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Abstract—This paper presents a hybrid Hopfield network-ge-
netic algorithm (GA) approach to tackle the terminal assignment
(TA) problem. TA involves determining minimum cost links to
form a communications network, by connecting a given set of
terminals to a given collection of concentrators. Some previous
approaches provide very good results if the cost associated with
assigning a single terminal to a given concentrator is known.
However, there are situations in which the cost of a single as-
signment is not known in advance, and only the cost associated
with feasible solutions can be calculated. In these situations, pre-
vious algorithms for TA based on greedy heuristics are no longer
valid, or fail to get feasible solutions. Our approach involves a
Hopfield neural network (HNN) which manages the problem’s
constraints, whereas a GA searches for high quality solutions with
the minimum possible cost. We show that our algorithm is able to
achieve feasible solutions to the TA in instances where the cost of a
single assignment in not known in advance, improving the results
obtained by previous approaches. We also show the applicability
of our approach to other problems related to the TA.

Index Terms—Genetic algorithms (GA), heuristics, Hopfield
neural networks, terminal assignment (TA) problem.

1. INTRODUCTION

HE USE of telecommunication networks has increased

significantly in the last decade, mainly due to the dramatic
growth in the use of the Internet [1]. The reliability and quality
of modern telecommunication service networks are critical in
designing optimized networks, which meet the performance pa-
rameters. A large variety of combinatorial optimization prob-
lems have arisen not only in the design, but also in the manage-
ment of communication networks [1], [2]. These new problems
require, in many cases, the application of emergent optimiza-
tion techniques for tackling them. One of these problems is the
terminal assignment (TA) problem in a telecommunication net-
work, on which this paper is focused.

TA is a NP-complete combinatorial optimization problem
which arises in the design and management of telecommunica-
tions networks [3]-[5]. The objective of the TA involves deter-
mining minimum cost links to form a network by connecting a
given set of terminals to a given collection of concentrators. The
terminals have a known requirement of capacity to be assigned
to a given concentrator, and this requirement varies from one
terminal to another. Each concentrator has associated a given
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maximum capacity which limits the number of terminals it can
handle. The capacity of all concentrators is also known.

TA involves identifying for each terminal the concentrator to
which it should be assigned, subject to two constraints. First,
each terminal must be assigned to one and only one of the con-
centrators, and second, the aggregate capacity requirement of
the terminals connected to a given concentrator must not exceed
the capacity of that concentrator.

Some interesting approaches for the TA can be found in the
literature. Abuali et al. [3] proposed a greedy algorithm and a
hybrid greedy-genetic algorithm (GA) for solving the TA. Khuri
and Chui [4] proposed a GA with a penalty function as an alter-
native method for solving the TA. They showed its performance
by means of the comparison with the greedy algorithm proposed
in [3].

All the previous work on the TA provides powerful ap-
proaches when the cost of assigning a single terminal to a
given concentrator is known before running the algorithms.!
However, there are situations in which the cost of assigning a
terminal to a concentrator cannot be known before having a fea-
sible solution for the TA. For instance, consider a TA problem
in which one of the aims of the network design is to have a
balanced assignment of terminals to concentrators. In this case,
the cost function depends on the entire solution provided to the
communication network, and the cost of a single assignment
cannot be calculated. Thus, some of the previous algorithms
to the TA, such as the greedy algorithm in [3], are no longer
applicable.

In this paper, we focus on TA instances where only the cost
function of entire feasible solutions can be calculated, and where
the cost of a single assignment cannot be known in advance. In
this framework, heuristic approaches like GAs are an appealing
option for achieving good solutions to the TA. The aim of this
paper is twofold: first we present a novel hybrid Hopfield net-
work (HNN) GA in which the problem’s constraints are man-
aged by the HNN and the quality of the solution obtained is
improved by the GA; and second we apply this approach to the
TA obtaining very good results and improving some previous
heuristic algorithms in the literature.

Our algorithm combines the good performance of the HNN
in solving problem’s constraints with the ability of the GA for
searching optimal solutions in combinatorial optimization prob-
lems. The use of the HNN reduces the search space of the GA
to the space of feasible solutions. Note that this approach is ap-
plicable to other combinatorial optimization problems related to
the TA. There are several of these problems in which our hybrid

IFor example, when the cost function is the Euclidean distance between a
terminal and its associated concentrator.
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approach can be applied, in the following sections we describe
some of them.

The performance of our hybrid algorithm has been evaluated
in several test TA problems and compared with the GA proposed
in [4] with very good results in all test instances considered.
We have also applied this hybrid heuristic to a problem directly
related to TA, the task assignment problem, in order to show that
our approach can be generalized to other problems.

