on the worst value
of the execution cost, that is, maximum computation
cost, to assign the weight of a node. The weight of an
edge is based on the communication cost that corre-
sponds to the two machines on which each of the two
communicating tasks has its highest computation cost.

e best value (denoted by B) is based on the best value
of the execution cost, that is, minimum computation
cost, while the weight of an edge is based on the com-
munication cost that is determined by the procedure
described previously.

e simple worst value (denoted by SW) is based on the
worst value for both computation and communication
(that is, maximum computation and maximum com-
munication).

e simple best value (denoted by SB) is based on the best
value for both computation and communication (that
is, minimum computation and minimum communica-
tion).

Using one thousand randomly generated DAGs (gener-
ated as explained in [16] and further in Section 4.2 of this
paper) and for each of the five heuristics mentioned ear-
lier, we compared the makespan produced by each different
method to compute the weights. The comparison is carried
out using the following metrics:

e The average percentage degradation (APD) [8] is the
average (over all DAGS) of the percentage of degrada-
tion of the makespan generated by a particular method
from the best makespan (produced by any of the six
different methods).

e The number of best solutions (denoted by NB) is the
number of time a particular method to compute the
weights was the only one that produced the shortest
makespan. This metric is complemented with the num-
ber of best solutions equal with another method (de-
noted by NEB), which counts those cases where a
particular method produced the shortest makespan but
at least another one method also achieved the same
makespan.
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Figure 1. Average Percentage Degradation
(APD) from the best schedule for each of six
different methods to compute weights.



e Finally, as an indication of what is the absolutely worst
that a method performed over the 1000 cases, we con-
sider the worst percentage degradation (WPD), which
is the maximum value of the percentage degradation of
the makespan of a given method from the makespan of
the best method for a particular case.

The average percentage degradation (APD) for each of
the five heuristics and the six different methods is shown in
Figure 1. The APD tends to be higher for certain heuristics,
however, we regard it as significant in all cases. Further-
more, no particular method to compute the weights seems
to give consistently better results. These observations can
be enhanced by the additional metrics presented in Figure 2.
In an extreme case, for CPOP, the mean value method per-
forms 53% worse than the best method for the same DAG.

The significant variations observed in the makespan
highlight the sensitivity of the heuristics to different meth-
ods to compute the weights. This sensitivity appears to be
largely due to the difficulty of the heuristics to assess mean-
ingfully the relative importance of independent tasks in the
DAG (and rank them appropriately). In turn, this is a con-
sequence of the variations inherently present in the hetero-
geneity. To minimize the effect of all this, we focussed on
the development of a heuristic that would make use of a
more robust approach for scheduling the independent tasks
of the DAG. This is presented in the next section.

3. A Hybrid Heuristic
3.1. Overview/Outline

The key idea of the hybrid heuristic is to use a standard
list scheduling approach to rank the nodes of the DAG and
then use this ranking to assign tasks to groups of tasks that
can be subsequently scheduled independently. The input of
the heuristic is a DAG and two arrays: one array gives the
execution cost of each node on each machine, and another
array gives the communication cost between two nodes con-
nected by an edge on all combinations of different machines
where these nodes may run (we assume that this cost is zero
if two tasks connected by an edge are executed by the same
machine).

The heuristic consists of three phases: ranking, group
creation, scheduling independent tasks within each group.
In the first phase, a weight is assigned to each node and
edge of the graph; this is based on averaging all possible
values for the cost of each node (or edge, respectively) on
each machine (or combination of machines, respectively).
Using this weight, upward ranking is computed and a rank
value is assigned to each node. The rank value, r;, of a node
1 is recursively defined as follows:

ri = w; + max (c;; +7;
K3 1 VjeSi( () ])7

where w; is the weight of node ¢, S; is the set of immedi-
ate successors of node ¢ and ¢;; is the weight of the edge
connecting nodes ¢ and j.