The rest of the paper is structured in the following way. In the
next section, we provide two equivalent formal definitions for
the TA extracted from [3] and [4], respectively. We also give an
illustration of the TA in a small problem and we show that the TA
is directly related to other combinatorial optimization problems
that have been previously solved in the literature. Section III
provides a detailed overview of the most important existing ap-
proaches to the TA, whereas in Section IV we describe the scope
of our paper and the proposed HNN-GA approach. Section V
shows the TA test instances tackled and the results obtained by
our algorithm, comparing the results with other GA’s previously
proposed in the literature. In this section we also include some
results of our HNN-GA applied to the task assignment problem
in an heterogeneous computer network. Finally, Section VI con-
cludes the paper by giving some remarks and possible future
work.

II. PROBLEM DEFINITION

Given a set of

Terminals :  I1,ls,...,IN
Weights :  wq,wa, ..., wN
Concentrators :  71,72,...,T a1
Capacities :  p1,p2,...,PM

where w; is the weight, or capacity requirement of terminal
l;. The weights and capacities are positive integers and w; <
min{py, pa,...,par} fori =1,2,..., N. The N terminals and
M concentrators are placed on the Euclidean grid, i.e., [; has co-
ordinates (/;1,1;2) and r; is located at (71, 7;2). The following
are two formal equivalent definitions for the TA, which can be
found in [3] and [4], respectively

Problem Definition I: Let X be a binary matrix such that for
every element on it z;; = 1 if terminal  has been assigned to
concentrator j, and z;; = 0 otherwise.

Find X which minimizes

M N
Z(X) = Z Zcostijwij (D
j=14=1
subject to
M
Z%:L i=1,2,....N 2
7=1
N
> wimi; <pj,  j=1,2,....M )
i=1
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where Z is the cost of all of the links in the network and cost;;
is the cost of assigning terminal ¢ to concentrator j. Note that
the first constraint, from (2), ensures that each terminal must be
associated with one and only one concentrator, and the second
constraint from (3) implies that the capacity constraint on each
concentrator cannot be violated.

Problem DefinitionIl: Letx = {Z1,%2,...,Z N} beavector
such that z; = j means that terminal ¢ has been assigned to
concentrator j, 1 < z; < M and z; is an integer.

Find x which minimize

N
Z(i):ZCOSti]‘, ji=12,...,M 4)
i=1
subject to
Zwi<Pj7j=1727-..,M )
1ER;

where cost;; is the cost for associating terminal 7 to concentrator
j.and R; = {i| &; = j}, i.e., R; represents the terminals that
are assigned to concentrator j.

A. Analysis of Problem Definitions

We have presented two equivalent definitions for the TA, used
in the literature. Problem Definition I codifies the TA into a bi-
nary matrix. These types of encodings are interesting for solving
the problem by a classical GA [6] using traditional binary op-
erators. On the other hand, this encoding method involves large
binary strings for codifying the TA, because the solution matrix
X is of size N x M.

Problem Definition II codifies the problem in a more compact
way, since the vector x has length N. On the other hand, this en-
coding involves integer numbers instead of binary ones, which
may complicate the operators in a GA.

The transformation from one definition (representation) to
another is straightforward:

If we have a matrix X, the corresponding vector X can be
calculated as

If we have a solution for the TA encoded as a vector Z, the
corresponding binary matrix X can be calculated as

L,
T = o,
B. Example

Consider the TA defined by the collection of N =
10 terminals and M = 3 concentrators shown in Ta-
bles I and II. Following Problem Definition I, each assignment
in this example will be represented by a 10 X 3 binary matrix
X, whereas following Problem Definition II, each assignment
will be represented by a vector of ten integer numbers between
1 and 3. If we consider as cost function cost;; the Euclidean
distance from terminal 7 to concentrator j, the optimal assign-
ment is shown in Fig. 1.

ifz; =7
otherwise.

)
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Fig. 1. Optimal TA for the example in Section II-C.

TABLE 1

TERMINAL CAPACITY REQUIREMENTS (WEIGHTS) AND TERMINAL

COORDINATES FOR THE PROBLEM IN SECTION II-C

Terminal # Weight Coordinates

1

=W N

o

© o N O

5 (54,28)
4 (28,75)
4 (84,44)
2 (67,17)
3 (90,41)
1 (68.67)
3 (24,79)
4 (38,59)
5 (27.86)
4 (07,76)

This optimal assignment can be represented as a binary ma-

trix.

or, as an integer vector:

%o = {2,3,2,

01 0
00 1
010
01 0
01 0
00 1
00 1
100
00 1
1 00
2,2,3,3,1,3,1}.