In the second phase, nodes are sorted in descending or-
der of their rank value; using this order, they are considered
for assignment to groups as follows. The first node (i.e.,
the node with the highest rank value) is added to a group
numbered 0. Successive nodes, always in descending order
of their rank value, are placed in the same group as long
as they are independent with all the nodes already assigned
to the group (i.e., there is no dependence between them in
the DAG). If a dependence is found, then the node with
the smallest rank value (i.e., the sink of the dependence)
is made the member of a new group; the new group’s num-
ber is the current group’s number increased by one. Again,
subsequent tasks, in terms of their rank value, will be added
to this group as long as they are not dependent to any other
node which is a member of this group; if they are, a new
group will be created and so on. The outcome from this
process is a set of ordered groups, each of which consists of
a number of independent tasks, and has a predetermined pri-
ority (based on the original ranking of the nodes; a smaller
group number indicates higher priority).

In the third phase, a schedule of the DAG can be ob-
tained by considering each group in ascending order of its
number, and using any heuristic for scheduling the indepen-
dent tasks within each group. It is noted that the input of the
latter heuristic will be a set of (independent) tasks; a set of
machines; the array giving the execution cost of each node
on any machine; and, another array giving the earliest time
that each task may start execution on each machine. The
latter, which we call EST, has to be computed once before
the tasks of a group are to be considered for scheduling. The
value of an entry EST; of this array, referring to task ¢ and
machine j, will be given by EST;; = max(FT};, ETT;;),
where F'Tj is the time that machine j finishes the execution
of all tasks of the previous group(s) (hence, the time when
work can be scheduled on it), and ET'T;; is the time that all
the data needed to execute task ¢ on machine j is available
(this is computed by considering all immediate ancestors of
task 4, the time they finish, and any time needed to trans-
fer data from the machine where they run on to machine j
— recall that, by definition, all ancestors will belong to a
group of higher priority and as a result they have already
been scheduled).

An outline of the heuristic is given in Figure 3. Although
the hybrid heuristic may seem similar to level-based heuris-
tics [2, 6], there is a fundamental difference. Level-based
heuristics attempt to split nodes into groups on the basis of
the DAG structure. Our approach takes into account both
the DAG structure and the computation and communication
costs. Thus, weighting and ranking take place first, and it is
on that basis that partitioning of nodes happens.



(1)

Assign a weight to each node as the average computation cost across all machines
Assign a weight to each edge as the average communication cost across all combinations of machines.
Use upward ranking to compute a rank value for each node.

Go={};i=0

theni ++; G; ={}
add node to G;
keep scanning until there are no more nodes
(3) Forall groups, G, in ascending order of ¢

endfor

(2) Sort nodes in descending order of their rank values.

Scan nodes in descending order of their rank values
if current node has a dependence with a node in G ;

compute EST array (earliest time each task may start execution on each machine)
schedule independent tasks in G;, taking account of EST

Figure 3. A hybrid heuristic for scheduling DAGs on heterogeneous machines.

3.2. Scheduling Independent Tasks

Although there exist many heuristics to schedule a num-
ber of independent tasks onto heterogeneous machines [3]
— which could be used for the corresponding phase of the
hybrid heuristic presented above — we propose here a novel
heuristic. As will be shown next, this outperforms other,
similar heuristics. We refer to this heuristic as Balanced
Minimum Completion Time (BMCT), to reflect the fact that
after an initial allocation of tasks to machines which mini-
mize the execution time, there is a phase that tries to mini-
mize the overall time by swapping tasks between machines
in an attempt to ‘balance’ their work. As already indicated,
the input of our heuristic is: a set of independent tasks; a set
of machines; an array, W, giving the cost of executing each
task on each machine; and an array, EST, showing, for
each task, the earliest time it can be scheduled on each ma-
chine. The objective is to complete the execution of all tasks
as early as possible (i.e., to minimize the overall makespan).