)

TABLE 1II
CONCENTRATORS CAPACITY AND COORDINATES FOR THE PROBLEM IN
SECTION II-C

Concentrator # Capacity Coordinates

1 12 (19,76)
2 14 (50,30)
3 13 (23,79)

C. Related Problems

The TA is not only interesting because its applications to
the design of fixed telecommunications networks, but also be-
cause it is directly related to a large amount of problems in very
different contexts. First, note that the TA is very similar to a
classical combinatorial optimization problem, known as the bin
packing (BP) problem [7], [8]. BP is defined by means of a set
of bins, B = {b1,...,bn} (concentrators in the TA), with asso-
ciated capacity ¢ and a set of objects O = {o1,...,0ps} (termi-
nals in the TA) with associated weights w;. A feasible solution
would be represented by a vector x = {z1,...,2xx}, where
x; = j means that the 7" object has been assigned to bin j. The
goal of the bin packing problem is assigning the objects to the
bins in such a way that

Zwigc

1€B;

where B; = {i| z; = j} represents the objects which are
in bin j.

The objective function of the BP is usually the number of
different bins required for obtaining a feasible solution to the
problem. Note that this definition of the BP is similar to the
definition II of TA given in this paper, and only the objective
function is quite different from TA.
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Another combinatorial optimization problem very close to
the TA is the so called cell to switches assignment problem
(CTAP). This problem consists of assigning the cells of a mobile
telecommunications network to a set of switches, which route
calls to another base station or telephone switched network. The
optimal assignment of cells to switches allows a better manage-
ment of the handoff between cells. The CTAP can be defined in
a straight forward manner from the TA, changing terminals by
cells, concentrators by switches and using an objective function
which depends on the number of possible handoff from a given
cell and its distance to the switch it is assigned. See [9] and [10]
for further details on the CTAP.

The last problem related to the TA we consider in this small
revision is the task assignment problem (TSAP) in computer
networks with resources constraints. Let us consider a dis-
tributed computer network formed by a set of processors,
and a set of tasks of a distributed application which must be
executed on them. Each task requires some resources in order
to be executed (memory for example) and each processor has a
maximum of resources available for executing tasks. Thus, the
TSAP can be obtained from the TA changing terminals by tasks
and concentrators by processors, and including an objective
which takes into account the total time for finishing the whole
program (all the tasks) and the communication costs between
tasks. More details about the TSAP can be found in [11]-[13].

III. PREVIOUS APPROACHES

There are some previous approaches to the TA in the litera-
ture which used heuristic algorithms. One of the most important
papers on TA was the approach by Abuali et al. [3]. In this ar-
ticle the authors proposed a greedy algorithm for solving the TA.
This greedy approach used the notation in Problem Definition
I, and started from a random permutation of terminals (I ).
They then considered the cost function cost;; as the Euclidean
distance between terminal ¢ and concentrator j. The terminals
were assigned to concentrators following the order in 7 (I ) in
such a way that a terminal is allocated to the closest concen-
trator if there was enough capacity to satisfy the requirement
of the particular terminal. If the concentrator could not handle
the terminal, the algorithm searched for the next closest con-
centrator and performed the same evaluation. This process was
repeated until an available concentrator was found and the algo-
rithm continued to assign the remaining terminals, if there were
any. In the case that no concentrator could accommodate the re-
quired capacity of a given terminal, the search was considered
failed, and the solution provided by the greedy algorithm was
not feasible.

Pseudo-code of the Greedy algorithm in
[3].
Choose a permutation =n(ly), at random.
for (each terminal w(l;))
Determine cost;;, the distance from
m(l;) to the closest feasible concen-
trator rj;.
Assign w(l;) to rj.
end(for)
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Abuali et al. in [3] also proposed a GA which looked for the
permutation () which would provide the lowest cost cost;;.
The results provided in [3] showed that the GA hybridized with
the greedy algorithm was a powerful approach to the TA.

Another relevant work on TA is due to Khuri and Chiu [4].
In this paper, the authors proposed a GA for the TA, also using
the encoding shown in Problem Definition I. This GA used a
penalty function for managing the TA constraints, and could in-
clude some initial solutions given by the greedy algorithm pre-
sented above in order to speed up the convergence of the algo-
rithm to a good feasible solution.

IV. OUR HYBRID HNN-GA APPROACH

Existing algorithms in [3] and [4], provide nearly optimal so-
lutions for the TA in the case that the cost costi; of assigning
a given terminal ¢ to a concentrator 7, is known in advance; for
example in the case that cost function cost;; is the Euclidean dis-
tance between terminal ¢ and concentrator 7, as was considered
in [3], [4]. However, there are situations in which cost;; is not
known in advance, but only after a feasible solution is provided
to the communication network. Consider, for example, the case
in which cost;; is a function of the number of terminals assigned
to a given concentrator.? In this situation, the greedy algorithm is
no longer a valid option, since it needs to have the cost function
values in order to generate a feasible solution for the TA. Note
that this fact implies that some kind of blind search procedures
are needed in order to obtain a solution to the problem. The GA
proposed by Khuri and Chiu would be able to provide solutions
in this case. However, it cannot be seeded with feasible solu-
tions from the greedy algorithm, and its performance would be
worse than shown in [4].

In this paper, we propose new heuristic algorithms for TA
instances in which cost;; = f(z;;), though our approach can
also be applied to any other types of cost functions. cost;; needs
not be known in advance. Specifically, we propose a hybrid
neural-GA in which a Hopfield neural network manages the
problem’s constraints and a GA looks for good solutions in
terms of cost;;. In the following subsections we present the
Hopfield neural network and two GAs with different encoding
schemas for hybridization.

A. Hopfield Neural Network

The Hopfield network [14] we use as a local search algorithm
for solving the TA constraints belongs to a class of binary Hop-
field networks [15] where the neurons can only take values 1 or
0. The dynamics of this network depends on a matrix C' which
defines the minimum distance in rows between two 1s in the net-
work, and on the initial state of the neurons. See [15] for further
details. The structure of the HNN can be described as a graph,
where the set of vertices are the neurons, and the set of edges
define the connections between the neurons. We map a neuron
to every element in the solution matrix X. In order to simplify
the notation, we shall also use matrix X to denote the neurons
in the Hopfield network. The HNN dynamics can then be de-
scribed in the following way: After a random initialization of

2This could be useful, for instance, if we are interested in assignments with a
balanced number of terminals handled in concentrators.
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every neuron with binary values, the HNN operates in a serial
mode. This means that only one neuron is updated at a time,
while the rest remain unchanged. Denoting by z;;(t) the state
of a neuron at time ¢, the updating rule is described by

min(M,j+c¢ip)

z;j(t) = isgnta Z Z

p:l gq=max(1,¢i pt1)
p;ﬁl q#j

Xpq

where the isgnta operator is defined by

]\T
0, ifa>0o0r ) wizij >p; Vj

isgnta(a) = =

1, otherwise

Note that the updating rule only takes into account neurons
Zpq With value 1 within a distance of ¢;,. The matrix C is an
N x N matrix which encodes the problem’s constraint given by
(2). Its elements are defined as follows

M,
“i =0,

Note that this matrix forces one and only one 1 per row,
whereas there may be several 1s in the same column.

In the updating rule defined above, the neurons z;;
are updated in their natural order, ie., : = 1,2,...,N,
7 = 1,2,..., M. We introduce a modification of this rule by
performing the updating of the neurons in a random ordering
of the rows (variable ). This way the variability of the feasible
solutions found will increase. Let 7 () be a random permutation
of1 =1,2,..., N. The new updating rule of the HNN is

)

ifi=j
otherwise.

©)

N min(M,j+cx(i).p)

p=1 g=max(l,c ), )
p#m(i) q#j R
(10)

The resulting updating rule runs over the rows of X in the
order given by the permutation 7 (), but the columns are up-
dated in natural order j = 1,2,..., M.

A cycle is defined as the set of N x M successive neuron
updates in a given order. In a cycle, every neuron is updated
once following the given order (7), which is fixed during the
execution of the algorithm. After every cycle, the convergence
of the HNN is checked. The HNN is considered converged if
none of the neurons have changed their state during the cycle.
The final state of the HNN dynamics is a potential solution for
the TA, which fulfils the problem’s constraints given by (2) and
(3). Note, however, that the solution found may be unfeasible if
not all the terminals are assigned.

B. Genetic Algorithm 1

The first genetic algorithm (GA I) we propose to be hy-
bridized with the Hopfield network codifies a population of
x potential solutions for the TA as binary strings of length
N x M. Each string represents a different matrix X, i. e. this
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GA uses the notation given in Problem definition I. The popu-
lation is then evolved through successive generations by means
of the application of the genetic operators selection, crossover
and mutation [6]. The selection operator is the roulette wheel
selection, in which individuals are randomly sampled with
probabilities inversely proportional to their objective function
values (in order to minimize the objective function). In this case,
values of fitness (i.e., objective) are given by the problem’s
function cost cost;;. An elitist strategy, which always passes
the highest fitness string to the next generation, is applied in
order to preserve the best solution encountered thus far in the
evolution. We consider two-point crossover with probability P,
and random flip mutation with probability P,,. Finally, since
crossover and mutation operators may cause the new string to
be unfeasible, this offspring string is set as the initial state of
the Hopfield network, and the result of the neural algorithm
substitutes it in the new population. In the case that even the
solution found by the Hopfield network is unfeasible (some
terminals not assigned), a penalty term is added to the cost
function. The penalty function we use is similar to the one
defined in [4] for managing the unfeasible solutions.