The algorithm consists of two phases. In the first phase,
an initial allocation of tasks onto machines takes place; in
the second, optimization phase, selected tasks are moved
between machines in order to minimize the overall schedule
length. The initial allocation phase assigns each task to the
machine that gives the fastest execution time. Once all tasks
are assigned to a machine, then the tasks of every machine
are sorted in ascending order of their EST value for this
particular machine. This sorted order determines the order
in which the tasks of a given machine need to be executed
so that a minimal execution time for this particular machine
is achieved. The completion (or finish) time of a given task,
i, 0n a machine, m, is given by

ftim = Wim + max(ESTim, ftim),

where ft; ., is the time that the task, i/, executing before

task ¢ on that machine, m, will finish. The finish time of
the first task, say 41, scheduled on that machine, m, will be
ftiom = Wiym + EST;, . We use the notation F'T,, to
denote the time that all tasks allocated to machine m have
completed execution (that is, the finish time of the last task
scheduled on machine m).

The optimization phase considers if moving any of the
tasks from the machine giving the maximal finish time (i.e.,
the machine m for which F'T,,, is maximum) to some other
machine might result in a smaller makespan overall; if such
a task exists, then it is reallocated to that other machine
that minimizes the makespan. This is an iterative proce-
dure, which is repeated until there is no task, from those
allocated to the machine giving the maximal finish time,
whose reallocation to any other machine would make the
overall makespan smaller. Three actions need to take place
during any single iteration: (i) select a task from the ma-
chine giving the maximal finish time; (ii) select a machine
to move this task to; and, (iii) assuming such a machine
is found, insert this task to the list of tasks of that particu-
lar machine. Different options exist for making a selection
in (i) and (ii) above. We experimented with some and we
opted for a combination of simplicity and good overall ef-
ficiency. Thus, the selection of a task to be considered for
possible moving to another machine is based on a statically
pre-computed order for all the tasks. This order is the result
of sorting in ascending order the average earliest finish time
of each task across all machines. The average earliest finish
time of a task 4 is computed as

M
1
i Z(ESTU + Wij),
j=1
where M is the total number of machines. Note that this
value is computed only to determine the order that tasks,



For all machines

endfor
Repeat
moved_task «+ false
t + next unchecked task in Avg _FT[]
for all machines 7 except machine m
endfor
else mark ¢ as checked

endwhile
until moved_task is false

(1) Assign each task to the machine that gives the fastest execution time

create a task execution order list containing all tasks assigned to a given machine
sort the list in ascending order of the earliest start time of each task on that machine

(2) Avg_FT[] « vector of all tasks in ascending order of their average earliest finish time across all machines
m < machine giving the maximal finish time, M FT
mark all tasks of machine m in Avg_FT[] as unchecked and remaining tasks as checked
While (there are unchecked tasks AND moved task is false)
compute finish time, F'T7/, of each machine if task ¢ was to be inserted to the machine’s list

i + machine with the smallest value of FT;
if (FT] < MFT)then move ¢ to list of machine ¢; moved task < true

Figure 4. The BMCT heuiristic for scheduling independent tasks on heterogeneous machines.

which are candidates for moving to another machine, will
be considered and is not used for any other purpose. The
selection of a machine to move this task to is based on an
evaluation of the finish time obtained from all machines if
this task was to run on each of them. The task is moved to
the machine for which the machine’s finish time becomes
smallest, as long as the overall makespan is not increased
(i.e., the finish time of this machine is not greater than the
makespan obtained before moving the task to that machine).
In other words, if F'T; is the time that all tasks of machine
1 are finished, assume that the maximal finish time, that is
max(FTy, FTs, ..., FTyy), is given by machine 1, i.e., it is
FT,. A task is selected from machine 1 for possible relo-
cation to another machine. To select what other machine to
move the task to (if any), the finish time of each machine, if
this task was to be added to it, is computed. If these values
are given by F'T}, then the task is moved to the machine that
gives the minimum value (i.e., machine ¢ for which F'T'; be-
comes minimum), as long as this value is smaller than the
maximal finish time before, i.e., F'Ty. Finally, since there
are benefits in the makespan if the tasks of every machine
are considered in ascending order of their EST value on
that machine, a task that is reallocated to a machine will be
inserted to the list of tasks of that machine at a point that
will maintain a sorted order on the EST values. The al-
gorithm terminates when none of the tasks of the machine
giving the maximal finish time can be moved to any other
machine.