In pseudo-code, this algorithm for the TA can be written as
follows:

Genetic algorithm T
Initialize GA population at random
while (max. number of generations has not
been reached) do
for (every individual X)
Run the HNN to obtain a feasible X.
Calculate the fitness value of the indi-
vidual cost;;.
if X is not feasible,
to costj;.
Substitute the GA individual by the new
X obtained through the HNN.
endfor
selection
crossover
mutation
end(while)

apply a penalty

C. Genetic Algorithm I1

The second genetic algorithm (GA II) we investigate in
this work encodes potential solutions for the TA as shown in
Problem Definition II: every individual is a string of N integers
between 1 and M, x. The selection and crossover operators
are applied in the same way as that in the Genetic Algorithm
I. The mutation operator consists of substituting each position
in the string with a different integer value, with a very small
probability P,,. In order to come up with feasible solutions,
every individual in the population is passed to the Hopfield
network: First, the string of integers X is passed to a binary ma-
trix X using (7); once a feasible solution has been obtained by
means of the Hopfield network, the resulting matrix X matrix
is passed back to a vector of integers x using (6). In the case
that the solution found by the Hopfield network is unfeasible



2348

(some terminals were not assigned) the corresponding position
in the string is filled at random, and a penalty term is added to
the cost function. In pseudo-code, this algorithm for the TA can
be written as

Genetic algorithm IT
Initialize GA population at random
while (max. number of generations has not
been reached) do
for (every individual x)
x — X
Run the HNN to obtain a feasible X.
Calculate the fitness value of the indi-
vidual cost;;.
if X is not feasible,
to costj.
X — x
Substitute the individual in the GA by
X.
end (for)
selection
crossover
mutation
end while

apply a penalty

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

In order to test the performance of our approach, we tackle a
set of TA instances of different sizes. Table III shows the main
characteristics of these problems. There are 15 test instances, of
different difficulties. In general, the difficulty increases with the
problem size. The coordinates of terminals and concentrators
have been randomly obtained in a 100 x 100 grid, whereas the
weights associated with each terminal were randomly generated
between 1-6. The capacities of each concentrator vary from one
problem to another, being in a range between 10 and 15. In all
instances considered, the cost function cost;; has been defined
in the following way:

N M
COStij =0.9- balij +0.1- Z injdistij

i=1 j=1

(11)

where dist;; is the matrix of the Euclidean distances between a
terminal 7 and a concentrator j, and bal;; is defined, as shown
in (12) at the bottom of the page.

Note that this cost function encourages solutions with a bal-
anced assignment of terminals into concentrators, and there is
also a term in (11) which imposes that the addition of Euclidean
distances between terminals and concentrator must be as small
as possible. Note also that this cost function cost;; cannot be
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TABLE III
MAIN FEATURES OF THE TA PROBLEMS TACKLED

Problem # Number of  Number of  Total terminals Total concentrators
terminals  concentrators weight capacity

1 10 3 35 39

2 10 3 39 42

3 10 3 34 37

4 20 6 T 83

5 20 6 61 68

6 20 6 72 79

7 30 10 117 127

8 30 10 98 120

9 30 10 94 120
10 50 17 182 204
11 50 17 174 193
12 50 17 173 204
13 100 30 292 360
14 100 30 334 360
15 100 30 342 360

known before a feasible solution is provided to the communica-
tion network.

We compare the results obtained by the hybrid HNN-GA,
using the two encodings proposed in this paper, > with the per-
formance of the GA proposed in [4]. The parameters of the GAs
used are fixed: population size xy = 50, roulette wheel selection,
two-point crossover operator with a probability P, = 0.6, prob-
ability of mutation P,,, = 0.01, and maximum number of gener-
ations fixed to 1000. We run every algorithm 30 times, keeping
the best, mean and standard deviation results obtained.

Table IV shows the results obtained on the problems consid-
ered, whereas Table V shows the results of a ¢-test performed
over the data obtained by the three compared algorithms. It is
apparent that our approaches Hybrid I and Hybrid II, perform
equally or better than GA with penalty function in all cases.
The GA with penalty function [4] was not able to obtain fea-
sible solutions for problems from #10 to #15. Fig. 2 shows the
best solutions found by our approach for problems #7, #8, and
#9. Note that there is a good balance in the number of terminals
assigned to concentrators, as expected.