The algorithm is outlined in Figure 4.
3.3. An Example

In order to illustrate both the above heuristics (hybrid and
BMCT), consider the DAG shown in Figure 5(a). The cost
to execute each of the 10 tasks in the graph on each of three
different machines is given in Figure 5(b). The number next
to each edge of the graph corresponds to the amount of data
that needs to be passed from a task to an immediate succes-
sor. Figure 5(c) shows the cost to transfer a data unit for
any given combination of machines; thus, the cost to trans-
fer, for instance, the data needed from task 0 to task 1 would
be 14 x 0.9 if one of the tasks was executed by machine 0
and the other by machine 1. Recall that we assume that the
cost to transfer the data between two tasks that are executed
on the same machine is zero.

The first phase involves the assignment of weights to
the nodes and edges of the graph (using the average of all
possible values) and then the computation of upward rank-
ing for the nodes. The results are shown in Figure 6(a).
The nodes in descending order of their ranking value are
{0,1,4,5,7,2,3,6,8,9}. The second phase involves parti-
tioning of nodes into ordered groups, considering them in
descending order of their ranking value. Node 0 is assigned
to group 0. Node 1 cannot be in the same group as node 0
(since it depends on node 1), and, as a result, a new group
(group 1) is created. Nodes 4 and 5 can also be in the same



(a) an example graph

node | m0O | ml| m2 | node| mO | ml | m2

0 17 | 19 | 21 5 30| 27 | 18
1 2 | 27 | 28 6 17 | 16 | 15
2 15| 15| 9 7 49 | 49 | 46
3 4 8 9 8 25| 22| 16
4 17 | 14 | 20 9 23| 27 | 19

(b) the computation cost for each node on three
heterogeneous machines.

machines | timefor adata unit
mO - ml 0.9
ml-m2 1.0
m0 - m2 1.4

(c) the communication cost table for interconnected
machines.

Figure 5. An example of a DAG with computa-
tion and communication values.

group as node 1 (that is group 1, since all three nodes are in-
dependent), but node 7 depends on node 4, therefore a new
group needs to be created, and so on. When this procedure
is completed, nodes are grouped in 5 groups as shown in
Figure 6(b).

The third phase involves the scheduling of the indepen-
dent tasks within each group, using the BMCT heuristic
(after computing, each time, the EST array); the steps fol-
lowed are shown in Figure 7. In order to help readability we
have added the prefix n to each graph node, and m to each
machine. Initially, group O is considered for scheduling; the
values of EST are zero. According to the BMCT heuris-
tic, node 0 is assigned to machine 0, which gives the best

node | weight | rank node | weight | rank
0 19 149.93 5 25 95.40
1 24 120.67 6 16 58.07
2 13 85.60 7 48 85.67
3 7 84.13 8 21 57.93
4 17 112.93 9 23 23.00

(a) Ranking of each node using mean values to compute

weights.
group tasks
0 {0}
1 {1, 4,5}
2 {7,2,3}
3 {6, 8}
4 {9}

(b) Partitioning the nodes into groups according to their
rank values.

Figure 6. Ranking and partitioning the nodes
of the example graph in Figure 5.

execution time for this task. Clearly, no reallocation of the
task to another machine would give an earlier finish time.
Then, the nodes of group 1 are considered for scheduling.
First, the EST array is computed for each task/node and
machine; its values depend on the finish time of any par-
ent nodes (from previous groups) and the time needed to
complete the transfer of all necessary data. Thus, for node
1, for example, the values for each different machine are
ESTlO = 17, ESTll = 29.6, EST12 = 36.6. Then, an
initial assignment of nodes is made, based on which ma-
chine gives the best execution time; this is machine 0 for
node 1, machine 1 for node 4, and machine 2 for node 5.
Based on this assignment, the machine with the maximal
finish time (MFT) is m2, with a value of 70. Node 5 can
move to machine 0, since this would give a smaller MFT
(69). After this, mO has the highest MFT; n5 cannot move to
any other machine, since this would increase the MFT, but,
nl can move to machine m2 giving an MFT of 60. Now,
the only node of machine m2 (machine giving the MFT),
nl, cannot move to another machine without increasing the
MFT, thus the heuristic terminates. In the same way, the
BMCT heuristic proceeds with each of the remaining three
groups.



Group| Initial Assignment MFT Selected | Moving | Fina Assignment
ma Node to
chine
0 {(n0, m0O)} mO no fail {(n0, m0O)}
1 {(n1, m0), (n4, m1), (N5, m2)} m2 n5 m0 {(n1, m0), (N5, mO), (n4, m1)}
{(n1, mO), (n5, mO), (N4, m1)} m0 n5 fail
mO0 nl m2 {(n1, m2), (n5, mO), (n4,m1)}
{(n1, m2), (n5, mO), (n4,m1)} m2 nl fail {(n1, m2), (n5, mO), (n4,m1)}
2 {(n7, m2), (n2, m2), (N3, m0)} m2 n2 ml {(n7, m2), (n2, m1), (N3, m0)}
{(n7, m2), (n2, m1), (N3, m0)} m2 n7 fail {(n7, m2), (n2, m1), (N3, m0)}
3 {(n6, m2), (n8, m2)} m2 n6 mO0 {(n6, m0), (n8, m2)}
{(n6, m0), (N8, m2)} m2 n8 ml {(n6, m0), (N8, m1)}
{(n6, m0), (n8, m1)} ml n8 fail {(n6, m0), (n8,m1)}
4 {(n9, m2)} m2 n9 fail {(n9, m2)}

Figure 7. Scheduling steps for the example in Figure 5.

4. Experimental Evaluation
4.1. The Setting

We have evaluated, separately, both the hybrid heuristic
for DAG scheduling and the BMCT heuristic for scheduling
independent tasks. When generating the array giving the
execution time of each task on each of the heterogeneous
machines, we adopted the approach used in [1, 3] to model
the heterogeneity. Thus, we refer to consistent heterogene-
ity when any task that runs on a machine, say 4, faster than
another machine, say j, implies that the execution time of
every task on machine 4 is faster than the execution time on
machine j. We refer to partially consistent heterogeneity
when the previous “consistency” property is true for only
half of the tasks. Finally, we refer to inconsistent hetero-
geneity when no consistency is enforced and the execution
time of a given task on a given machine is randomly gener-
ated without enforcing any rule for consistency. In all cases,
the execution time of a task is chosen using a random uni-
form distribution over the interval [10,100].

4.2. DAG Scheduling

In order to evaluate the performance of the hybrid heuris-
tic for scheduling DAGs, proposed in the paper, we consid-
ered two possible implementations; these are based on the
use of different heuristics for scheduling the independent
tasks within each of the groups created. Thus, one imple-
mentation makes use of the BMCT heuristic; we refer to
this implementation as Hyb.BMCT. The second implemen-
tation makes use of the Min-min heuristic [3] and we refer
to it as Hyb.MinMin. We compared the performance of the
two implementations with five other related heuristics for
DAG scheduling: FCP [9], DLS [13], CPOP [14], LMT [6],

HEFT [14]. The comparison was based on the Normal-
ized Schedule Length (NSL) [8], defined as the ratio of the
makespan divided by a fixed cost of the critical path. Four
different types of DAGs were considered: Random Graphs,
FFT [7, 8, 14], Fork-Join Graphs [8], and Laplace [10, 8].
Random graphs are generated using the procedure also ex-
plained in [16]. Thus, to generate a DAG with a number
of nodes, we first generate a single entry and exit node; all
other nodes are divided into levels, with each level having at
least two nodes. Levels are created progressively; the num-
ber of nodes at each level is randomly selected up to half
the number of the remaining to be generated nodes. Care is
taken so that each node at a given level is connected to at
least one node of the successor level and vice versa.