A. Discussion

The results provided in Tables IV and V show that the hy-
brid HNN-GA scheme has a very good performance for the TA.
It is possible to extract further information through a detailed

3Hereafter, we call Hybrid I to the hybrid algorithm with binary encoding
(GAI) and Hybrid II to the hybrid algorithm with integer encoding (GA 1II), see
Sections IV-B and IV-C

10,
balij =

N
20 - abs (round (%) +1-> Xij> , V4, otherwise.
i=1

]\7
it 3 x5 = round (%) +1 Yy,
=1
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TABLE IV
COMPARISON OF THE RESULTS OBTAINED BY THE DIFFERENT ALGORITHMS
CONSIDERED (BEST/AVG./STD DEV.). SYMBOL — MEANS THAT THE GA
WITH PENALTY FUNCTION WAS NOT ABLE TO ACHIEVE FEASIBLE

SOLUTIONS IN THOSE PROBLEMS (#10-#15)

Problem # GA Hybrid T Hybrid 1T

1 65.6/66.6/1.2 65.6/65.6/0.0 65.6/65.6/0.0

2 76.3/78.5/2.1 76.3/76.3/0.0  76.3/76.3/0.0

3 85.6/88.2/2.6 85.6/85.6/0.0 85.6/85.6/0.0

4 135.5/162.3/12.8  135.5/137.0/1.9  135.5/137.2/2.3
5 139.2/153.0/7.7  139.2/141.4/1.9  139.2/142.9/2.7
6 143.6/153.7/4.6  137.6/139.0/1.6  137.6/139.2/1.2
7 278.8/293.0/7.8  257.3/264.9/3.5  256.9/268.7/3.8
8 270.7/289.8/11.0  261.9/277.3/7.0  268.6/280.9/5.5
9 260.9/286.4/11.0 269.2/280.1/7.25 263.0/284.1/7.4
10 - 440.4/460.8/12.0 434.1/465.6/12.4
11 - 453.9/476.1/11.5 458.3/478.8/11.5
12 - 483.7/508.7/12.0  479.9/509.5/12.9
13 - 811.4/852.9/18.8 809.6/851.7/20.0
14 - 740.5/808.7/28.4  748.5/804.0/24.7

798.7/848.1/21.1

812.1/856.3/19.1

t VALUES OBTAINED BY A TWO-TAILED t-TEST FOR PROBLEMS #1 TO #15. {

TABLE V

STANDS FOR VALUES OF t WITH 29 DEGREES OF FREEDOM WHICH
ARE SIGNIFICANT AT «v = 0.05. SYMBOL — MEANS THAT THE GA
WITH PENALTY FUNCTION WAS NOT ABLE TO ACHIEVE FEASIBLE
SOLUTIONS IN THOSE PROBLEMS (#10-#15)

Problem # Hybrid I-GA Hybrid II-GA Hybrid I-Hybrid II

t-test t-test t-test
1 —3.231 —3.231 0.0
2 —4.501 —4.50 0.0
3 —5.311 —5.31% 0.0
4 —10.74% —10.591 —0.37
5 —8.03" —7.29 —2.27%
6 —16.70f —16.62f —0.62
7 —18.18f —15.271 —4.08f
8 —5.391 —3.94 —2.321
9 —2.36 —-1.09 —1.66
10 - - —1.64
11 - - —0.91
12 - - —0.28
13 - - 0.26
14 - - 0.21
15 - - —1.41

analysis of the algorithms considered. First, note that there exist
small differences of performance between the Hybrid I and Hy-
brid II approaches. Table V shows that differences in perfor-
mance between both hybrid algorithms are only statistically sig-
nificant in three problems, where Hybrid I performs better than
the Hybrid II algorithm. It is important to note that both hy-
brid algorithms are able to achieve feasible solutions for all the
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TA instances considered. Fig. 3 shows the percentage of conver-
gence of the HNN to feasible solutions. These data are calcu-
lated by launching 1000 HNN’s for each instance with random
initialization. The HNN convergence rate is over 85% in all in-
stances, and over 95% for Problems #2 and #14. This high con-
vergence rate of the HNN makes the hybrid algorithm easier to
find feasible solutions for all the problems considered.

The increasing computational cost is the main drawback
when using a hybrid algorithm for a combinatorial optimization
problem such as the TA. Thus, the design of the hybrid local and
global algorithms should take into account the computational
cost as a primary factor. We have used a binary Hopfield net-
work, known to be much faster than classical Hopfield networks
(see [15], [16]). However, it is expected that the computational
cost of the HNN-GA algorithm will be higher than a GA with
penalty function. Table VI shows computation times for all the
instances considered.* The GA with penalty function converges
faster than our hybrid algorithm in problems #1-#9, however,
the computation time of our approach is reasonable. In the rest
of the problems it was not able to achieve any feasible solution.