Taking into account the three different settings for the
heterogeneity, a total of 12 comparisons are made; the
results are shown in Figures 8, 9 and 10. In 8 cases,
Hyb.BMCT returns the best NSL, in 2 of them Hyb.MinMin
returns the best NSL, and, in the remaining two, DLS per-
forms best. Neither the type of heterogeneity nor the appli-
cation appear to make consistently a significant difference
on the performance of the hybrid variants. Finally, from
the five heuristics we used for comparison, DLS is the most
competitive heuristic.

The average running time of all the heuristics, aver-
aged over 100 runs using randomly generated DAGS, is
shown in Figure 11. The results are in line with those
from similar studies (see Fig.7 in [14]). Both Hyb.BMCT
and Hyb.MinMin are faster than DLS (which is the slow-
est heuristic), with Hyb.BMCT providing better schedules
too; FCP, HEFT, and CPOP are faster than Hyb.BMCT and
Hyb.MinMin. It is also noted that Hyb.MinMin is only
marginally faster than Hyb.BMCT even though the latter
has higher complexity.

Finally, we ran both Hyb.BMCT and Hyb.MinMin us-
ing the six different methods to compute the weights men-
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(a) Random graphs, 25-100 tasks

(b) FFT graphs, 15-223 tasks

(c) Fork-join graphs, 7-229 tasks

(a) Random graphs, 25-100 tasks

(b) FFT graphs, 15-223 tasks

(c) Fork-join graphs, 7-229 tasks

(d) Laplace graphs, 25-225 tasks

(d) Laplace graphs, 25-225 tasks

Hybrid heuristic and 5 other DAG schedul-
ing algorithms using 4 different application
graphs, 3-8 machines and partially consistent

Figure 9. Average NSL of two versions of the
heterogeneity.

Hybrid heuristic and 5 other DAG schedul-
ing algorithms using 4 different application
graphs, 3-8 machines and consistent hetero-

Figure 8. Average NSL of two versions of the
geneity.



() Hyb.BMCT
(b) Hyb.MinMin
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runs on Randomly Generated DAGs) of

Hyb.BMCT, Hyb.MinMin and the five heuris-

tics considered in the evaluation in Figures 8,

9, and 10.

Figure 11. Average running time (over 100

(a) Random graphs, 25-100 tasks
(b) FFT graphs, 15-223 tasks
(c) Fork-join graphs, 7-229 tasks

Figure 12. Average Percentage Degradation

(APD) from the best schedule for each of
six different methods to compute weights for

Hyb.BMCT and Hyb.MinMin.

(d) Laplace graphs, 25-225 tasks

Figure 10. Average NSL of two versions of the
Hybrid heuristic and 5 other DAG schedul-
ing algorithms using 4 different application
graphs, 3-8 machines and inconsistent het-

erogeneity.