B. Experiments on a Related Problem: The Task
Assignment Problem

As has been shown before in Section II-D, there are a large
amount of problems directly related to TA. In this section we test
the performance of our hybrid approach against two different
GAs in some tests instances of the Task Assignment Problem
(TSAP) in heterogeneous computer networks. Briefly, the TSAP
can be defined in the following way:

Consider an heterogeneous distributed system formed by a set
of processors/machines P = { Py, ..., Py}, of different speed
but with the same architecture, in such a way that a set of dif-
ferent tasks 7' = {17, ...,Tn} of a distributed application can
be executed on them. Let W = {wy,...,wy} the amount of
resources required (memory constraints, processor load, etc) by
the task 7;, and R = {ry,...,ry} the maximum resources
available for a given processor P;, then the TSAP can be for-
mulated as a TA with P being the concentrators, 1" being the
terminals, W being the weights of terminals and R the capacity
of concentrators. Usually, the number of processors in TSAP
instances are smaller than the number of concentrators in TA
instances.

The cost function for the TSAP would be different from the
one discussed for the TA in this paper. It should take into ac-
count the minimization of the total execution time and the min-
imization of the communication time between tasks in different
processors. We can consider the following model:

» All the tasks may be executed in all the processors. Two
tasks executing in different processors incur in a commu-
nications cost. The communication cost between tasks ex-
ecuting in the same processor (intraprocessor communi-
cation) is negligible.

¢ A matrix of communication costs K is defined, where each
element k;;,,, represents the communication cost between

4The computation times of algorithms strongly depends on the simulation
platform used for running the experiments. In our case it was a Dual Xeon/2.8
GHz. Computation times in Table VI are shown as round figures, only for given
an idea of differences in computational cost between algorithms.
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Fig. 2. Best assignments obtained by the Hopfield network-GA approach in problems #7 (a), #8 (b), and #9 (c).

a task ¢ executing in processor 7 and a task p executing in
a different processor q.

* Let v; the relative speed of a given processor j to the
slowest processor in the system, being the speed of the
slowest processor 1. Let ¢; be the time of execution of a
given task ¢ in the slowest processor of the system. We
define 1§ = (3_;.,,,=1 ti)/v; as the total amount of time
needed by the processor j in order to finish the tasks as-
signed to it.

The cost function f(X) for the TSAP can be defined then as

= Zt" + Z Z Z Z KijpaTijtpg (13)

1=1 j=1p=1 ¢g=1
q#]

where o1 and s stand for two parameters which control the
importance of each term in the cost function, and aq + o = 1.
Note that this objective function includes the minimization of
the total execution time (1) of the program and the communi-
cation costs between tasks («s), as was required before. Note
also that using this objective function only the cost associated
with entire feasible solutions can be calculated.

In order to test the performance of our hybrid approach in this
problem, we tackle a set of test TSAP instances. We consider
five different instances, named 7'1-7T5, involving 50 task and a
different number of processors, from 3 to 7. The values of the
rest of the parameters in the instances were generated as follows:
the time a given task takes for finishing in the slowest processor
(t;;i=1...,N) has been randomly generated with values be-
tween 1 and 10 from an uniform probability distribution. The
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Fig. 3. HNN percentage of convergence in the TA test instances considered.

speed of the processors in the system (v;, j = 1,..., M) have
also been randomly generated, with values between 1 and 5,
ensuring that at least one processor has the value 1 (slowest
processor). The amount of resources needed by each task (w;)
is randomly generated from an uniform distribution between
1 and 6. The total resources available for each processor (r;,
7 = 1...M) have been generated in such a way that all the
processors have the same resources available, and the total pro-
cessors resources to be between 1% and 5% of the total task
needed resources. Finally, each element of the matrix K of com-
munication costs between tasks have been randomly generated
from an uniform distribution with values between 1 and 10.

In the experiments performed, we will compare the results
obtained by our Hybrid I algorithm, against the results obtained
by the GA with penalty function, and a GA with a local search
heuristic. In this latter GA, in addition to the term of penalty, we
implement a local search heuristic for managing the infeasible
assignments. We call this GA as G'Ajcal. The local heuristic
works in the following way:

local search heuristic
Calculate the load of the processors.
v=1;
while (max. number of 1loopS Ymax has not
been reached) do
for (each overloaded processor j)
if z; = 5, then
T, =k, k€ P randomly chosen.
Recalculate the load of processors.
end (for)
y=~v+1;
end(while)

In all the simulations we have set the parameter v = 20.
The rest of the GA parameters are the same that were used in
the TA instances. Table VII shows the results obtained by the
considered algorithms in the five TSAP instances. The Hybrid
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TABLE VI
COMPUTATIONAL TIME (IN SECONDS) OF THE COMPARED ALGORITHMS.
SYMBOL — MEANS THAT THE GA WITH PENALTY FUNCTION WAS NOT ABLE
TO ACHIEVE FEASIBLE SOLUTIONS IN THOSE PROBLEMS (#10-#15)

Problem # GA Hybrid I Hybrid I1
1 2 5 5
2 2 5 5
3 2 5 5
4 5 20 20
5 5 20 20
6 5 20 20
7 15 45 45
8 15 45 45
9 15 45 45
10 - 120 120
11 - 120 120
12 - 120 120
13 - 360 360
14 - 360 360
15 - 360 360

I algorithm obtains better results than the GA and GAj,ca1 ap-
proaches. The t-test applied to the data obtained by the three
compared algorithms (Table VIII) shows that the differences
between Hybrid I, GA and GA),.,) are statistically significant.
Note the large differences between the Hybrid I approach and
the GA with penalty function, mainly in instances 74 and 75. It
is easy to see that the local search included in the GA improves
the quality of the solutions obtained, however, the Hybrid I ap-
proach proposed in this paper performs better.

Table IX shows the computational time of the three algo-
rithms. The GA with penalty function is the fastest algorithm,
as expected. The computation time of the Hybrid I approach
proposed in this paper is larger than the other GAs compared,
however, the Hybrid I algorithm is able to obtain much better
solutions than the GAs in less than one minute, which is a rea-
sonable computation time.

VI. CONCLUSIONS

In this paper we have presented a hybrid Hopfield net-
work-GA scheme for the TA problem. Our approach is focused
on those TA in which the cost function is not known in advance.
In these types of TA, previous approaches based on greedy
heuristics are no longer valid, and “blind” algorithms (such a
GA) are necessary for achieving high quality solutions to the
problem.

Our algorithm hybridizes a binary Hopfield neural network
with a GA. The Hopfield network solves the problem’s con-
straints, giving feasible solutions to the problem, and a GA per-
forms a global search for high quality feasible solutions. Two
GAs with different encoding methods have been proposed to be
hybridized with the Hopfield network. We have tested our algo-
rithm on a set of TA instances of different difficulties, obtaining
very good results that outperform previous approaches to the
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TABLE VII
COMPARISON OF THE RESULTS OBTAINED BY THE HYBRID I APPROACH, GA WITH PENALTY FUNCTION AND GA WITH LOCAL HEURISTIC IN THE SET OF TASK
ASSIGNMENT TEST PROBLEMS CONSIDERED (BEST/AVG./STD DEV.). T AND P> STAND FOR THE NUMBER OF TASKS AND PROCESSORS, RESPECTIVELY

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 6, DECEMBER 2004

Problem T P Hybrid I GA GAoeal
T1 50 3  6166.1/6232.0/43.9  6208.1/6282.2/49.3 6228.1/6228.1/ 49.5
T2 50 4 6114.2/6220.4/48.25 6273.6/6545.9/97.6  6303.7/6347.5/32.1
73 50 5 6161.6/6222.7/35.4  6347.6/6429.8/63.1  6232.5/6293.0/36.9
T4 50 6 6055.8/6164.0/55.0  6422.5/6609.5/94.1  6124.6/6225.5/53.6
T5 50 7 6178.2/6283.9/54.34 6547.6/6756.6/104.1 6297.1/6414.0/47.8
TABLE VIII

t VALUES OBTAINED BY A TWO-TAILED t-TEST FOR THE TASK ASSIGNMENT
PROBLEMS CONSIDERED. { STANDS FOR VALUES OF t WITH 29 DEGREES OF
FREEDOM WHICH ARE SIGNIFICANT AT o = 0.05

Problem Hybrid I-GA Hybrid I-GAea

t-test t-test

T1 —2.741 —4.03"

T2 —11.59¢ —6.63"

T3 —10.93f —4.78f

T4 —22.751 —4.64

T5 —21.61 —8.43f
TABLE IX

COMPUTATIONAL TIME (IN SECONDS) OF THE COMPARED ALGORITHMS FOR
THE TASK ASSIGNMENT PROBLEMS CONSIDERED

Problem Hybrid I GA GApem
71 18 5 10
T2 25 10 15
T3 35 15 20
T4 45 20 27
75 55 25 35

problem. We have also shown the application of our approach
in other combinatorial optimization problems related to TA.

Future work of this study includes further improvements of
the efficiency of hybrid HNN-GA schemes and the investigation
of other global search algorithms, such as simulated annealing
[17] and tabu search.
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