Hybrid. BMCT
NB NEB WPD
M 169 177 9.7
ME | 93 92 101
W |100 111 9.4
B 207 205 8.8
SW | 91 109 9.3
SB 55 68 122

Hybrid. MinMin
NB NEB WPD
M 20 238 10.7
ME | 52 215 126
w 57 177 107
B 209 72 9.9
SwW | 22 213 119
SB | 310 96 8.8

Figure 13. Three additional metrics for the ex-
periments in Figure 12: Number of times a
method gives the best schedule NB; number
of times a method gives the best, but another
one is also giving the best too NEB; and worst
percentage degradation WPD, that is the max-
imum percentage degradation over all cases.

tioned in Section 2. We considered the Average Percent-
age Degradation (APD) [8, 16], over 1000 runs, of the
makespan of each method from the best makespan (gen-
erated by any of the six different methods). The results
are shown in Figure 12 and are directly comparable with
the results of the other heuristics shown in Figure 1 (the
same randomly generated DAGs were used). It can be seen
that, in the worst case, the APD does not exceed 2.3 in the
case of Hyb.BMCT and 2.62 in the case of Hyb.MinMin,
whereas it was much higher for all the other DAG schedul-
ing heuristics considered in Figure 1. This indicates that
the hybrid heuristic is less sensitive to different approaches
for computing the weights comparing to other heuristics.
For completeness, the additional metrics shown in Figure 2
for the other heuristics, are also shown in Figure 13 for the
two implementations of the hybrid heuristic. It is interest-
ing to notice that the WPD was only 12.6% (comparing
to much higher values for the heuristics considered in Fig-
ure 2); also, it appears that computing the weights using B
or SB seems to result in slightly better schedules, but fur-
ther investigation and more experiments would be needed
before establishing anything here.

BMCT MET MCT MinMin MaxMin GA
(a) Consistent heterogeneity, 50-200 tasks,
3-8 machines

350

300

250

200

(b) Partially Consistent heterogeneity, 50-200 tasks,
3-8 machines

§ e

350

300

250

200+

BMCT MET MCT MinMin MaxMin GA

(c) Inconsistent heterogeneity, 50-200 tasks,
3-8 machines

Figure 14. Comparison of the makespan
achieved by the Balanced Minimum Comple-
tion Time (BMCT) heuristic and 5 other heuris-
tics for independent task scheduling using
consistent, partial-consistent and inconsis-
tent heterogeneity.



4.3. Scheduling I ndependent Tasks

In order to evaluate the performance of the BMCT
heuristic for scheduling independent tasks, we compared
its performance with that of five other related heuristics
for independent task scheduling [3]: Minimum Execution
Time (MET), Minimum Completion Time (MCT), Min-
min (MinMin), Max-min (MaxMin), and a Genetic Algo-
rithm based heuristic (GA) (all five heuristics are described
in [3]). The average schedule length (SL) over a 1000 dif-
ferent cases, using consistent, partially consistent and in-
consistent heterogeneity is shown in Figure 14. A random
uniform distribution is used to choose the number of tasks
from the interval [50,200], the number of machines from
the interval [3,8], and the execution time of each task from
the interval [10,100]. In all cases, the BMCT heuristic per-
forms better although it is noted that its success comes with
an increased complexity (as a result of the phase that moves
tasks across machines in an attempt to minimize the overall
makespan) with respect to some of the other heuristics used
in the comparison.

5. Conclusion

This paper presented two novel heuristics for task
scheduling on heterogeneous machines: one heuristic for
DAG scheduling, and another for scheduling independent
tasks. Both heuristics have good performance behaviour.
The first heuristic adopts a hybrid approach for DAG
scheduling; by reducing the problem to smaller subprob-
lems for scheduling independent tasks, it may be used to
give rise to a separate new family of heuristics. The Bal-
anced Minimum Completion Time heuristic proposed in
this paper for scheduling independent tasks showed good
behaviour both when used in the relevant phase of the hy-
brid heuristic and in comparison with other related heuris-
tics. It is noted though that the success of the BMCT heuris-
tic comes with an increased complexity. This may be less
important if BMCT is used in the third phase of the hy-
brid heuristic for DAG scheduling (where the number of
independent tasks to be scheduled is relatively small), but it
might be significant for problems involving relatively large
numbers of independent tasks. A more detailed study would
be useful. Finally, additional evaluations using different ap-
plications, task execution values, etc. would provide further
insight in the behaviour of the heuristics.
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